1 /* 2 * TLB Management (flush/create/diagnostics) for ARC700 3 * 4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * vineetg: Aug 2011 11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue 12 * 13 * vineetg: May 2011 14 * -No need to flush_cache_page( ) for each call to update_mmu_cache() 15 * some of the LMBench tests improved amazingly 16 * = page-fault thrice as fast (75 usec to 28 usec) 17 * = mmap twice as fast (9.6 msec to 4.6 msec), 18 * = fork (5.3 msec to 3.7 msec) 19 * 20 * vineetg: April 2011 : 21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, 22 * helps avoid a shift when preparing PD0 from PTE 23 * 24 * vineetg: April 2011 : Preparing for MMU V3 25 * -MMU v2/v3 BCRs decoded differently 26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 27 * -tlb_entry_erase( ) can be void 28 * -local_flush_tlb_range( ): 29 * = need not "ceil" @end 30 * = walks MMU only if range spans < 32 entries, as opposed to 256 31 * 32 * Vineetg: Sept 10th 2008 33 * -Changes related to MMU v2 (Rel 4.8) 34 * 35 * Vineetg: Aug 29th 2008 36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to 37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, 38 * it fails. Thus need to load it with ANY valid value before invoking 39 * TLBIVUTLB cmd 40 * 41 * Vineetg: Aug 21th 2008: 42 * -Reduced the duration of IRQ lockouts in TLB Flush routines 43 * -Multiple copies of TLB erase code seperated into a "single" function 44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID 45 * in interrupt-safe region. 46 * 47 * Vineetg: April 23rd Bug #93131 48 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to 49 * flush is more than the size of TLB itself. 50 * 51 * Rahul Trivedi : Codito Technologies 2004 52 */ 53 54 #include <linux/module.h> 55 #include <linux/bug.h> 56 #include <linux/mm_types.h> 57 58 #include <asm/arcregs.h> 59 #include <asm/setup.h> 60 #include <asm/mmu_context.h> 61 #include <asm/mmu.h> 62 63 /* Need for ARC MMU v2 64 * 65 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. 66 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages 67 * map into same set, there would be contention for the 2 ways causing severe 68 * Thrashing. 69 * 70 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has 71 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. 72 * Given this, the thrasing problem should never happen because once the 3 73 * J-TLB entries are created (even though 3rd will knock out one of the prev 74 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy 75 * 76 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. 77 * This is a simple design for keeping them in sync. So what do we do? 78 * The solution which James came up was pretty neat. It utilised the assoc 79 * of uTLBs by not invalidating always but only when absolutely necessary. 80 * 81 * - Existing TLB commands work as before 82 * - New command (TLBWriteNI) for TLB write without clearing uTLBs 83 * - New command (TLBIVUTLB) to invalidate uTLBs. 84 * 85 * The uTLBs need only be invalidated when pages are being removed from the 86 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB 87 * as a result of a miss, the removed entry is still allowed to exist in the 88 * uTLBs as it is still valid and present in the OS page table. This allows the 89 * full associativity of the uTLBs to hide the limited associativity of the main 90 * TLB. 91 * 92 * During a miss handler, the new "TLBWriteNI" command is used to load 93 * entries without clearing the uTLBs. 94 * 95 * When the OS page table is updated, TLB entries that may be associated with a 96 * removed page are removed (flushed) from the TLB using TLBWrite. In this 97 * circumstance, the uTLBs must also be cleared. This is done by using the 98 * existing TLBWrite command. An explicit IVUTLB is also required for those 99 * corner cases when TLBWrite was not executed at all because the corresp 100 * J-TLB entry got evicted/replaced. 101 */ 102 103 104 /* A copy of the ASID from the PID reg is kept in asid_cache */ 105 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; 106 107 /* 108 * Utility Routine to erase a J-TLB entry 109 * Caller needs to setup Index Reg (manually or via getIndex) 110 */ 111 static inline void __tlb_entry_erase(void) 112 { 113 write_aux_reg(ARC_REG_TLBPD1, 0); 114 115 if (is_pae40_enabled()) 116 write_aux_reg(ARC_REG_TLBPD1HI, 0); 117 118 write_aux_reg(ARC_REG_TLBPD0, 0); 119 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 120 } 121 122 #if (CONFIG_ARC_MMU_VER < 4) 123 124 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 125 { 126 unsigned int idx; 127 128 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 129 130 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 131 idx = read_aux_reg(ARC_REG_TLBINDEX); 132 133 return idx; 134 } 135 136 static void tlb_entry_erase(unsigned int vaddr_n_asid) 137 { 138 unsigned int idx; 139 140 /* Locate the TLB entry for this vaddr + ASID */ 141 idx = tlb_entry_lkup(vaddr_n_asid); 142 143 /* No error means entry found, zero it out */ 144 if (likely(!(idx & TLB_LKUP_ERR))) { 145 __tlb_entry_erase(); 146 } else { 147 /* Duplicate entry error */ 148 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 149 vaddr_n_asid); 150 } 151 } 152 153 /**************************************************************************** 154 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) 155 * 156 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB 157 * 158 * utlb_invalidate ( ) 159 * -For v2 MMU calls Flush uTLB Cmd 160 * -For v1 MMU does nothing (except for Metal Fix v1 MMU) 161 * This is because in v1 TLBWrite itself invalidate uTLBs 162 ***************************************************************************/ 163 164 static void utlb_invalidate(void) 165 { 166 #if (CONFIG_ARC_MMU_VER >= 2) 167 168 #if (CONFIG_ARC_MMU_VER == 2) 169 /* MMU v2 introduced the uTLB Flush command. 170 * There was however an obscure hardware bug, where uTLB flush would 171 * fail when a prior probe for J-TLB (both totally unrelated) would 172 * return lkup err - because the entry didn't exist in MMU. 173 * The Workround was to set Index reg with some valid value, prior to 174 * flush. This was fixed in MMU v3 hence not needed any more 175 */ 176 unsigned int idx; 177 178 /* make sure INDEX Reg is valid */ 179 idx = read_aux_reg(ARC_REG_TLBINDEX); 180 181 /* If not write some dummy val */ 182 if (unlikely(idx & TLB_LKUP_ERR)) 183 write_aux_reg(ARC_REG_TLBINDEX, 0xa); 184 #endif 185 186 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 187 #endif 188 189 } 190 191 static void tlb_entry_insert(unsigned int pd0, pte_t pd1) 192 { 193 unsigned int idx; 194 195 /* 196 * First verify if entry for this vaddr+ASID already exists 197 * This also sets up PD0 (vaddr, ASID..) for final commit 198 */ 199 idx = tlb_entry_lkup(pd0); 200 201 /* 202 * If Not already present get a free slot from MMU. 203 * Otherwise, Probe would have located the entry and set INDEX Reg 204 * with existing location. This will cause Write CMD to over-write 205 * existing entry with new PD0 and PD1 206 */ 207 if (likely(idx & TLB_LKUP_ERR)) 208 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 209 210 /* setup the other half of TLB entry (pfn, rwx..) */ 211 write_aux_reg(ARC_REG_TLBPD1, pd1); 212 213 /* 214 * Commit the Entry to MMU 215 * It doesn't sound safe to use the TLBWriteNI cmd here 216 * which doesn't flush uTLBs. I'd rather be safe than sorry. 217 */ 218 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 219 } 220 221 #else /* CONFIG_ARC_MMU_VER >= 4) */ 222 223 static void utlb_invalidate(void) 224 { 225 /* No need since uTLB is always in sync with JTLB */ 226 } 227 228 static void tlb_entry_erase(unsigned int vaddr_n_asid) 229 { 230 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); 231 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); 232 } 233 234 static void tlb_entry_insert(unsigned int pd0, pte_t pd1) 235 { 236 write_aux_reg(ARC_REG_TLBPD0, pd0); 237 write_aux_reg(ARC_REG_TLBPD1, pd1); 238 239 if (is_pae40_enabled()) 240 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); 241 242 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); 243 } 244 245 #endif 246 247 /* 248 * Un-conditionally (without lookup) erase the entire MMU contents 249 */ 250 251 noinline void local_flush_tlb_all(void) 252 { 253 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 254 unsigned long flags; 255 unsigned int entry; 256 int num_tlb = mmu->sets * mmu->ways; 257 258 local_irq_save(flags); 259 260 /* Load PD0 and PD1 with template for a Blank Entry */ 261 write_aux_reg(ARC_REG_TLBPD1, 0); 262 263 if (is_pae40_enabled()) 264 write_aux_reg(ARC_REG_TLBPD1HI, 0); 265 266 write_aux_reg(ARC_REG_TLBPD0, 0); 267 268 for (entry = 0; entry < num_tlb; entry++) { 269 /* write this entry to the TLB */ 270 write_aux_reg(ARC_REG_TLBINDEX, entry); 271 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 272 } 273 274 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 275 const int stlb_idx = 0x800; 276 277 /* Blank sTLB entry */ 278 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); 279 280 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { 281 write_aux_reg(ARC_REG_TLBINDEX, entry); 282 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 283 } 284 } 285 286 utlb_invalidate(); 287 288 local_irq_restore(flags); 289 } 290 291 /* 292 * Flush the entrie MM for userland. The fastest way is to move to Next ASID 293 */ 294 noinline void local_flush_tlb_mm(struct mm_struct *mm) 295 { 296 /* 297 * Small optimisation courtesy IA64 298 * flush_mm called during fork,exit,munmap etc, multiple times as well. 299 * Only for fork( ) do we need to move parent to a new MMU ctxt, 300 * all other cases are NOPs, hence this check. 301 */ 302 if (atomic_read(&mm->mm_users) == 0) 303 return; 304 305 /* 306 * - Move to a new ASID, but only if the mm is still wired in 307 * (Android Binder ended up calling this for vma->mm != tsk->mm, 308 * causing h/w - s/w ASID to get out of sync) 309 * - Also get_new_mmu_context() new implementation allocates a new 310 * ASID only if it is not allocated already - so unallocate first 311 */ 312 destroy_context(mm); 313 if (current->mm == mm) 314 get_new_mmu_context(mm); 315 } 316 317 /* 318 * Flush a Range of TLB entries for userland. 319 * @start is inclusive, while @end is exclusive 320 * Difference between this and Kernel Range Flush is 321 * -Here the fastest way (if range is too large) is to move to next ASID 322 * without doing any explicit Shootdown 323 * -In case of kernel Flush, entry has to be shot down explictly 324 */ 325 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 326 unsigned long end) 327 { 328 const unsigned int cpu = smp_processor_id(); 329 unsigned long flags; 330 331 /* If range @start to @end is more than 32 TLB entries deep, 332 * its better to move to a new ASID rather than searching for 333 * individual entries and then shooting them down 334 * 335 * The calc above is rough, doesn't account for unaligned parts, 336 * since this is heuristics based anyways 337 */ 338 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 339 local_flush_tlb_mm(vma->vm_mm); 340 return; 341 } 342 343 /* 344 * @start moved to page start: this alone suffices for checking 345 * loop end condition below, w/o need for aligning @end to end 346 * e.g. 2000 to 4001 will anyhow loop twice 347 */ 348 start &= PAGE_MASK; 349 350 local_irq_save(flags); 351 352 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 353 while (start < end) { 354 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); 355 start += PAGE_SIZE; 356 } 357 } 358 359 utlb_invalidate(); 360 361 local_irq_restore(flags); 362 } 363 364 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 365 * @start, @end interpreted as kvaddr 366 * Interestingly, shared TLB entries can also be flushed using just 367 * @start,@end alone (interpreted as user vaddr), although technically SASID 368 * is also needed. However our smart TLbProbe lookup takes care of that. 369 */ 370 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 371 { 372 unsigned long flags; 373 374 /* exactly same as above, except for TLB entry not taking ASID */ 375 376 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 377 local_flush_tlb_all(); 378 return; 379 } 380 381 start &= PAGE_MASK; 382 383 local_irq_save(flags); 384 while (start < end) { 385 tlb_entry_erase(start); 386 start += PAGE_SIZE; 387 } 388 389 utlb_invalidate(); 390 391 local_irq_restore(flags); 392 } 393 394 /* 395 * Delete TLB entry in MMU for a given page (??? address) 396 * NOTE One TLB entry contains translation for single PAGE 397 */ 398 399 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 400 { 401 const unsigned int cpu = smp_processor_id(); 402 unsigned long flags; 403 404 /* Note that it is critical that interrupts are DISABLED between 405 * checking the ASID and using it flush the TLB entry 406 */ 407 local_irq_save(flags); 408 409 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 410 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); 411 utlb_invalidate(); 412 } 413 414 local_irq_restore(flags); 415 } 416 417 #ifdef CONFIG_SMP 418 419 struct tlb_args { 420 struct vm_area_struct *ta_vma; 421 unsigned long ta_start; 422 unsigned long ta_end; 423 }; 424 425 static inline void ipi_flush_tlb_page(void *arg) 426 { 427 struct tlb_args *ta = arg; 428 429 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 430 } 431 432 static inline void ipi_flush_tlb_range(void *arg) 433 { 434 struct tlb_args *ta = arg; 435 436 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 437 } 438 439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 440 static inline void ipi_flush_pmd_tlb_range(void *arg) 441 { 442 struct tlb_args *ta = arg; 443 444 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 445 } 446 #endif 447 448 static inline void ipi_flush_tlb_kernel_range(void *arg) 449 { 450 struct tlb_args *ta = (struct tlb_args *)arg; 451 452 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 453 } 454 455 void flush_tlb_all(void) 456 { 457 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); 458 } 459 460 void flush_tlb_mm(struct mm_struct *mm) 461 { 462 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, 463 mm, 1); 464 } 465 466 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 467 { 468 struct tlb_args ta = { 469 .ta_vma = vma, 470 .ta_start = uaddr 471 }; 472 473 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); 474 } 475 476 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 477 unsigned long end) 478 { 479 struct tlb_args ta = { 480 .ta_vma = vma, 481 .ta_start = start, 482 .ta_end = end 483 }; 484 485 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); 486 } 487 488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 489 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 490 unsigned long end) 491 { 492 struct tlb_args ta = { 493 .ta_vma = vma, 494 .ta_start = start, 495 .ta_end = end 496 }; 497 498 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); 499 } 500 #endif 501 502 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 503 { 504 struct tlb_args ta = { 505 .ta_start = start, 506 .ta_end = end 507 }; 508 509 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 510 } 511 #endif 512 513 /* 514 * Routine to create a TLB entry 515 */ 516 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) 517 { 518 unsigned long flags; 519 unsigned int asid_or_sasid, rwx; 520 unsigned long pd0; 521 pte_t pd1; 522 523 /* 524 * create_tlb() assumes that current->mm == vma->mm, since 525 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 526 * -completes the lazy write to SASID reg (again valid for curr tsk) 527 * 528 * Removing the assumption involves 529 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 530 * -Fix the TLB paranoid debug code to not trigger false negatives. 531 * -More importantly it makes this handler inconsistent with fast-path 532 * TLB Refill handler which always deals with "current" 533 * 534 * Lets see the use cases when current->mm != vma->mm and we land here 535 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 536 * Here VM wants to pre-install a TLB entry for user stack while 537 * current->mm still points to pre-execve mm (hence the condition). 538 * However the stack vaddr is soon relocated (randomization) and 539 * move_page_tables() tries to undo that TLB entry. 540 * Thus not creating TLB entry is not any worse. 541 * 542 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 543 * breakpoint in debugged task. Not creating a TLB now is not 544 * performance critical. 545 * 546 * Both the cases above are not good enough for code churn. 547 */ 548 if (current->active_mm != vma->vm_mm) 549 return; 550 551 local_irq_save(flags); 552 553 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr); 554 555 vaddr &= PAGE_MASK; 556 557 /* update this PTE credentials */ 558 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 559 560 /* Create HW TLB(PD0,PD1) from PTE */ 561 562 /* ASID for this task */ 563 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 564 565 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 566 567 /* 568 * ARC MMU provides fully orthogonal access bits for K/U mode, 569 * however Linux only saves 1 set to save PTE real-estate 570 * Here we convert 3 PTE bits into 6 MMU bits: 571 * -Kernel only entries have Kr Kw Kx 0 0 0 572 * -User entries have mirrored K and U bits 573 */ 574 rwx = pte_val(*ptep) & PTE_BITS_RWX; 575 576 if (pte_val(*ptep) & _PAGE_GLOBAL) 577 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 578 else 579 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 580 581 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 582 583 tlb_entry_insert(pd0, pd1); 584 585 local_irq_restore(flags); 586 } 587 588 /* 589 * Called at the end of pagefault, for a userspace mapped page 590 * -pre-install the corresponding TLB entry into MMU 591 * -Finalize the delayed D-cache flush of kernel mapping of page due to 592 * flush_dcache_page(), copy_user_page() 593 * 594 * Note that flush (when done) involves both WBACK - so physical page is 595 * in sync as well as INV - so any non-congruent aliases don't remain 596 */ 597 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, 598 pte_t *ptep) 599 { 600 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 601 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK; 602 struct page *page = pfn_to_page(pte_pfn(*ptep)); 603 604 create_tlb(vma, vaddr, ptep); 605 606 if (page == ZERO_PAGE(0)) { 607 return; 608 } 609 610 /* 611 * Exec page : Independent of aliasing/page-color considerations, 612 * since icache doesn't snoop dcache on ARC, any dirty 613 * K-mapping of a code page needs to be wback+inv so that 614 * icache fetch by userspace sees code correctly. 615 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it 616 * so userspace sees the right data. 617 * (Avoids the flush for Non-exec + congruent mapping case) 618 */ 619 if ((vma->vm_flags & VM_EXEC) || 620 addr_not_cache_congruent(paddr, vaddr)) { 621 622 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); 623 if (dirty) { 624 /* wback + inv dcache lines (K-mapping) */ 625 __flush_dcache_page(paddr, paddr); 626 627 /* invalidate any existing icache lines (U-mapping) */ 628 if (vma->vm_flags & VM_EXEC) 629 __inv_icache_page(paddr, vaddr); 630 } 631 } 632 } 633 634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 635 636 /* 637 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP 638 * support. 639 * 640 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a 641 * new bit "SZ" in TLB page descriptor to distinguish between them. 642 * Super Page size is configurable in hardware (4K to 16M), but fixed once 643 * RTL builds. 644 * 645 * The exact THP size a Linx configuration will support is a function of: 646 * - MMU page size (typical 8K, RTL fixed) 647 * - software page walker address split between PGD:PTE:PFN (typical 648 * 11:8:13, but can be changed with 1 line) 649 * So for above default, THP size supported is 8K * (2^8) = 2M 650 * 651 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime 652 * reduces to 1 level (as PTE is folded into PGD and canonically referred 653 * to as PMD). 654 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) 655 */ 656 657 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 658 pmd_t *pmd) 659 { 660 pte_t pte = __pte(pmd_val(*pmd)); 661 update_mmu_cache(vma, addr, &pte); 662 } 663 664 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 665 pgtable_t pgtable) 666 { 667 struct list_head *lh = (struct list_head *) pgtable; 668 669 assert_spin_locked(&mm->page_table_lock); 670 671 /* FIFO */ 672 if (!pmd_huge_pte(mm, pmdp)) 673 INIT_LIST_HEAD(lh); 674 else 675 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 676 pmd_huge_pte(mm, pmdp) = pgtable; 677 } 678 679 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 680 { 681 struct list_head *lh; 682 pgtable_t pgtable; 683 684 assert_spin_locked(&mm->page_table_lock); 685 686 pgtable = pmd_huge_pte(mm, pmdp); 687 lh = (struct list_head *) pgtable; 688 if (list_empty(lh)) 689 pmd_huge_pte(mm, pmdp) = NULL; 690 else { 691 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 692 list_del(lh); 693 } 694 695 pte_val(pgtable[0]) = 0; 696 pte_val(pgtable[1]) = 0; 697 698 return pgtable; 699 } 700 701 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 702 unsigned long end) 703 { 704 unsigned int cpu; 705 unsigned long flags; 706 707 local_irq_save(flags); 708 709 cpu = smp_processor_id(); 710 711 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { 712 unsigned int asid = hw_pid(vma->vm_mm, cpu); 713 714 /* No need to loop here: this will always be for 1 Huge Page */ 715 tlb_entry_erase(start | _PAGE_HW_SZ | asid); 716 } 717 718 local_irq_restore(flags); 719 } 720 721 #endif 722 723 /* Read the Cache Build Confuration Registers, Decode them and save into 724 * the cpuinfo structure for later use. 725 * No Validation is done here, simply read/convert the BCRs 726 */ 727 void read_decode_mmu_bcr(void) 728 { 729 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 730 unsigned int tmp; 731 struct bcr_mmu_1_2 { 732 #ifdef CONFIG_CPU_BIG_ENDIAN 733 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; 734 #else 735 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; 736 #endif 737 } *mmu2; 738 739 struct bcr_mmu_3 { 740 #ifdef CONFIG_CPU_BIG_ENDIAN 741 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4, 742 u_itlb:4, u_dtlb:4; 743 #else 744 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4, 745 ways:4, ver:8; 746 #endif 747 } *mmu3; 748 749 struct bcr_mmu_4 { 750 #ifdef CONFIG_CPU_BIG_ENDIAN 751 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, 752 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; 753 #else 754 /* DTLB ITLB JES JE JA */ 755 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, 756 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; 757 #endif 758 } *mmu4; 759 760 tmp = read_aux_reg(ARC_REG_MMU_BCR); 761 mmu->ver = (tmp >> 24); 762 763 if (mmu->ver <= 2) { 764 mmu2 = (struct bcr_mmu_1_2 *)&tmp; 765 mmu->pg_sz_k = TO_KB(0x2000); 766 mmu->sets = 1 << mmu2->sets; 767 mmu->ways = 1 << mmu2->ways; 768 mmu->u_dtlb = mmu2->u_dtlb; 769 mmu->u_itlb = mmu2->u_itlb; 770 } else if (mmu->ver == 3) { 771 mmu3 = (struct bcr_mmu_3 *)&tmp; 772 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); 773 mmu->sets = 1 << mmu3->sets; 774 mmu->ways = 1 << mmu3->ways; 775 mmu->u_dtlb = mmu3->u_dtlb; 776 mmu->u_itlb = mmu3->u_itlb; 777 mmu->sasid = mmu3->sasid; 778 } else { 779 mmu4 = (struct bcr_mmu_4 *)&tmp; 780 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); 781 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); 782 mmu->sets = 64 << mmu4->n_entry; 783 mmu->ways = mmu4->n_ways * 2; 784 mmu->u_dtlb = mmu4->u_dtlb * 4; 785 mmu->u_itlb = mmu4->u_itlb * 4; 786 mmu->sasid = mmu4->sasid; 787 mmu->pae = mmu4->pae; 788 } 789 } 790 791 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) 792 { 793 int n = 0; 794 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; 795 char super_pg[64] = ""; 796 797 if (p_mmu->s_pg_sz_m) 798 scnprintf(super_pg, 64, "%dM Super Page %s", 799 p_mmu->s_pg_sz_m, 800 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE)); 801 802 n += scnprintf(buf + n, len - n, 803 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n", 804 p_mmu->ver, p_mmu->pg_sz_k, super_pg, 805 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways, 806 p_mmu->u_dtlb, p_mmu->u_itlb, 807 IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); 808 809 return buf; 810 } 811 812 void arc_mmu_init(void) 813 { 814 char str[256]; 815 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 816 817 printk(arc_mmu_mumbojumbo(0, str, sizeof(str))); 818 819 /* 820 * Can't be done in processor.h due to header include depenedencies 821 */ 822 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); 823 824 /* 825 * stack top size sanity check, 826 * Can't be done in processor.h due to header include depenedencies 827 */ 828 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); 829 830 /* For efficiency sake, kernel is compile time built for a MMU ver 831 * This must match the hardware it is running on. 832 * Linux built for MMU V2, if run on MMU V1 will break down because V1 833 * hardware doesn't understand cmds such as WriteNI, or IVUTLB 834 * On the other hand, Linux built for V1 if run on MMU V2 will do 835 * un-needed workarounds to prevent memcpy thrashing. 836 * Similarly MMU V3 has new features which won't work on older MMU 837 */ 838 if (mmu->ver != CONFIG_ARC_MMU_VER) { 839 panic("MMU ver %d doesn't match kernel built for %d...\n", 840 mmu->ver, CONFIG_ARC_MMU_VER); 841 } 842 843 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) 844 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 845 846 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 847 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) 848 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", 849 (unsigned long)TO_MB(HPAGE_PMD_SIZE)); 850 851 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) 852 panic("Hardware doesn't support PAE40\n"); 853 854 /* Enable the MMU */ 855 write_aux_reg(ARC_REG_PID, MMU_ENABLE); 856 857 /* In smp we use this reg for interrupt 1 scratch */ 858 #ifndef CONFIG_SMP 859 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ 860 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); 861 #endif 862 } 863 864 /* 865 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 866 * The mapping is Column-first. 867 * --------------------- ----------- 868 * |way0|way1|way2|way3| |way0|way1| 869 * --------------------- ----------- 870 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 871 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 872 * ~ ~ ~ ~ 873 * [set127] | 508| 509| 510| 511| | 254| 255| 874 * --------------------- ----------- 875 * For normal operations we don't(must not) care how above works since 876 * MMU cmd getIndex(vaddr) abstracts that out. 877 * However for walking WAYS of a SET, we need to know this 878 */ 879 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 880 881 /* Handling of Duplicate PD (TLB entry) in MMU. 882 * -Could be due to buggy customer tapeouts or obscure kernel bugs 883 * -MMU complaints not at the time of duplicate PD installation, but at the 884 * time of lookup matching multiple ways. 885 * -Ideally these should never happen - but if they do - workaround by deleting 886 * the duplicate one. 887 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 888 */ 889 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */ 890 891 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 892 struct pt_regs *regs) 893 { 894 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 895 unsigned int pd0[mmu->ways]; 896 unsigned long flags; 897 int set; 898 899 local_irq_save(flags); 900 901 /* re-enable the MMU */ 902 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID)); 903 904 /* loop thru all sets of TLB */ 905 for (set = 0; set < mmu->sets; set++) { 906 907 int is_valid, way; 908 909 /* read out all the ways of current set */ 910 for (way = 0, is_valid = 0; way < mmu->ways; way++) { 911 write_aux_reg(ARC_REG_TLBINDEX, 912 SET_WAY_TO_IDX(mmu, set, way)); 913 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 914 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 915 is_valid |= pd0[way] & _PAGE_PRESENT; 916 pd0[way] &= PAGE_MASK; 917 } 918 919 /* If all the WAYS in SET are empty, skip to next SET */ 920 if (!is_valid) 921 continue; 922 923 /* Scan the set for duplicate ways: needs a nested loop */ 924 for (way = 0; way < mmu->ways - 1; way++) { 925 926 int n; 927 928 if (!pd0[way]) 929 continue; 930 931 for (n = way + 1; n < mmu->ways; n++) { 932 if (pd0[way] != pd0[n]) 933 continue; 934 935 if (!dup_pd_silent) 936 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", 937 pd0[way], set, way, n); 938 939 /* 940 * clear entry @way and not @n. 941 * This is critical to our optimised loop 942 */ 943 pd0[way] = 0; 944 write_aux_reg(ARC_REG_TLBINDEX, 945 SET_WAY_TO_IDX(mmu, set, way)); 946 __tlb_entry_erase(); 947 } 948 } 949 } 950 951 local_irq_restore(flags); 952 } 953 954 /*********************************************************************** 955 * Diagnostic Routines 956 * -Called from Low Level TLB Hanlders if things don;t look good 957 **********************************************************************/ 958 959 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA 960 961 /* 962 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS 963 * don't match 964 */ 965 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) 966 { 967 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", 968 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); 969 970 __asm__ __volatile__("flag 1"); 971 } 972 973 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) 974 { 975 unsigned int mmu_asid; 976 977 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; 978 979 /* 980 * At the time of a TLB miss/installation 981 * - HW version needs to match SW version 982 * - SW needs to have a valid ASID 983 */ 984 if (addr < 0x70000000 && 985 ((mm_asid == MM_CTXT_NO_ASID) || 986 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) 987 print_asid_mismatch(mm_asid, mmu_asid, 0); 988 } 989 #endif 990