1 /* 2 * TLB Management (flush/create/diagnostics) for ARC700 3 * 4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * vineetg: Aug 2011 11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue 12 * 13 * vineetg: May 2011 14 * -No need to flush_cache_page( ) for each call to update_mmu_cache() 15 * some of the LMBench tests improved amazingly 16 * = page-fault thrice as fast (75 usec to 28 usec) 17 * = mmap twice as fast (9.6 msec to 4.6 msec), 18 * = fork (5.3 msec to 3.7 msec) 19 * 20 * vineetg: April 2011 : 21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, 22 * helps avoid a shift when preparing PD0 from PTE 23 * 24 * vineetg: April 2011 : Preparing for MMU V3 25 * -MMU v2/v3 BCRs decoded differently 26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 27 * -tlb_entry_erase( ) can be void 28 * -local_flush_tlb_range( ): 29 * = need not "ceil" @end 30 * = walks MMU only if range spans < 32 entries, as opposed to 256 31 * 32 * Vineetg: Sept 10th 2008 33 * -Changes related to MMU v2 (Rel 4.8) 34 * 35 * Vineetg: Aug 29th 2008 36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to 37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, 38 * it fails. Thus need to load it with ANY valid value before invoking 39 * TLBIVUTLB cmd 40 * 41 * Vineetg: Aug 21th 2008: 42 * -Reduced the duration of IRQ lockouts in TLB Flush routines 43 * -Multiple copies of TLB erase code seperated into a "single" function 44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID 45 * in interrupt-safe region. 46 * 47 * Vineetg: April 23rd Bug #93131 48 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to 49 * flush is more than the size of TLB itself. 50 * 51 * Rahul Trivedi : Codito Technologies 2004 52 */ 53 54 #include <linux/module.h> 55 #include <linux/bug.h> 56 #include <asm/arcregs.h> 57 #include <asm/setup.h> 58 #include <asm/mmu_context.h> 59 #include <asm/mmu.h> 60 61 /* Need for ARC MMU v2 62 * 63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. 64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages 65 * map into same set, there would be contention for the 2 ways causing severe 66 * Thrashing. 67 * 68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has 69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. 70 * Given this, the thrasing problem should never happen because once the 3 71 * J-TLB entries are created (even though 3rd will knock out one of the prev 72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy 73 * 74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. 75 * This is a simple design for keeping them in sync. So what do we do? 76 * The solution which James came up was pretty neat. It utilised the assoc 77 * of uTLBs by not invalidating always but only when absolutely necessary. 78 * 79 * - Existing TLB commands work as before 80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs 81 * - New command (TLBIVUTLB) to invalidate uTLBs. 82 * 83 * The uTLBs need only be invalidated when pages are being removed from the 84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB 85 * as a result of a miss, the removed entry is still allowed to exist in the 86 * uTLBs as it is still valid and present in the OS page table. This allows the 87 * full associativity of the uTLBs to hide the limited associativity of the main 88 * TLB. 89 * 90 * During a miss handler, the new "TLBWriteNI" command is used to load 91 * entries without clearing the uTLBs. 92 * 93 * When the OS page table is updated, TLB entries that may be associated with a 94 * removed page are removed (flushed) from the TLB using TLBWrite. In this 95 * circumstance, the uTLBs must also be cleared. This is done by using the 96 * existing TLBWrite command. An explicit IVUTLB is also required for those 97 * corner cases when TLBWrite was not executed at all because the corresp 98 * J-TLB entry got evicted/replaced. 99 */ 100 101 102 /* A copy of the ASID from the PID reg is kept in asid_cache */ 103 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; 104 105 /* 106 * Utility Routine to erase a J-TLB entry 107 * Caller needs to setup Index Reg (manually or via getIndex) 108 */ 109 static inline void __tlb_entry_erase(void) 110 { 111 write_aux_reg(ARC_REG_TLBPD1, 0); 112 113 if (is_pae40_enabled()) 114 write_aux_reg(ARC_REG_TLBPD1HI, 0); 115 116 write_aux_reg(ARC_REG_TLBPD0, 0); 117 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 118 } 119 120 #if (CONFIG_ARC_MMU_VER < 4) 121 122 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) 123 { 124 unsigned int idx; 125 126 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); 127 128 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); 129 idx = read_aux_reg(ARC_REG_TLBINDEX); 130 131 return idx; 132 } 133 134 static void tlb_entry_erase(unsigned int vaddr_n_asid) 135 { 136 unsigned int idx; 137 138 /* Locate the TLB entry for this vaddr + ASID */ 139 idx = tlb_entry_lkup(vaddr_n_asid); 140 141 /* No error means entry found, zero it out */ 142 if (likely(!(idx & TLB_LKUP_ERR))) { 143 __tlb_entry_erase(); 144 } else { 145 /* Duplicate entry error */ 146 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", 147 vaddr_n_asid); 148 } 149 } 150 151 /**************************************************************************** 152 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) 153 * 154 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB 155 * 156 * utlb_invalidate ( ) 157 * -For v2 MMU calls Flush uTLB Cmd 158 * -For v1 MMU does nothing (except for Metal Fix v1 MMU) 159 * This is because in v1 TLBWrite itself invalidate uTLBs 160 ***************************************************************************/ 161 162 static void utlb_invalidate(void) 163 { 164 #if (CONFIG_ARC_MMU_VER >= 2) 165 166 #if (CONFIG_ARC_MMU_VER == 2) 167 /* MMU v2 introduced the uTLB Flush command. 168 * There was however an obscure hardware bug, where uTLB flush would 169 * fail when a prior probe for J-TLB (both totally unrelated) would 170 * return lkup err - because the entry didn't exist in MMU. 171 * The Workround was to set Index reg with some valid value, prior to 172 * flush. This was fixed in MMU v3 hence not needed any more 173 */ 174 unsigned int idx; 175 176 /* make sure INDEX Reg is valid */ 177 idx = read_aux_reg(ARC_REG_TLBINDEX); 178 179 /* If not write some dummy val */ 180 if (unlikely(idx & TLB_LKUP_ERR)) 181 write_aux_reg(ARC_REG_TLBINDEX, 0xa); 182 #endif 183 184 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); 185 #endif 186 187 } 188 189 static void tlb_entry_insert(unsigned int pd0, pte_t pd1) 190 { 191 unsigned int idx; 192 193 /* 194 * First verify if entry for this vaddr+ASID already exists 195 * This also sets up PD0 (vaddr, ASID..) for final commit 196 */ 197 idx = tlb_entry_lkup(pd0); 198 199 /* 200 * If Not already present get a free slot from MMU. 201 * Otherwise, Probe would have located the entry and set INDEX Reg 202 * with existing location. This will cause Write CMD to over-write 203 * existing entry with new PD0 and PD1 204 */ 205 if (likely(idx & TLB_LKUP_ERR)) 206 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); 207 208 /* setup the other half of TLB entry (pfn, rwx..) */ 209 write_aux_reg(ARC_REG_TLBPD1, pd1); 210 211 /* 212 * Commit the Entry to MMU 213 * It doesn't sound safe to use the TLBWriteNI cmd here 214 * which doesn't flush uTLBs. I'd rather be safe than sorry. 215 */ 216 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 217 } 218 219 #else /* CONFIG_ARC_MMU_VER >= 4) */ 220 221 static void utlb_invalidate(void) 222 { 223 /* No need since uTLB is always in sync with JTLB */ 224 } 225 226 static void tlb_entry_erase(unsigned int vaddr_n_asid) 227 { 228 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); 229 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); 230 } 231 232 static void tlb_entry_insert(unsigned int pd0, pte_t pd1) 233 { 234 write_aux_reg(ARC_REG_TLBPD0, pd0); 235 write_aux_reg(ARC_REG_TLBPD1, pd1); 236 237 if (is_pae40_enabled()) 238 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); 239 240 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); 241 } 242 243 #endif 244 245 /* 246 * Un-conditionally (without lookup) erase the entire MMU contents 247 */ 248 249 noinline void local_flush_tlb_all(void) 250 { 251 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 252 unsigned long flags; 253 unsigned int entry; 254 int num_tlb = mmu->sets * mmu->ways; 255 256 local_irq_save(flags); 257 258 /* Load PD0 and PD1 with template for a Blank Entry */ 259 write_aux_reg(ARC_REG_TLBPD1, 0); 260 261 if (is_pae40_enabled()) 262 write_aux_reg(ARC_REG_TLBPD1HI, 0); 263 264 write_aux_reg(ARC_REG_TLBPD0, 0); 265 266 for (entry = 0; entry < num_tlb; entry++) { 267 /* write this entry to the TLB */ 268 write_aux_reg(ARC_REG_TLBINDEX, entry); 269 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 270 } 271 272 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 273 const int stlb_idx = 0x800; 274 275 /* Blank sTLB entry */ 276 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); 277 278 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { 279 write_aux_reg(ARC_REG_TLBINDEX, entry); 280 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); 281 } 282 } 283 284 utlb_invalidate(); 285 286 local_irq_restore(flags); 287 } 288 289 /* 290 * Flush the entrie MM for userland. The fastest way is to move to Next ASID 291 */ 292 noinline void local_flush_tlb_mm(struct mm_struct *mm) 293 { 294 /* 295 * Small optimisation courtesy IA64 296 * flush_mm called during fork,exit,munmap etc, multiple times as well. 297 * Only for fork( ) do we need to move parent to a new MMU ctxt, 298 * all other cases are NOPs, hence this check. 299 */ 300 if (atomic_read(&mm->mm_users) == 0) 301 return; 302 303 /* 304 * - Move to a new ASID, but only if the mm is still wired in 305 * (Android Binder ended up calling this for vma->mm != tsk->mm, 306 * causing h/w - s/w ASID to get out of sync) 307 * - Also get_new_mmu_context() new implementation allocates a new 308 * ASID only if it is not allocated already - so unallocate first 309 */ 310 destroy_context(mm); 311 if (current->mm == mm) 312 get_new_mmu_context(mm); 313 } 314 315 /* 316 * Flush a Range of TLB entries for userland. 317 * @start is inclusive, while @end is exclusive 318 * Difference between this and Kernel Range Flush is 319 * -Here the fastest way (if range is too large) is to move to next ASID 320 * without doing any explicit Shootdown 321 * -In case of kernel Flush, entry has to be shot down explictly 322 */ 323 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 324 unsigned long end) 325 { 326 const unsigned int cpu = smp_processor_id(); 327 unsigned long flags; 328 329 /* If range @start to @end is more than 32 TLB entries deep, 330 * its better to move to a new ASID rather than searching for 331 * individual entries and then shooting them down 332 * 333 * The calc above is rough, doesn't account for unaligned parts, 334 * since this is heuristics based anyways 335 */ 336 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 337 local_flush_tlb_mm(vma->vm_mm); 338 return; 339 } 340 341 /* 342 * @start moved to page start: this alone suffices for checking 343 * loop end condition below, w/o need for aligning @end to end 344 * e.g. 2000 to 4001 will anyhow loop twice 345 */ 346 start &= PAGE_MASK; 347 348 local_irq_save(flags); 349 350 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 351 while (start < end) { 352 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); 353 start += PAGE_SIZE; 354 } 355 } 356 357 utlb_invalidate(); 358 359 local_irq_restore(flags); 360 } 361 362 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) 363 * @start, @end interpreted as kvaddr 364 * Interestingly, shared TLB entries can also be flushed using just 365 * @start,@end alone (interpreted as user vaddr), although technically SASID 366 * is also needed. However our smart TLbProbe lookup takes care of that. 367 */ 368 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) 369 { 370 unsigned long flags; 371 372 /* exactly same as above, except for TLB entry not taking ASID */ 373 374 if (unlikely((end - start) >= PAGE_SIZE * 32)) { 375 local_flush_tlb_all(); 376 return; 377 } 378 379 start &= PAGE_MASK; 380 381 local_irq_save(flags); 382 while (start < end) { 383 tlb_entry_erase(start); 384 start += PAGE_SIZE; 385 } 386 387 utlb_invalidate(); 388 389 local_irq_restore(flags); 390 } 391 392 /* 393 * Delete TLB entry in MMU for a given page (??? address) 394 * NOTE One TLB entry contains translation for single PAGE 395 */ 396 397 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 398 { 399 const unsigned int cpu = smp_processor_id(); 400 unsigned long flags; 401 402 /* Note that it is critical that interrupts are DISABLED between 403 * checking the ASID and using it flush the TLB entry 404 */ 405 local_irq_save(flags); 406 407 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { 408 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); 409 utlb_invalidate(); 410 } 411 412 local_irq_restore(flags); 413 } 414 415 #ifdef CONFIG_SMP 416 417 struct tlb_args { 418 struct vm_area_struct *ta_vma; 419 unsigned long ta_start; 420 unsigned long ta_end; 421 }; 422 423 static inline void ipi_flush_tlb_page(void *arg) 424 { 425 struct tlb_args *ta = arg; 426 427 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 428 } 429 430 static inline void ipi_flush_tlb_range(void *arg) 431 { 432 struct tlb_args *ta = arg; 433 434 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 435 } 436 437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 438 static inline void ipi_flush_pmd_tlb_range(void *arg) 439 { 440 struct tlb_args *ta = arg; 441 442 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 443 } 444 #endif 445 446 static inline void ipi_flush_tlb_kernel_range(void *arg) 447 { 448 struct tlb_args *ta = (struct tlb_args *)arg; 449 450 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 451 } 452 453 void flush_tlb_all(void) 454 { 455 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); 456 } 457 458 void flush_tlb_mm(struct mm_struct *mm) 459 { 460 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, 461 mm, 1); 462 } 463 464 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 465 { 466 struct tlb_args ta = { 467 .ta_vma = vma, 468 .ta_start = uaddr 469 }; 470 471 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); 472 } 473 474 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 475 unsigned long end) 476 { 477 struct tlb_args ta = { 478 .ta_vma = vma, 479 .ta_start = start, 480 .ta_end = end 481 }; 482 483 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); 484 } 485 486 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 487 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 488 unsigned long end) 489 { 490 struct tlb_args ta = { 491 .ta_vma = vma, 492 .ta_start = start, 493 .ta_end = end 494 }; 495 496 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); 497 } 498 #endif 499 500 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 501 { 502 struct tlb_args ta = { 503 .ta_start = start, 504 .ta_end = end 505 }; 506 507 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 508 } 509 #endif 510 511 /* 512 * Routine to create a TLB entry 513 */ 514 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) 515 { 516 unsigned long flags; 517 unsigned int asid_or_sasid, rwx; 518 unsigned long pd0; 519 pte_t pd1; 520 521 /* 522 * create_tlb() assumes that current->mm == vma->mm, since 523 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) 524 * -completes the lazy write to SASID reg (again valid for curr tsk) 525 * 526 * Removing the assumption involves 527 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. 528 * -Fix the TLB paranoid debug code to not trigger false negatives. 529 * -More importantly it makes this handler inconsistent with fast-path 530 * TLB Refill handler which always deals with "current" 531 * 532 * Lets see the use cases when current->mm != vma->mm and we land here 533 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault 534 * Here VM wants to pre-install a TLB entry for user stack while 535 * current->mm still points to pre-execve mm (hence the condition). 536 * However the stack vaddr is soon relocated (randomization) and 537 * move_page_tables() tries to undo that TLB entry. 538 * Thus not creating TLB entry is not any worse. 539 * 540 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a 541 * breakpoint in debugged task. Not creating a TLB now is not 542 * performance critical. 543 * 544 * Both the cases above are not good enough for code churn. 545 */ 546 if (current->active_mm != vma->vm_mm) 547 return; 548 549 local_irq_save(flags); 550 551 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr); 552 553 vaddr &= PAGE_MASK; 554 555 /* update this PTE credentials */ 556 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); 557 558 /* Create HW TLB(PD0,PD1) from PTE */ 559 560 /* ASID for this task */ 561 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; 562 563 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); 564 565 /* 566 * ARC MMU provides fully orthogonal access bits for K/U mode, 567 * however Linux only saves 1 set to save PTE real-estate 568 * Here we convert 3 PTE bits into 6 MMU bits: 569 * -Kernel only entries have Kr Kw Kx 0 0 0 570 * -User entries have mirrored K and U bits 571 */ 572 rwx = pte_val(*ptep) & PTE_BITS_RWX; 573 574 if (pte_val(*ptep) & _PAGE_GLOBAL) 575 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ 576 else 577 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ 578 579 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); 580 581 tlb_entry_insert(pd0, pd1); 582 583 local_irq_restore(flags); 584 } 585 586 /* 587 * Called at the end of pagefault, for a userspace mapped page 588 * -pre-install the corresponding TLB entry into MMU 589 * -Finalize the delayed D-cache flush of kernel mapping of page due to 590 * flush_dcache_page(), copy_user_page() 591 * 592 * Note that flush (when done) involves both WBACK - so physical page is 593 * in sync as well as INV - so any non-congruent aliases don't remain 594 */ 595 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, 596 pte_t *ptep) 597 { 598 unsigned long vaddr = vaddr_unaligned & PAGE_MASK; 599 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK; 600 struct page *page = pfn_to_page(pte_pfn(*ptep)); 601 602 create_tlb(vma, vaddr, ptep); 603 604 if (page == ZERO_PAGE(0)) { 605 return; 606 } 607 608 /* 609 * Exec page : Independent of aliasing/page-color considerations, 610 * since icache doesn't snoop dcache on ARC, any dirty 611 * K-mapping of a code page needs to be wback+inv so that 612 * icache fetch by userspace sees code correctly. 613 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it 614 * so userspace sees the right data. 615 * (Avoids the flush for Non-exec + congruent mapping case) 616 */ 617 if ((vma->vm_flags & VM_EXEC) || 618 addr_not_cache_congruent(paddr, vaddr)) { 619 620 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); 621 if (dirty) { 622 /* wback + inv dcache lines (K-mapping) */ 623 __flush_dcache_page(paddr, paddr); 624 625 /* invalidate any existing icache lines (U-mapping) */ 626 if (vma->vm_flags & VM_EXEC) 627 __inv_icache_page(paddr, vaddr); 628 } 629 } 630 } 631 632 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 633 634 /* 635 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP 636 * support. 637 * 638 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a 639 * new bit "SZ" in TLB page descriptor to distinguish between them. 640 * Super Page size is configurable in hardware (4K to 16M), but fixed once 641 * RTL builds. 642 * 643 * The exact THP size a Linx configuration will support is a function of: 644 * - MMU page size (typical 8K, RTL fixed) 645 * - software page walker address split between PGD:PTE:PFN (typical 646 * 11:8:13, but can be changed with 1 line) 647 * So for above default, THP size supported is 8K * (2^8) = 2M 648 * 649 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime 650 * reduces to 1 level (as PTE is folded into PGD and canonically referred 651 * to as PMD). 652 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) 653 */ 654 655 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 656 pmd_t *pmd) 657 { 658 pte_t pte = __pte(pmd_val(*pmd)); 659 update_mmu_cache(vma, addr, &pte); 660 } 661 662 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 663 pgtable_t pgtable) 664 { 665 struct list_head *lh = (struct list_head *) pgtable; 666 667 assert_spin_locked(&mm->page_table_lock); 668 669 /* FIFO */ 670 if (!pmd_huge_pte(mm, pmdp)) 671 INIT_LIST_HEAD(lh); 672 else 673 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 674 pmd_huge_pte(mm, pmdp) = pgtable; 675 } 676 677 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 678 { 679 struct list_head *lh; 680 pgtable_t pgtable; 681 682 assert_spin_locked(&mm->page_table_lock); 683 684 pgtable = pmd_huge_pte(mm, pmdp); 685 lh = (struct list_head *) pgtable; 686 if (list_empty(lh)) 687 pmd_huge_pte(mm, pmdp) = NULL; 688 else { 689 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 690 list_del(lh); 691 } 692 693 pte_val(pgtable[0]) = 0; 694 pte_val(pgtable[1]) = 0; 695 696 return pgtable; 697 } 698 699 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, 700 unsigned long end) 701 { 702 unsigned int cpu; 703 unsigned long flags; 704 705 local_irq_save(flags); 706 707 cpu = smp_processor_id(); 708 709 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { 710 unsigned int asid = hw_pid(vma->vm_mm, cpu); 711 712 /* No need to loop here: this will always be for 1 Huge Page */ 713 tlb_entry_erase(start | _PAGE_HW_SZ | asid); 714 } 715 716 local_irq_restore(flags); 717 } 718 719 #endif 720 721 /* Read the Cache Build Confuration Registers, Decode them and save into 722 * the cpuinfo structure for later use. 723 * No Validation is done here, simply read/convert the BCRs 724 */ 725 void read_decode_mmu_bcr(void) 726 { 727 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 728 unsigned int tmp; 729 struct bcr_mmu_1_2 { 730 #ifdef CONFIG_CPU_BIG_ENDIAN 731 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; 732 #else 733 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; 734 #endif 735 } *mmu2; 736 737 struct bcr_mmu_3 { 738 #ifdef CONFIG_CPU_BIG_ENDIAN 739 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4, 740 u_itlb:4, u_dtlb:4; 741 #else 742 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4, 743 ways:4, ver:8; 744 #endif 745 } *mmu3; 746 747 struct bcr_mmu_4 { 748 #ifdef CONFIG_CPU_BIG_ENDIAN 749 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, 750 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; 751 #else 752 /* DTLB ITLB JES JE JA */ 753 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, 754 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; 755 #endif 756 } *mmu4; 757 758 tmp = read_aux_reg(ARC_REG_MMU_BCR); 759 mmu->ver = (tmp >> 24); 760 761 if (mmu->ver <= 2) { 762 mmu2 = (struct bcr_mmu_1_2 *)&tmp; 763 mmu->pg_sz_k = TO_KB(0x2000); 764 mmu->sets = 1 << mmu2->sets; 765 mmu->ways = 1 << mmu2->ways; 766 mmu->u_dtlb = mmu2->u_dtlb; 767 mmu->u_itlb = mmu2->u_itlb; 768 } else if (mmu->ver == 3) { 769 mmu3 = (struct bcr_mmu_3 *)&tmp; 770 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); 771 mmu->sets = 1 << mmu3->sets; 772 mmu->ways = 1 << mmu3->ways; 773 mmu->u_dtlb = mmu3->u_dtlb; 774 mmu->u_itlb = mmu3->u_itlb; 775 mmu->sasid = mmu3->sasid; 776 } else { 777 mmu4 = (struct bcr_mmu_4 *)&tmp; 778 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); 779 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); 780 mmu->sets = 64 << mmu4->n_entry; 781 mmu->ways = mmu4->n_ways * 2; 782 mmu->u_dtlb = mmu4->u_dtlb * 4; 783 mmu->u_itlb = mmu4->u_itlb * 4; 784 mmu->sasid = mmu4->sasid; 785 mmu->pae = mmu4->pae; 786 } 787 } 788 789 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) 790 { 791 int n = 0; 792 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; 793 char super_pg[64] = ""; 794 795 if (p_mmu->s_pg_sz_m) 796 scnprintf(super_pg, 64, "%dM Super Page%s, ", 797 p_mmu->s_pg_sz_m, 798 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE)); 799 800 n += scnprintf(buf + n, len - n, 801 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d %s%s\n", 802 p_mmu->ver, p_mmu->pg_sz_k, super_pg, 803 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways, 804 p_mmu->u_dtlb, p_mmu->u_itlb, 805 IS_AVAIL2(p_mmu->pae, "PAE40 ", CONFIG_ARC_HAS_PAE40)); 806 807 return buf; 808 } 809 810 void arc_mmu_init(void) 811 { 812 char str[256]; 813 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 814 815 printk(arc_mmu_mumbojumbo(0, str, sizeof(str))); 816 817 /* For efficiency sake, kernel is compile time built for a MMU ver 818 * This must match the hardware it is running on. 819 * Linux built for MMU V2, if run on MMU V1 will break down because V1 820 * hardware doesn't understand cmds such as WriteNI, or IVUTLB 821 * On the other hand, Linux built for V1 if run on MMU V2 will do 822 * un-needed workarounds to prevent memcpy thrashing. 823 * Similarly MMU V3 has new features which won't work on older MMU 824 */ 825 if (mmu->ver != CONFIG_ARC_MMU_VER) { 826 panic("MMU ver %d doesn't match kernel built for %d...\n", 827 mmu->ver, CONFIG_ARC_MMU_VER); 828 } 829 830 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) 831 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); 832 833 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 834 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) 835 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", 836 (unsigned long)TO_MB(HPAGE_PMD_SIZE)); 837 838 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) 839 panic("Hardware doesn't support PAE40\n"); 840 841 /* Enable the MMU */ 842 write_aux_reg(ARC_REG_PID, MMU_ENABLE); 843 844 /* In smp we use this reg for interrupt 1 scratch */ 845 #ifndef CONFIG_SMP 846 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ 847 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); 848 #endif 849 } 850 851 /* 852 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} 853 * The mapping is Column-first. 854 * --------------------- ----------- 855 * |way0|way1|way2|way3| |way0|way1| 856 * --------------------- ----------- 857 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | 858 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | 859 * ~ ~ ~ ~ 860 * [set127] | 508| 509| 510| 511| | 254| 255| 861 * --------------------- ----------- 862 * For normal operations we don't(must not) care how above works since 863 * MMU cmd getIndex(vaddr) abstracts that out. 864 * However for walking WAYS of a SET, we need to know this 865 */ 866 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) 867 868 /* Handling of Duplicate PD (TLB entry) in MMU. 869 * -Could be due to buggy customer tapeouts or obscure kernel bugs 870 * -MMU complaints not at the time of duplicate PD installation, but at the 871 * time of lookup matching multiple ways. 872 * -Ideally these should never happen - but if they do - workaround by deleting 873 * the duplicate one. 874 * -Knob to be verbose abt it.(TODO: hook them up to debugfs) 875 */ 876 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */ 877 878 void do_tlb_overlap_fault(unsigned long cause, unsigned long address, 879 struct pt_regs *regs) 880 { 881 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; 882 unsigned int pd0[mmu->ways]; 883 unsigned long flags; 884 int set; 885 886 local_irq_save(flags); 887 888 /* re-enable the MMU */ 889 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID)); 890 891 /* loop thru all sets of TLB */ 892 for (set = 0; set < mmu->sets; set++) { 893 894 int is_valid, way; 895 896 /* read out all the ways of current set */ 897 for (way = 0, is_valid = 0; way < mmu->ways; way++) { 898 write_aux_reg(ARC_REG_TLBINDEX, 899 SET_WAY_TO_IDX(mmu, set, way)); 900 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); 901 pd0[way] = read_aux_reg(ARC_REG_TLBPD0); 902 is_valid |= pd0[way] & _PAGE_PRESENT; 903 pd0[way] &= PAGE_MASK; 904 } 905 906 /* If all the WAYS in SET are empty, skip to next SET */ 907 if (!is_valid) 908 continue; 909 910 /* Scan the set for duplicate ways: needs a nested loop */ 911 for (way = 0; way < mmu->ways - 1; way++) { 912 913 int n; 914 915 if (!pd0[way]) 916 continue; 917 918 for (n = way + 1; n < mmu->ways; n++) { 919 if (pd0[way] != pd0[n]) 920 continue; 921 922 if (!dup_pd_silent) 923 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", 924 pd0[way], set, way, n); 925 926 /* 927 * clear entry @way and not @n. 928 * This is critical to our optimised loop 929 */ 930 pd0[way] = 0; 931 write_aux_reg(ARC_REG_TLBINDEX, 932 SET_WAY_TO_IDX(mmu, set, way)); 933 __tlb_entry_erase(); 934 } 935 } 936 } 937 938 local_irq_restore(flags); 939 } 940 941 /*********************************************************************** 942 * Diagnostic Routines 943 * -Called from Low Level TLB Hanlders if things don;t look good 944 **********************************************************************/ 945 946 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA 947 948 /* 949 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS 950 * don't match 951 */ 952 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) 953 { 954 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", 955 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); 956 957 __asm__ __volatile__("flag 1"); 958 } 959 960 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) 961 { 962 unsigned int mmu_asid; 963 964 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; 965 966 /* 967 * At the time of a TLB miss/installation 968 * - HW version needs to match SW version 969 * - SW needs to have a valid ASID 970 */ 971 if (addr < 0x70000000 && 972 ((mm_asid == MM_CTXT_NO_ASID) || 973 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) 974 print_asid_mismatch(mm_asid, mmu_asid, 0); 975 } 976 #endif 977