1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4 4 * 5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 6 * 7 */ 8 9 #include <linux/module.h> 10 #include <linux/bug.h> 11 #include <linux/mm_types.h> 12 13 #include <asm/arcregs.h> 14 #include <asm/setup.h> 15 #include <asm/mmu_context.h> 16 #include <asm/mmu.h> 17 18 /* A copy of the ASID from the PID reg is kept in asid_cache */ 19 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; 20 21 static struct cpuinfo_arc_mmu { 22 unsigned int ver, pg_sz_k, s_pg_sz_m, pae, sets, ways; 23 } mmuinfo; 24 25 /* 26 * Utility Routine to erase a J-TLB entry 27 * Caller needs to setup Index Reg (manually or via getIndex) 28 */ 29 static inline void __tlb_entry_erase(void) 30 { 31 write_aux_reg(ARC_REG_TLBPD1, 0); 32 33 if (is_pae40_enabled()) 34 write_aux_reg(ARC_REG_TLBPD1HI, 0); 35 36 write_aux_reg(ARC_REG_TLBPD0, 0); 37 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 38 } 39 40 static void utlb_invalidate(void) 41 { 42 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 43 } 44 45 #ifdef CONFIG_ARC_MMU_V3 46 47 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 48 { 49 unsigned int idx; 50 51 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 52 53 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 54 idx = read_aux_reg(ARC_REG_TLBINDEX); 55 56 return idx; 57 } 58 59 static void tlb_entry_erase(unsigned int vaddr_n_asid) 60 { 61 unsigned int idx; 62 63 /* Locate the TLB entry for this vaddr + ASID */ 64 idx = tlb_entry_lkup(vaddr_n_asid); 65 66 /* No error means entry found, zero it out */ 67 if (likely(!(idx & TLB_LKUP_ERR))) { 68 __tlb_entry_erase(); 69 } else { 70 /* Duplicate entry error */ 71 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 72 vaddr_n_asid); 73 } 74 } 75 76 static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1) 77 { 78 unsigned int idx; 79 80 /* 81 * First verify if entry for this vaddr+ASID already exists 82 * This also sets up PD0 (vaddr, ASID..) for final commit 83 */ 84 idx = tlb_entry_lkup(pd0); 85 86 /* 87 * If Not already present get a free slot from MMU. 88 * Otherwise, Probe would have located the entry and set INDEX Reg 89 * with existing location. This will cause Write CMD to over-write 90 * existing entry with new PD0 and PD1 91 */ 92 if (likely(idx & TLB_LKUP_ERR)) 93 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 94 95 /* setup the other half of TLB entry (pfn, rwx..) */ 96 write_aux_reg(ARC_REG_TLBPD1, pd1); 97 98 /* 99 * Commit the Entry to MMU 100 * It doesn't sound safe to use the TLBWriteNI cmd here 101 * which doesn't flush uTLBs. I'd rather be safe than sorry. 102 */ 103 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 104 } 105 106 #else /* MMUv4 */ 107 108 static void tlb_entry_erase(unsigned int vaddr_n_asid) 109 { 110 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); 111 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); 112 } 113 114 static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1) 115 { 116 write_aux_reg(ARC_REG_TLBPD0, pd0); 117 118 if (!is_pae40_enabled()) { 119 write_aux_reg(ARC_REG_TLBPD1, pd1); 120 } else { 121 write_aux_reg(ARC_REG_TLBPD1, pd1 & 0xFFFFFFFF); 122 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); 123 } 124 125 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); 126 } 127 128 #endif 129 130 /* 131 * Un-conditionally (without lookup) erase the entire MMU contents 132 */ 133 134 noinline void local_flush_tlb_all(void) 135 { 136 struct cpuinfo_arc_mmu *mmu = &mmuinfo; 137 unsigned long flags; 138 unsigned int entry; 139 int num_tlb = mmu->sets * mmu->ways; 140 141 local_irq_save(flags); 142 143 /* Load PD0 and PD1 with template for a Blank Entry */ 144 write_aux_reg(ARC_REG_TLBPD1, 0); 145 146 if (is_pae40_enabled()) 147 write_aux_reg(ARC_REG_TLBPD1HI, 0); 148 149 write_aux_reg(ARC_REG_TLBPD0, 0); 150 151 for (entry = 0; entry < num_tlb; entry++) { 152 /* write this entry to the TLB */ 153 write_aux_reg(ARC_REG_TLBINDEX, entry); 154 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI); 155 } 156 157 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 158 const int stlb_idx = 0x800; 159 160 /* Blank sTLB entry */ 161 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); 162 163 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { 164 write_aux_reg(ARC_REG_TLBINDEX, entry); 165 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI); 166 } 167 } 168 169 utlb_invalidate(); 170 171 local_irq_restore(flags); 172 } 173 174 /* 175 * Flush the entire MM for userland. The fastest way is to move to Next ASID 176 */ 177 noinline void local_flush_tlb_mm(struct mm_struct *mm) 178 { 179 /* 180 * Small optimisation courtesy IA64 181 * flush_mm called during fork,exit,munmap etc, multiple times as well. 182 * Only for fork( ) do we need to move parent to a new MMU ctxt, 183 * all other cases are NOPs, hence this check. 184 */ 185 if (atomic_read(&mm->mm_users) == 0) 186 return; 187 188 /* 189 * - Move to a new ASID, but only if the mm is still wired in 190 * (Android Binder ended up calling this for vma->mm != tsk->mm, 191 * causing h/w - s/w ASID to get out of sync) 192 * - Also get_new_mmu_context() new implementation allocates a new 193 * ASID only if it is not allocated already - so unallocate first 194 */ 195 destroy_context(mm); 196 if (current->mm == mm) 197 get_new_mmu_context(mm); 198 } 199 200 /* 201 * Flush a Range of TLB entries for userland. 202 * @start is inclusive, while @end is exclusive 203 * Difference between this and Kernel Range Flush is 204 * -Here the fastest way (if range is too large) is to move to next ASID 205 * without doing any explicit Shootdown 206 * -In case of kernel Flush, entry has to be shot down explicitly 207 */ 208 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 209 unsigned long end) 210 { 211 const unsigned int cpu = smp_processor_id(); 212 unsigned long flags; 213 214 /* If range @start to @end is more than 32 TLB entries deep, 215 * its better to move to a new ASID rather than searching for 216 * individual entries and then shooting them down 217 * 218 * The calc above is rough, doesn't account for unaligned parts, 219 * since this is heuristics based anyways 220 */ 221 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 222 local_flush_tlb_mm(vma->vm_mm); 223 return; 224 } 225 226 /* 227 * @start moved to page start: this alone suffices for checking 228 * loop end condition below, w/o need for aligning @end to end 229 * e.g. 2000 to 4001 will anyhow loop twice 230 */ 231 start &= PAGE_MASK; 232 233 local_irq_save(flags); 234 235 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 236 while (start < end) { 237 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); 238 start += PAGE_SIZE; 239 } 240 } 241 242 local_irq_restore(flags); 243 } 244 245 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 246 * @start, @end interpreted as kvaddr 247 * Interestingly, shared TLB entries can also be flushed using just 248 * @start,@end alone (interpreted as user vaddr), although technically SASID 249 * is also needed. However our smart TLbProbe lookup takes care of that. 250 */ 251 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 252 { 253 unsigned long flags; 254 255 /* exactly same as above, except for TLB entry not taking ASID */ 256 257 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 258 local_flush_tlb_all(); 259 return; 260 } 261 262 start &= PAGE_MASK; 263 264 local_irq_save(flags); 265 while (start < end) { 266 tlb_entry_erase(start); 267 start += PAGE_SIZE; 268 } 269 270 local_irq_restore(flags); 271 } 272 273 /* 274 * Delete TLB entry in MMU for a given page (??? address) 275 * NOTE One TLB entry contains translation for single PAGE 276 */ 277 278 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 279 { 280 const unsigned int cpu = smp_processor_id(); 281 unsigned long flags; 282 283 /* Note that it is critical that interrupts are DISABLED between 284 * checking the ASID and using it flush the TLB entry 285 */ 286 local_irq_save(flags); 287 288 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 289 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); 290 } 291 292 local_irq_restore(flags); 293 } 294 295 #ifdef CONFIG_SMP 296 297 struct tlb_args { 298 struct vm_area_struct *ta_vma; 299 unsigned long ta_start; 300 unsigned long ta_end; 301 }; 302 303 static inline void ipi_flush_tlb_page(void *arg) 304 { 305 struct tlb_args *ta = arg; 306 307 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 308 } 309 310 static inline void ipi_flush_tlb_range(void *arg) 311 { 312 struct tlb_args *ta = arg; 313 314 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 315 } 316 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 static inline void ipi_flush_pmd_tlb_range(void *arg) 319 { 320 struct tlb_args *ta = arg; 321 322 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 323 } 324 #endif 325 326 static inline void ipi_flush_tlb_kernel_range(void *arg) 327 { 328 struct tlb_args *ta = (struct tlb_args *)arg; 329 330 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 331 } 332 333 void flush_tlb_all(void) 334 { 335 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); 336 } 337 338 void flush_tlb_mm(struct mm_struct *mm) 339 { 340 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, 341 mm, 1); 342 } 343 344 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 345 { 346 struct tlb_args ta = { 347 .ta_vma = vma, 348 .ta_start = uaddr 349 }; 350 351 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); 352 } 353 354 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 355 unsigned long end) 356 { 357 struct tlb_args ta = { 358 .ta_vma = vma, 359 .ta_start = start, 360 .ta_end = end 361 }; 362 363 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); 364 } 365 366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 367 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 368 unsigned long end) 369 { 370 struct tlb_args ta = { 371 .ta_vma = vma, 372 .ta_start = start, 373 .ta_end = end 374 }; 375 376 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); 377 } 378 #endif 379 380 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 381 { 382 struct tlb_args ta = { 383 .ta_start = start, 384 .ta_end = end 385 }; 386 387 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 388 } 389 #endif 390 391 /* 392 * Routine to create a TLB entry 393 */ 394 static void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) 395 { 396 unsigned long flags; 397 unsigned int asid_or_sasid, rwx; 398 unsigned long pd0; 399 phys_addr_t pd1; 400 401 /* 402 * create_tlb() assumes that current->mm == vma->mm, since 403 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 404 * -completes the lazy write to SASID reg (again valid for curr tsk) 405 * 406 * Removing the assumption involves 407 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 408 * -More importantly it makes this handler inconsistent with fast-path 409 * TLB Refill handler which always deals with "current" 410 * 411 * Lets see the use cases when current->mm != vma->mm and we land here 412 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 413 * Here VM wants to pre-install a TLB entry for user stack while 414 * current->mm still points to pre-execve mm (hence the condition). 415 * However the stack vaddr is soon relocated (randomization) and 416 * move_page_tables() tries to undo that TLB entry. 417 * Thus not creating TLB entry is not any worse. 418 * 419 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 420 * breakpoint in debugged task. Not creating a TLB now is not 421 * performance critical. 422 * 423 * Both the cases above are not good enough for code churn. 424 */ 425 if (current->active_mm != vma->vm_mm) 426 return; 427 428 local_irq_save(flags); 429 430 vaddr &= PAGE_MASK; 431 432 /* update this PTE credentials */ 433 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 434 435 /* Create HW TLB(PD0,PD1) from PTE */ 436 437 /* ASID for this task */ 438 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 439 440 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 441 442 /* 443 * ARC MMU provides fully orthogonal access bits for K/U mode, 444 * however Linux only saves 1 set to save PTE real-estate 445 * Here we convert 3 PTE bits into 6 MMU bits: 446 * -Kernel only entries have Kr Kw Kx 0 0 0 447 * -User entries have mirrored K and U bits 448 */ 449 rwx = pte_val(*ptep) & PTE_BITS_RWX; 450 451 if (pte_val(*ptep) & _PAGE_GLOBAL) 452 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 453 else 454 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 455 456 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 457 458 tlb_entry_insert(pd0, pd1); 459 460 local_irq_restore(flags); 461 } 462 463 /* 464 * Called at the end of pagefault, for a userspace mapped page 465 * -pre-install the corresponding TLB entry into MMU 466 * -Finalize the delayed D-cache flush of kernel mapping of page due to 467 * flush_dcache_page(), copy_user_page() 468 * 469 * Note that flush (when done) involves both WBACK - so physical page is 470 * in sync as well as INV - so any non-congruent aliases don't remain 471 */ 472 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, 473 unsigned long vaddr_unaligned, pte_t *ptep, unsigned int nr) 474 { 475 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 476 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS; 477 struct page *page = pfn_to_page(pte_pfn(*ptep)); 478 479 create_tlb(vma, vaddr, ptep); 480 481 if (page == ZERO_PAGE(0)) 482 return; 483 484 /* 485 * For executable pages, since icache doesn't snoop dcache, any 486 * dirty K-mapping of a code page needs to be wback+inv so that 487 * icache fetch by userspace sees code correctly. 488 */ 489 if (vma->vm_flags & VM_EXEC) { 490 struct folio *folio = page_folio(page); 491 int dirty = !test_and_set_bit(PG_dc_clean, &folio->flags); 492 if (dirty) { 493 unsigned long offset = offset_in_folio(folio, paddr); 494 nr = folio_nr_pages(folio); 495 paddr -= offset; 496 vaddr -= offset; 497 /* wback + inv dcache lines (K-mapping) */ 498 __flush_dcache_pages(paddr, paddr, nr); 499 500 /* invalidate any existing icache lines (U-mapping) */ 501 if (vma->vm_flags & VM_EXEC) 502 __inv_icache_pages(paddr, vaddr, nr); 503 } 504 } 505 } 506 507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 508 509 /* 510 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP 511 * support. 512 * 513 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a 514 * new bit "SZ" in TLB page descriptor to distinguish between them. 515 * Super Page size is configurable in hardware (4K to 16M), but fixed once 516 * RTL builds. 517 * 518 * The exact THP size a Linux configuration will support is a function of: 519 * - MMU page size (typical 8K, RTL fixed) 520 * - software page walker address split between PGD:PTE:PFN (typical 521 * 11:8:13, but can be changed with 1 line) 522 * So for above default, THP size supported is 8K * (2^8) = 2M 523 * 524 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime 525 * reduces to 1 level (as PTE is folded into PGD and canonically referred 526 * to as PMD). 527 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) 528 */ 529 530 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 531 pmd_t *pmd) 532 { 533 pte_t pte = __pte(pmd_val(*pmd)); 534 update_mmu_cache_range(NULL, vma, addr, &pte, HPAGE_PMD_NR); 535 } 536 537 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 538 unsigned long end) 539 { 540 unsigned int cpu; 541 unsigned long flags; 542 543 local_irq_save(flags); 544 545 cpu = smp_processor_id(); 546 547 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { 548 unsigned int asid = hw_pid(vma->vm_mm, cpu); 549 550 /* No need to loop here: this will always be for 1 Huge Page */ 551 tlb_entry_erase(start | _PAGE_HW_SZ | asid); 552 } 553 554 local_irq_restore(flags); 555 } 556 557 #endif 558 559 /* Read the Cache Build Configuration Registers, Decode them and save into 560 * the cpuinfo structure for later use. 561 * No Validation is done here, simply read/convert the BCRs 562 */ 563 int arc_mmu_mumbojumbo(int c, char *buf, int len) 564 { 565 struct cpuinfo_arc_mmu *mmu = &mmuinfo; 566 unsigned int bcr, u_dtlb, u_itlb, sasid; 567 struct bcr_mmu_3 *mmu3; 568 struct bcr_mmu_4 *mmu4; 569 char super_pg[64] = ""; 570 int n = 0; 571 572 bcr = read_aux_reg(ARC_REG_MMU_BCR); 573 mmu->ver = (bcr >> 24); 574 575 if (is_isa_arcompact() && mmu->ver == 3) { 576 mmu3 = (struct bcr_mmu_3 *)&bcr; 577 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); 578 mmu->sets = 1 << mmu3->sets; 579 mmu->ways = 1 << mmu3->ways; 580 u_dtlb = mmu3->u_dtlb; 581 u_itlb = mmu3->u_itlb; 582 sasid = mmu3->sasid; 583 } else { 584 mmu4 = (struct bcr_mmu_4 *)&bcr; 585 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); 586 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); 587 mmu->sets = 64 << mmu4->n_entry; 588 mmu->ways = mmu4->n_ways * 2; 589 u_dtlb = mmu4->u_dtlb * 4; 590 u_itlb = mmu4->u_itlb * 4; 591 sasid = mmu4->sasid; 592 mmu->pae = mmu4->pae; 593 } 594 595 if (mmu->s_pg_sz_m) 596 scnprintf(super_pg, 64, "/%dM%s", 597 mmu->s_pg_sz_m, 598 IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) ? " (THP enabled)":""); 599 600 n += scnprintf(buf + n, len - n, 601 "MMU [v%x]\t: %dk%s, swalk %d lvl, JTLB %dx%d, uDTLB %d, uITLB %d%s%s%s\n", 602 mmu->ver, mmu->pg_sz_k, super_pg, CONFIG_PGTABLE_LEVELS, 603 mmu->sets, mmu->ways, 604 u_dtlb, u_itlb, 605 IS_AVAIL1(sasid, ", SASID"), 606 IS_AVAIL2(mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); 607 608 return n; 609 } 610 611 int pae40_exist_but_not_enab(void) 612 { 613 return mmuinfo.pae && !is_pae40_enabled(); 614 } 615 616 void arc_mmu_init(void) 617 { 618 struct cpuinfo_arc_mmu *mmu = &mmuinfo; 619 int compat = 0; 620 621 /* 622 * Can't be done in processor.h due to header include dependencies 623 */ 624 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); 625 626 /* 627 * stack top size sanity check, 628 * Can't be done in processor.h due to header include dependencies 629 */ 630 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); 631 632 /* 633 * Ensure that MMU features assumed by kernel exist in hardware. 634 * - For older ARC700 cpus, only v3 supported 635 * - For HS cpus, v4 was baseline and v5 is backwards compatible 636 * (will run older software). 637 */ 638 if (is_isa_arcompact() && mmu->ver == 3) 639 compat = 1; 640 else if (is_isa_arcv2() && mmu->ver >= 4) 641 compat = 1; 642 643 if (!compat) 644 panic("MMU ver %d doesn't match kernel built for\n", mmu->ver); 645 646 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) 647 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 648 649 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 650 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) 651 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", 652 (unsigned long)TO_MB(HPAGE_PMD_SIZE)); 653 654 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) 655 panic("Hardware doesn't support PAE40\n"); 656 657 /* Enable the MMU with ASID 0 */ 658 mmu_setup_asid(NULL, 0); 659 660 /* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */ 661 mmu_setup_pgd(NULL, swapper_pg_dir); 662 663 if (pae40_exist_but_not_enab()) 664 write_aux_reg(ARC_REG_TLBPD1HI, 0); 665 } 666 667 /* 668 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 669 * The mapping is Column-first. 670 * --------------------- ----------- 671 * |way0|way1|way2|way3| |way0|way1| 672 * --------------------- ----------- 673 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 674 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 675 * ~ ~ ~ ~ 676 * [set127] | 508| 509| 510| 511| | 254| 255| 677 * --------------------- ----------- 678 * For normal operations we don't(must not) care how above works since 679 * MMU cmd getIndex(vaddr) abstracts that out. 680 * However for walking WAYS of a SET, we need to know this 681 */ 682 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 683 684 /* Handling of Duplicate PD (TLB entry) in MMU. 685 * -Could be due to buggy customer tapeouts or obscure kernel bugs 686 * -MMU complaints not at the time of duplicate PD installation, but at the 687 * time of lookup matching multiple ways. 688 * -Ideally these should never happen - but if they do - workaround by deleting 689 * the duplicate one. 690 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 691 */ 692 volatile int dup_pd_silent; /* Be silent abt it or complain (default) */ 693 694 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 695 struct pt_regs *regs) 696 { 697 struct cpuinfo_arc_mmu *mmu = &mmuinfo; 698 unsigned long flags; 699 int set, n_ways = mmu->ways; 700 701 n_ways = min(n_ways, 4); 702 BUG_ON(mmu->ways > 4); 703 704 local_irq_save(flags); 705 706 /* loop thru all sets of TLB */ 707 for (set = 0; set < mmu->sets; set++) { 708 709 int is_valid, way; 710 unsigned int pd0[4]; 711 712 /* read out all the ways of current set */ 713 for (way = 0, is_valid = 0; way < n_ways; way++) { 714 write_aux_reg(ARC_REG_TLBINDEX, 715 SET_WAY_TO_IDX(mmu, set, way)); 716 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 717 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 718 is_valid |= pd0[way] & _PAGE_PRESENT; 719 pd0[way] &= PAGE_MASK; 720 } 721 722 /* If all the WAYS in SET are empty, skip to next SET */ 723 if (!is_valid) 724 continue; 725 726 /* Scan the set for duplicate ways: needs a nested loop */ 727 for (way = 0; way < n_ways - 1; way++) { 728 729 int n; 730 731 if (!pd0[way]) 732 continue; 733 734 for (n = way + 1; n < n_ways; n++) { 735 if (pd0[way] != pd0[n]) 736 continue; 737 738 if (!dup_pd_silent) 739 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", 740 pd0[way], set, way, n); 741 742 /* 743 * clear entry @way and not @n. 744 * This is critical to our optimised loop 745 */ 746 pd0[way] = 0; 747 write_aux_reg(ARC_REG_TLBINDEX, 748 SET_WAY_TO_IDX(mmu, set, way)); 749 __tlb_entry_erase(); 750 } 751 } 752 } 753 754 local_irq_restore(flags); 755 } 756