1 /* 2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /* 10 * DMA Coherent API Notes 11 * 12 * I/O is inherently non-coherent on ARC. So a coherent DMA buffer is 13 * implemented by accessing it using a kernel virtual address, with 14 * Cache bit off in the TLB entry. 15 * 16 * The default DMA address == Phy address which is 0x8000_0000 based. 17 */ 18 19 #include <linux/dma-mapping.h> 20 #include <asm/cache.h> 21 #include <asm/cacheflush.h> 22 23 24 static void *arc_dma_alloc(struct device *dev, size_t size, 25 dma_addr_t *dma_handle, gfp_t gfp, struct dma_attrs *attrs) 26 { 27 unsigned long order = get_order(size); 28 struct page *page; 29 phys_addr_t paddr; 30 void *kvaddr; 31 int need_coh = 1, need_kvaddr = 0; 32 33 page = alloc_pages(gfp, order); 34 if (!page) 35 return NULL; 36 37 /* 38 * IOC relies on all data (even coherent DMA data) being in cache 39 * Thus allocate normal cached memory 40 * 41 * The gains with IOC are two pronged: 42 * -For streaming data, elides need for cache maintenance, saving 43 * cycles in flush code, and bus bandwidth as all the lines of a 44 * buffer need to be flushed out to memory 45 * -For coherent data, Read/Write to buffers terminate early in cache 46 * (vs. always going to memory - thus are faster) 47 */ 48 if ((is_isa_arcv2() && ioc_exists) || 49 dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) 50 need_coh = 0; 51 52 /* 53 * - A coherent buffer needs MMU mapping to enforce non-cachability 54 * - A highmem page needs a virtual handle (hence MMU mapping) 55 * independent of cachability 56 */ 57 if (PageHighMem(page) || need_coh) 58 need_kvaddr = 1; 59 60 /* This is linear addr (0x8000_0000 based) */ 61 paddr = page_to_phys(page); 62 63 *dma_handle = plat_phys_to_dma(dev, paddr); 64 65 /* This is kernel Virtual address (0x7000_0000 based) */ 66 if (need_kvaddr) { 67 kvaddr = ioremap_nocache(paddr, size); 68 if (kvaddr == NULL) { 69 __free_pages(page, order); 70 return NULL; 71 } 72 } else { 73 kvaddr = (void *)(u32)paddr; 74 } 75 76 /* 77 * Evict any existing L1 and/or L2 lines for the backing page 78 * in case it was used earlier as a normal "cached" page. 79 * Yeah this bit us - STAR 9000898266 80 * 81 * Although core does call flush_cache_vmap(), it gets kvaddr hence 82 * can't be used to efficiently flush L1 and/or L2 which need paddr 83 * Currently flush_cache_vmap nukes the L1 cache completely which 84 * will be optimized as a separate commit 85 */ 86 if (need_coh) 87 dma_cache_wback_inv(paddr, size); 88 89 return kvaddr; 90 } 91 92 static void arc_dma_free(struct device *dev, size_t size, void *vaddr, 93 dma_addr_t dma_handle, struct dma_attrs *attrs) 94 { 95 struct page *page = virt_to_page(dma_handle); 96 int is_non_coh = 1; 97 98 is_non_coh = dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs) || 99 (is_isa_arcv2() && ioc_exists); 100 101 if (PageHighMem(page) || !is_non_coh) 102 iounmap((void __force __iomem *)vaddr); 103 104 __free_pages(page, get_order(size)); 105 } 106 107 /* 108 * streaming DMA Mapping API... 109 * CPU accesses page via normal paddr, thus needs to explicitly made 110 * consistent before each use 111 */ 112 static void _dma_cache_sync(phys_addr_t paddr, size_t size, 113 enum dma_data_direction dir) 114 { 115 switch (dir) { 116 case DMA_FROM_DEVICE: 117 dma_cache_inv(paddr, size); 118 break; 119 case DMA_TO_DEVICE: 120 dma_cache_wback(paddr, size); 121 break; 122 case DMA_BIDIRECTIONAL: 123 dma_cache_wback_inv(paddr, size); 124 break; 125 default: 126 pr_err("Invalid DMA dir [%d] for OP @ %pa[p]\n", dir, &paddr); 127 } 128 } 129 130 static dma_addr_t arc_dma_map_page(struct device *dev, struct page *page, 131 unsigned long offset, size_t size, enum dma_data_direction dir, 132 struct dma_attrs *attrs) 133 { 134 phys_addr_t paddr = page_to_phys(page) + offset; 135 _dma_cache_sync(paddr, size, dir); 136 return plat_phys_to_dma(dev, paddr); 137 } 138 139 static int arc_dma_map_sg(struct device *dev, struct scatterlist *sg, 140 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 141 { 142 struct scatterlist *s; 143 int i; 144 145 for_each_sg(sg, s, nents, i) 146 s->dma_address = dma_map_page(dev, sg_page(s), s->offset, 147 s->length, dir); 148 149 return nents; 150 } 151 152 static void arc_dma_sync_single_for_cpu(struct device *dev, 153 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 154 { 155 _dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_FROM_DEVICE); 156 } 157 158 static void arc_dma_sync_single_for_device(struct device *dev, 159 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 160 { 161 _dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_TO_DEVICE); 162 } 163 164 static void arc_dma_sync_sg_for_cpu(struct device *dev, 165 struct scatterlist *sglist, int nelems, 166 enum dma_data_direction dir) 167 { 168 int i; 169 struct scatterlist *sg; 170 171 for_each_sg(sglist, sg, nelems, i) 172 _dma_cache_sync(sg_phys(sg), sg->length, dir); 173 } 174 175 static void arc_dma_sync_sg_for_device(struct device *dev, 176 struct scatterlist *sglist, int nelems, 177 enum dma_data_direction dir) 178 { 179 int i; 180 struct scatterlist *sg; 181 182 for_each_sg(sglist, sg, nelems, i) 183 _dma_cache_sync(sg_phys(sg), sg->length, dir); 184 } 185 186 static int arc_dma_supported(struct device *dev, u64 dma_mask) 187 { 188 /* Support 32 bit DMA mask exclusively */ 189 return dma_mask == DMA_BIT_MASK(32); 190 } 191 192 struct dma_map_ops arc_dma_ops = { 193 .alloc = arc_dma_alloc, 194 .free = arc_dma_free, 195 .map_page = arc_dma_map_page, 196 .map_sg = arc_dma_map_sg, 197 .sync_single_for_device = arc_dma_sync_single_for_device, 198 .sync_single_for_cpu = arc_dma_sync_single_for_cpu, 199 .sync_sg_for_cpu = arc_dma_sync_sg_for_cpu, 200 .sync_sg_for_device = arc_dma_sync_sg_for_device, 201 .dma_supported = arc_dma_supported, 202 }; 203 EXPORT_SYMBOL(arc_dma_ops); 204