xref: /linux/arch/arc/mm/cache.c (revision a67f7a0b18c09d5b62eafb6d5c2f54e6f6ea6cf1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARC Cache Management
4  *
5  * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
6  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
7  */
8 
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/cache.h>
13 #include <linux/mmu_context.h>
14 #include <linux/syscalls.h>
15 #include <linux/uaccess.h>
16 #include <linux/pagemap.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cachectl.h>
19 #include <asm/setup.h>
20 
21 #ifdef CONFIG_ISA_ARCV2
22 #define USE_RGN_FLSH	1
23 #endif
24 
25 static int l2_line_sz;
26 static int ioc_exists;
27 int slc_enable = 1, ioc_enable = 1;
28 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
29 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
30 
31 static struct cpuinfo_arc_cache {
32 	unsigned int sz_k, line_len, colors;
33 } ic_info, dc_info, slc_info;
34 
35 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
36 			       unsigned long sz, const int op, const int full_page);
37 
38 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
39 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
40 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
41 
42 static int read_decode_cache_bcr_arcv2(int c, char *buf, int len)
43 {
44 	struct cpuinfo_arc_cache *p_slc = &slc_info;
45 	struct bcr_identity ident;
46 	struct bcr_generic sbcr;
47 	struct bcr_clust_cfg cbcr;
48 	struct bcr_volatile vol;
49 	int n = 0;
50 
51 	READ_BCR(ARC_REG_SLC_BCR, sbcr);
52 	if (sbcr.ver) {
53 		struct bcr_slc_cfg  slc_cfg;
54 		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
55 		p_slc->sz_k = 128 << slc_cfg.sz;
56 		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
57 		n += scnprintf(buf + n, len - n,
58 			       "SLC\t\t: %uK, %uB Line%s\n",
59 			       p_slc->sz_k, p_slc->line_len, IS_USED_RUN(slc_enable));
60 	}
61 
62 	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
63 	if (cbcr.c) {
64 		ioc_exists = 1;
65 
66 		/*
67 		 * As for today we don't support both IOC and ZONE_HIGHMEM enabled
68 		 * simultaneously. This happens because as of today IOC aperture covers
69 		 * only ZONE_NORMAL (low mem) and any dma transactions outside this
70 		 * region won't be HW coherent.
71 		 * If we want to use both IOC and ZONE_HIGHMEM we can use
72 		 * bounce_buffer to handle dma transactions to HIGHMEM.
73 		 * Also it is possible to modify dma_direct cache ops or increase IOC
74 		 * aperture size if we are planning to use HIGHMEM without PAE.
75 		 */
76 		if (IS_ENABLED(CONFIG_HIGHMEM) || is_pae40_enabled())
77 			ioc_enable = 0;
78 	} else {
79 		ioc_enable = 0;
80 	}
81 
82 	READ_BCR(AUX_IDENTITY, ident);
83 
84 	/* HS 2.0 didn't have AUX_VOL */
85 	if (ident.family > 0x51) {
86 		READ_BCR(AUX_VOL, vol);
87 		perip_base = vol.start << 28;
88 		/* HS 3.0 has limit and strict-ordering fields */
89 		if (ident.family > 0x52)
90 			perip_end = (vol.limit << 28) - 1;
91 	}
92 
93 	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
94 		       perip_base,
95 		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency (per-device) "));
96 
97 	return n;
98 }
99 
100 int arc_cache_mumbojumbo(int c, char *buf, int len)
101 {
102 	struct cpuinfo_arc_cache *p_ic = &ic_info, *p_dc = &dc_info;
103 	struct bcr_cache ibcr, dbcr;
104 	int vipt, assoc;
105 	int n = 0;
106 
107 	READ_BCR(ARC_REG_IC_BCR, ibcr);
108 	if (!ibcr.ver)
109 		goto dc_chk;
110 
111 	if (is_isa_arcompact() && (ibcr.ver <= 3)) {
112 		BUG_ON(ibcr.config != 3);
113 		assoc = 2;		/* Fixed to 2w set assoc */
114 	} else if (is_isa_arcv2() && (ibcr.ver >= 4)) {
115 		assoc = 1 << ibcr.config;	/* 1,2,4,8 */
116 	}
117 
118 	p_ic->line_len = 8 << ibcr.line_len;
119 	p_ic->sz_k = 1 << (ibcr.sz - 1);
120 	p_ic->colors = p_ic->sz_k/assoc/TO_KB(PAGE_SIZE);
121 
122 	n += scnprintf(buf + n, len - n,
123 			"I-Cache\t\t: %uK, %dway/set, %uB Line, VIPT%s%s\n",
124 			p_ic->sz_k, assoc, p_ic->line_len,
125 			p_ic->colors > 1 ? " aliasing" : "",
126 			IS_USED_CFG(CONFIG_ARC_HAS_ICACHE));
127 
128 dc_chk:
129 	READ_BCR(ARC_REG_DC_BCR, dbcr);
130 	if (!dbcr.ver)
131 		goto slc_chk;
132 
133 	if (is_isa_arcompact() && (dbcr.ver <= 3)) {
134 		BUG_ON(dbcr.config != 2);
135 		vipt = 1;
136 		assoc = 4;		/* Fixed to 4w set assoc */
137 		p_dc->colors = p_dc->sz_k/assoc/TO_KB(PAGE_SIZE);
138 	} else if (is_isa_arcv2() && (dbcr.ver >= 4)) {
139 		vipt = 0;
140 		assoc = 1 << dbcr.config;	/* 1,2,4,8 */
141 		p_dc->colors = 1;		/* PIPT so can't VIPT alias */
142 	}
143 
144 	p_dc->line_len = 16 << dbcr.line_len;
145 	p_dc->sz_k = 1 << (dbcr.sz - 1);
146 
147 	n += scnprintf(buf + n, len - n,
148 			"D-Cache\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",
149 			p_dc->sz_k, assoc, p_dc->line_len,
150 			vipt ? "VIPT" : "PIPT",
151 			p_dc->colors > 1 ? " aliasing" : "",
152 			IS_USED_CFG(CONFIG_ARC_HAS_DCACHE));
153 
154 slc_chk:
155 	if (is_isa_arcv2())
156 		n += read_decode_cache_bcr_arcv2(c, buf + n, len - n);
157 
158 	return n;
159 }
160 
161 /*
162  * Line Operation on {I,D}-Cache
163  */
164 
165 #define OP_INV		0x1
166 #define OP_FLUSH	0x2
167 #define OP_FLUSH_N_INV	0x3
168 #define OP_INV_IC	0x4
169 
170 /*
171  * Cache Flush programming model
172  *
173  * ARC700 MMUv3 I$ and D$ are both VIPT and can potentially alias.
174  * Programming model requires both paddr and vaddr irrespecive of aliasing
175  * considerations:
176  *  - vaddr in {I,D}C_IV?L
177  *  - paddr in {I,D}C_PTAG
178  *
179  * In HS38x (MMUv4), D$ is PIPT, I$ is VIPT and can still alias.
180  * Programming model is different for aliasing vs. non-aliasing I$
181  *  - D$ / Non-aliasing I$: only paddr in {I,D}C_IV?L
182  *  - Aliasing I$: same as ARC700 above (so MMUv3 routine used for MMUv4 I$)
183  *
184  *  - If PAE40 is enabled, independent of aliasing considerations, the higher
185  *    bits needs to be written into PTAG_HI
186  */
187 
188 static inline
189 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
190 			  unsigned long sz, const int op, const int full_page)
191 {
192 	unsigned int aux_cmd, aux_tag;
193 	int num_lines;
194 
195 	if (op == OP_INV_IC) {
196 		aux_cmd = ARC_REG_IC_IVIL;
197 		aux_tag = ARC_REG_IC_PTAG;
198 	} else {
199 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
200 		aux_tag = ARC_REG_DC_PTAG;
201 	}
202 
203 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
204 	 * and have @paddr - aligned to cache line and integral @num_lines.
205 	 * This however can be avoided for page sized since:
206 	 *  -@paddr will be cache-line aligned already (being page aligned)
207 	 *  -@sz will be integral multiple of line size (being page sized).
208 	 */
209 	if (!full_page) {
210 		sz += paddr & ~CACHE_LINE_MASK;
211 		paddr &= CACHE_LINE_MASK;
212 		vaddr &= CACHE_LINE_MASK;
213 	}
214 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
215 
216 	/*
217 	 * MMUv3, cache ops require paddr in PTAG reg
218 	 * if V-P const for loop, PTAG can be written once outside loop
219 	 */
220 	if (full_page)
221 		write_aux_reg(aux_tag, paddr);
222 
223 	/*
224 	 * This is technically for MMU v4, using the MMU v3 programming model
225 	 * Special work for HS38 aliasing I-cache configuration with PAE40
226 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
227 	 *   - (and needs to be written before the lower 32 bits)
228 	 * Note that PTAG_HI is hoisted outside the line loop
229 	 */
230 	if (is_pae40_enabled() && op == OP_INV_IC)
231 		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
232 
233 	while (num_lines-- > 0) {
234 		if (!full_page) {
235 			write_aux_reg(aux_tag, paddr);
236 			paddr += L1_CACHE_BYTES;
237 		}
238 
239 		write_aux_reg(aux_cmd, vaddr);
240 		vaddr += L1_CACHE_BYTES;
241 	}
242 }
243 
244 #ifndef USE_RGN_FLSH
245 
246 /*
247  */
248 static inline
249 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
250 			  unsigned long sz, const int op, const int full_page)
251 {
252 	unsigned int aux_cmd;
253 	int num_lines;
254 
255 	if (op == OP_INV_IC) {
256 		aux_cmd = ARC_REG_IC_IVIL;
257 	} else {
258 		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
259 		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
260 	}
261 
262 	/* Ensure we properly floor/ceil the non-line aligned/sized requests
263 	 * and have @paddr - aligned to cache line and integral @num_lines.
264 	 * This however can be avoided for page sized since:
265 	 *  -@paddr will be cache-line aligned already (being page aligned)
266 	 *  -@sz will be integral multiple of line size (being page sized).
267 	 */
268 	if (!full_page) {
269 		sz += paddr & ~CACHE_LINE_MASK;
270 		paddr &= CACHE_LINE_MASK;
271 	}
272 
273 	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
274 
275 	/*
276 	 * For HS38 PAE40 configuration
277 	 *   - upper 8 bits of paddr need to be written into PTAG_HI
278 	 *   - (and needs to be written before the lower 32 bits)
279 	 */
280 	if (is_pae40_enabled()) {
281 		if (op == OP_INV_IC)
282 			/*
283 			 * Non aliasing I-cache in HS38,
284 			 * aliasing I-cache handled in __cache_line_loop_v3()
285 			 */
286 			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
287 		else
288 			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
289 	}
290 
291 	while (num_lines-- > 0) {
292 		write_aux_reg(aux_cmd, paddr);
293 		paddr += L1_CACHE_BYTES;
294 	}
295 }
296 
297 #else
298 
299 /*
300  * optimized flush operation which takes a region as opposed to iterating per line
301  */
302 static inline
303 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
304 			  unsigned long sz, const int op, const int full_page)
305 {
306 	unsigned int s, e;
307 
308 	/* Only for Non aliasing I-cache in HS38 */
309 	if (op == OP_INV_IC) {
310 		s = ARC_REG_IC_IVIR;
311 		e = ARC_REG_IC_ENDR;
312 	} else {
313 		s = ARC_REG_DC_STARTR;
314 		e = ARC_REG_DC_ENDR;
315 	}
316 
317 	if (!full_page) {
318 		/* for any leading gap between @paddr and start of cache line */
319 		sz += paddr & ~CACHE_LINE_MASK;
320 		paddr &= CACHE_LINE_MASK;
321 
322 		/*
323 		 *  account for any trailing gap to end of cache line
324 		 *  this is equivalent to DIV_ROUND_UP() in line ops above
325 		 */
326 		sz += L1_CACHE_BYTES - 1;
327 	}
328 
329 	if (is_pae40_enabled()) {
330 		/* TBD: check if crossing 4TB boundary */
331 		if (op == OP_INV_IC)
332 			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
333 		else
334 			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
335 	}
336 
337 	/* ENDR needs to be set ahead of START */
338 	write_aux_reg(e, paddr + sz);	/* ENDR is exclusive */
339 	write_aux_reg(s, paddr);
340 
341 	/* caller waits on DC_CTRL.FS */
342 }
343 
344 #endif
345 
346 #ifdef CONFIG_ARC_MMU_V3
347 #define __cache_line_loop	__cache_line_loop_v3
348 #else
349 #define __cache_line_loop	__cache_line_loop_v4
350 #endif
351 
352 #ifdef CONFIG_ARC_HAS_DCACHE
353 
354 /***************************************************************
355  * Machine specific helpers for Entire D-Cache or Per Line ops
356  */
357 
358 #ifndef USE_RGN_FLSH
359 /*
360  * this version avoids extra read/write of DC_CTRL for flush or invalid ops
361  * in the non region flush regime (such as for ARCompact)
362  */
363 static inline void __before_dc_op(const int op)
364 {
365 	if (op == OP_FLUSH_N_INV) {
366 		/* Dcache provides 2 cmd: FLUSH or INV
367 		 * INV in turn has sub-modes: DISCARD or FLUSH-BEFORE
368 		 * flush-n-inv is achieved by INV cmd but with IM=1
369 		 * So toggle INV sub-mode depending on op request and default
370 		 */
371 		const unsigned int ctl = ARC_REG_DC_CTRL;
372 		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
373 	}
374 }
375 
376 #else
377 
378 static inline void __before_dc_op(const int op)
379 {
380 	const unsigned int ctl = ARC_REG_DC_CTRL;
381 	unsigned int val = read_aux_reg(ctl);
382 
383 	if (op == OP_FLUSH_N_INV) {
384 		val |= DC_CTRL_INV_MODE_FLUSH;
385 	}
386 
387 	if (op != OP_INV_IC) {
388 		/*
389 		 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
390 		 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
391 		 */
392 		val &= ~DC_CTRL_RGN_OP_MSK;
393 		if (op & OP_INV)
394 			val |= DC_CTRL_RGN_OP_INV;
395 	}
396 	write_aux_reg(ctl, val);
397 }
398 
399 #endif
400 
401 
402 static inline void __after_dc_op(const int op)
403 {
404 	if (op & OP_FLUSH) {
405 		const unsigned int ctl = ARC_REG_DC_CTRL;
406 		unsigned int reg;
407 
408 		/* flush / flush-n-inv both wait */
409 		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
410 			;
411 
412 		/* Switch back to default Invalidate mode */
413 		if (op == OP_FLUSH_N_INV)
414 			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
415 	}
416 }
417 
418 /*
419  * Operation on Entire D-Cache
420  * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
421  * Note that constant propagation ensures all the checks are gone
422  * in generated code
423  */
424 static inline void __dc_entire_op(const int op)
425 {
426 	int aux;
427 
428 	__before_dc_op(op);
429 
430 	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
431 		aux = ARC_REG_DC_IVDC;
432 	else
433 		aux = ARC_REG_DC_FLSH;
434 
435 	write_aux_reg(aux, 0x1);
436 
437 	__after_dc_op(op);
438 }
439 
440 static inline void __dc_disable(void)
441 {
442 	const int r = ARC_REG_DC_CTRL;
443 
444 	__dc_entire_op(OP_FLUSH_N_INV);
445 	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
446 }
447 
448 static void __dc_enable(void)
449 {
450 	const int r = ARC_REG_DC_CTRL;
451 
452 	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
453 }
454 
455 /* For kernel mappings cache operation: index is same as paddr */
456 #define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
457 
458 /*
459  * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
460  */
461 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
462 				unsigned long sz, const int op)
463 {
464 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
465 	unsigned long flags;
466 
467 	local_irq_save(flags);
468 
469 	__before_dc_op(op);
470 
471 	__cache_line_loop(paddr, vaddr, sz, op, full_page);
472 
473 	__after_dc_op(op);
474 
475 	local_irq_restore(flags);
476 }
477 
478 #else
479 
480 #define __dc_entire_op(op)
481 #define __dc_disable()
482 #define __dc_enable()
483 #define __dc_line_op(paddr, vaddr, sz, op)
484 #define __dc_line_op_k(paddr, sz, op)
485 
486 #endif /* CONFIG_ARC_HAS_DCACHE */
487 
488 #ifdef CONFIG_ARC_HAS_ICACHE
489 
490 static inline void __ic_entire_inv(void)
491 {
492 	write_aux_reg(ARC_REG_IC_IVIC, 1);
493 	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
494 }
495 
496 static inline void
497 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
498 			  unsigned long sz)
499 {
500 	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
501 	unsigned long flags;
502 
503 	local_irq_save(flags);
504 	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
505 	local_irq_restore(flags);
506 }
507 
508 #ifndef CONFIG_SMP
509 
510 #define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
511 
512 #else
513 
514 struct ic_inv_args {
515 	phys_addr_t paddr, vaddr;
516 	int sz;
517 };
518 
519 static void __ic_line_inv_vaddr_helper(void *info)
520 {
521         struct ic_inv_args *ic_inv = info;
522 
523         __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
524 }
525 
526 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
527 				unsigned long sz)
528 {
529 	struct ic_inv_args ic_inv = {
530 		.paddr = paddr,
531 		.vaddr = vaddr,
532 		.sz    = sz
533 	};
534 
535 	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
536 }
537 
538 #endif	/* CONFIG_SMP */
539 
540 #else	/* !CONFIG_ARC_HAS_ICACHE */
541 
542 #define __ic_entire_inv()
543 #define __ic_line_inv_vaddr(pstart, vstart, sz)
544 
545 #endif /* CONFIG_ARC_HAS_ICACHE */
546 
547 static noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
548 {
549 #ifdef CONFIG_ISA_ARCV2
550 	/*
551 	 * SLC is shared between all cores and concurrent aux operations from
552 	 * multiple cores need to be serialized using a spinlock
553 	 * A concurrent operation can be silently ignored and/or the old/new
554 	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
555 	 * below)
556 	 */
557 	static DEFINE_SPINLOCK(lock);
558 	unsigned long flags;
559 	unsigned int ctrl;
560 	phys_addr_t end;
561 
562 	spin_lock_irqsave(&lock, flags);
563 
564 	/*
565 	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
566 	 *  - b'000 (default) is Flush,
567 	 *  - b'001 is Invalidate if CTRL.IM == 0
568 	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
569 	 */
570 	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
571 
572 	/* Don't rely on default value of IM bit */
573 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
574 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
575 	else
576 		ctrl |= SLC_CTRL_IM;
577 
578 	if (op & OP_INV)
579 		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
580 	else
581 		ctrl &= ~SLC_CTRL_RGN_OP_INV;
582 
583 	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
584 
585 	/*
586 	 * Lower bits are ignored, no need to clip
587 	 * END needs to be setup before START (latter triggers the operation)
588 	 * END can't be same as START, so add (l2_line_sz - 1) to sz
589 	 */
590 	end = paddr + sz + l2_line_sz - 1;
591 	if (is_pae40_enabled())
592 		write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
593 
594 	write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
595 
596 	if (is_pae40_enabled())
597 		write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
598 
599 	write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
600 
601 	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
602 	read_aux_reg(ARC_REG_SLC_CTRL);
603 
604 	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
605 
606 	spin_unlock_irqrestore(&lock, flags);
607 #endif
608 }
609 
610 static __maybe_unused noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
611 {
612 #ifdef CONFIG_ISA_ARCV2
613 	/*
614 	 * SLC is shared between all cores and concurrent aux operations from
615 	 * multiple cores need to be serialized using a spinlock
616 	 * A concurrent operation can be silently ignored and/or the old/new
617 	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
618 	 * below)
619 	 */
620 	static DEFINE_SPINLOCK(lock);
621 
622 	const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
623 	unsigned int ctrl, cmd;
624 	unsigned long flags;
625 	int num_lines;
626 
627 	spin_lock_irqsave(&lock, flags);
628 
629 	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
630 
631 	/* Don't rely on default value of IM bit */
632 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
633 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
634 	else
635 		ctrl |= SLC_CTRL_IM;
636 
637 	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
638 
639 	cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
640 
641 	sz += paddr & ~SLC_LINE_MASK;
642 	paddr &= SLC_LINE_MASK;
643 
644 	num_lines = DIV_ROUND_UP(sz, l2_line_sz);
645 
646 	while (num_lines-- > 0) {
647 		write_aux_reg(cmd, paddr);
648 		paddr += l2_line_sz;
649 	}
650 
651 	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
652 	read_aux_reg(ARC_REG_SLC_CTRL);
653 
654 	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
655 
656 	spin_unlock_irqrestore(&lock, flags);
657 #endif
658 }
659 
660 #define slc_op(paddr, sz, op)	slc_op_rgn(paddr, sz, op)
661 
662 noinline static void slc_entire_op(const int op)
663 {
664 	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
665 
666 	ctrl = read_aux_reg(r);
667 
668 	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
669 		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
670 	else
671 		ctrl |= SLC_CTRL_IM;
672 
673 	write_aux_reg(r, ctrl);
674 
675 	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
676 		write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
677 	else
678 		write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
679 
680 	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
681 	read_aux_reg(r);
682 
683 	/* Important to wait for flush to complete */
684 	while (read_aux_reg(r) & SLC_CTRL_BUSY);
685 }
686 
687 static inline void arc_slc_disable(void)
688 {
689 	const int r = ARC_REG_SLC_CTRL;
690 
691 	slc_entire_op(OP_FLUSH_N_INV);
692 	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
693 }
694 
695 static inline void arc_slc_enable(void)
696 {
697 	const int r = ARC_REG_SLC_CTRL;
698 
699 	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
700 }
701 
702 /***********************************************************
703  * Exported APIs
704  */
705 
706 /*
707  * Handle cache congruency of kernel and userspace mappings of page when kernel
708  * writes-to/reads-from
709  *
710  * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
711  *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
712  *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
713  *  -In SMP, if hardware caches are coherent
714  *
715  * There's a corollary case, where kernel READs from a userspace mapped page.
716  * If the U-mapping is not congruent to K-mapping, former needs flushing.
717  */
718 void flush_dcache_folio(struct folio *folio)
719 {
720 	struct address_space *mapping;
721 
722 	if (!cache_is_vipt_aliasing()) {
723 		clear_bit(PG_dc_clean, &folio->flags);
724 		return;
725 	}
726 
727 	/* don't handle anon pages here */
728 	mapping = folio_flush_mapping(folio);
729 	if (!mapping)
730 		return;
731 
732 	/*
733 	 * pagecache page, file not yet mapped to userspace
734 	 * Make a note that K-mapping is dirty
735 	 */
736 	if (!mapping_mapped(mapping)) {
737 		clear_bit(PG_dc_clean, &folio->flags);
738 	} else if (folio_mapped(folio)) {
739 		/* kernel reading from page with U-mapping */
740 		phys_addr_t paddr = (unsigned long)folio_address(folio);
741 		unsigned long vaddr = folio_pos(folio);
742 
743 		/*
744 		 * vaddr is not actually the virtual address, but is
745 		 * congruent to every user mapping.
746 		 */
747 		if (addr_not_cache_congruent(paddr, vaddr))
748 			__flush_dcache_pages(paddr, vaddr,
749 						folio_nr_pages(folio));
750 	}
751 }
752 EXPORT_SYMBOL(flush_dcache_folio);
753 
754 void flush_dcache_page(struct page *page)
755 {
756 	return flush_dcache_folio(page_folio(page));
757 }
758 EXPORT_SYMBOL(flush_dcache_page);
759 
760 /*
761  * DMA ops for systems with L1 cache only
762  * Make memory coherent with L1 cache by flushing/invalidating L1 lines
763  */
764 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
765 {
766 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
767 }
768 
769 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
770 {
771 	__dc_line_op_k(start, sz, OP_INV);
772 }
773 
774 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
775 {
776 	__dc_line_op_k(start, sz, OP_FLUSH);
777 }
778 
779 /*
780  * DMA ops for systems with both L1 and L2 caches, but without IOC
781  * Both L1 and L2 lines need to be explicitly flushed/invalidated
782  */
783 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
784 {
785 	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
786 	slc_op(start, sz, OP_FLUSH_N_INV);
787 }
788 
789 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
790 {
791 	__dc_line_op_k(start, sz, OP_INV);
792 	slc_op(start, sz, OP_INV);
793 }
794 
795 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
796 {
797 	__dc_line_op_k(start, sz, OP_FLUSH);
798 	slc_op(start, sz, OP_FLUSH);
799 }
800 
801 /*
802  * Exported DMA API
803  */
804 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
805 {
806 	__dma_cache_wback_inv(start, sz);
807 }
808 EXPORT_SYMBOL(dma_cache_wback_inv);
809 
810 void dma_cache_inv(phys_addr_t start, unsigned long sz)
811 {
812 	__dma_cache_inv(start, sz);
813 }
814 EXPORT_SYMBOL(dma_cache_inv);
815 
816 void dma_cache_wback(phys_addr_t start, unsigned long sz)
817 {
818 	__dma_cache_wback(start, sz);
819 }
820 EXPORT_SYMBOL(dma_cache_wback);
821 
822 /*
823  * This is API for making I/D Caches consistent when modifying
824  * kernel code (loadable modules, kprobes, kgdb...)
825  * This is called on insmod, with kernel virtual address for CODE of
826  * the module. ARC cache maintenance ops require PHY address thus we
827  * need to convert vmalloc addr to PHY addr
828  */
829 void flush_icache_range(unsigned long kstart, unsigned long kend)
830 {
831 	unsigned int tot_sz;
832 
833 	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
834 
835 	/* Shortcut for bigger flush ranges.
836 	 * Here we don't care if this was kernel virtual or phy addr
837 	 */
838 	tot_sz = kend - kstart;
839 	if (tot_sz > PAGE_SIZE) {
840 		flush_cache_all();
841 		return;
842 	}
843 
844 	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
845 	if (likely(kstart > PAGE_OFFSET)) {
846 		/*
847 		 * The 2nd arg despite being paddr will be used to index icache
848 		 * This is OK since no alternate virtual mappings will exist
849 		 * given the callers for this case: kprobe/kgdb in built-in
850 		 * kernel code only.
851 		 */
852 		__sync_icache_dcache(kstart, kstart, kend - kstart);
853 		return;
854 	}
855 
856 	/*
857 	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
858 	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
859 	 *     handling of kernel vaddr.
860 	 *
861 	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
862 	 *     it still needs to handle  a 2 page scenario, where the range
863 	 *     straddles across 2 virtual pages and hence need for loop
864 	 */
865 	while (tot_sz > 0) {
866 		unsigned int off, sz;
867 		unsigned long phy, pfn;
868 
869 		off = kstart % PAGE_SIZE;
870 		pfn = vmalloc_to_pfn((void *)kstart);
871 		phy = (pfn << PAGE_SHIFT) + off;
872 		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
873 		__sync_icache_dcache(phy, kstart, sz);
874 		kstart += sz;
875 		tot_sz -= sz;
876 	}
877 }
878 EXPORT_SYMBOL(flush_icache_range);
879 
880 /*
881  * General purpose helper to make I and D cache lines consistent.
882  * @paddr is phy addr of region
883  * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
884  *    However in one instance, when called by kprobe (for a breakpt in
885  *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
886  *    use a paddr to index the cache (despite VIPT). This is fine since a
887  *    builtin kernel page will not have any virtual mappings.
888  *    kprobe on loadable module will be kernel vaddr.
889  */
890 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
891 {
892 	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
893 	__ic_line_inv_vaddr(paddr, vaddr, len);
894 }
895 
896 /* wrapper to compile time eliminate alignment checks in flush loop */
897 void __inv_icache_pages(phys_addr_t paddr, unsigned long vaddr, unsigned nr)
898 {
899 	__ic_line_inv_vaddr(paddr, vaddr, nr * PAGE_SIZE);
900 }
901 
902 /*
903  * wrapper to clearout kernel or userspace mappings of a page
904  * For kernel mappings @vaddr == @paddr
905  */
906 void __flush_dcache_pages(phys_addr_t paddr, unsigned long vaddr, unsigned nr)
907 {
908 	__dc_line_op(paddr, vaddr & PAGE_MASK, nr * PAGE_SIZE, OP_FLUSH_N_INV);
909 }
910 
911 noinline void flush_cache_all(void)
912 {
913 	unsigned long flags;
914 
915 	local_irq_save(flags);
916 
917 	__ic_entire_inv();
918 	__dc_entire_op(OP_FLUSH_N_INV);
919 
920 	local_irq_restore(flags);
921 
922 }
923 
924 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
925 
926 void flush_cache_mm(struct mm_struct *mm)
927 {
928 	flush_cache_all();
929 }
930 
931 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
932 		      unsigned long pfn)
933 {
934 	phys_addr_t paddr = pfn << PAGE_SHIFT;
935 
936 	u_vaddr &= PAGE_MASK;
937 
938 	__flush_dcache_pages(paddr, u_vaddr, 1);
939 
940 	if (vma->vm_flags & VM_EXEC)
941 		__inv_icache_pages(paddr, u_vaddr, 1);
942 }
943 
944 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
945 		       unsigned long end)
946 {
947 	flush_cache_all();
948 }
949 
950 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
951 		     unsigned long u_vaddr)
952 {
953 	/* TBD: do we really need to clear the kernel mapping */
954 	__flush_dcache_pages((phys_addr_t)page_address(page), u_vaddr, 1);
955 	__flush_dcache_pages((phys_addr_t)page_address(page),
956 			    (phys_addr_t)page_address(page), 1);
957 
958 }
959 
960 #endif
961 
962 void copy_user_highpage(struct page *to, struct page *from,
963 	unsigned long u_vaddr, struct vm_area_struct *vma)
964 {
965 	struct folio *src = page_folio(from);
966 	struct folio *dst = page_folio(to);
967 	void *kfrom = kmap_atomic(from);
968 	void *kto = kmap_atomic(to);
969 	int clean_src_k_mappings = 0;
970 
971 	/*
972 	 * If SRC page was already mapped in userspace AND it's U-mapping is
973 	 * not congruent with K-mapping, sync former to physical page so that
974 	 * K-mapping in memcpy below, sees the right data
975 	 *
976 	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
977 	 * equally valid for SRC page as well
978 	 *
979 	 * For !VIPT cache, all of this gets compiled out as
980 	 * addr_not_cache_congruent() is 0
981 	 */
982 	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
983 		__flush_dcache_pages((unsigned long)kfrom, u_vaddr, 1);
984 		clean_src_k_mappings = 1;
985 	}
986 
987 	copy_page(kto, kfrom);
988 
989 	/*
990 	 * Mark DST page K-mapping as dirty for a later finalization by
991 	 * update_mmu_cache(). Although the finalization could have been done
992 	 * here as well (given that both vaddr/paddr are available).
993 	 * But update_mmu_cache() already has code to do that for other
994 	 * non copied user pages (e.g. read faults which wire in pagecache page
995 	 * directly).
996 	 */
997 	clear_bit(PG_dc_clean, &dst->flags);
998 
999 	/*
1000 	 * if SRC was already usermapped and non-congruent to kernel mapping
1001 	 * sync the kernel mapping back to physical page
1002 	 */
1003 	if (clean_src_k_mappings) {
1004 		__flush_dcache_pages((unsigned long)kfrom,
1005 					(unsigned long)kfrom, 1);
1006 	} else {
1007 		clear_bit(PG_dc_clean, &src->flags);
1008 	}
1009 
1010 	kunmap_atomic(kto);
1011 	kunmap_atomic(kfrom);
1012 }
1013 
1014 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
1015 {
1016 	struct folio *folio = page_folio(page);
1017 	clear_page(to);
1018 	clear_bit(PG_dc_clean, &folio->flags);
1019 }
1020 EXPORT_SYMBOL(clear_user_page);
1021 
1022 /**********************************************************************
1023  * Explicit Cache flush request from user space via syscall
1024  * Needed for JITs which generate code on the fly
1025  */
1026 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
1027 {
1028 	/* TBD: optimize this */
1029 	flush_cache_all();
1030 	return 0;
1031 }
1032 
1033 /*
1034  * IO-Coherency (IOC) setup rules:
1035  *
1036  * 1. Needs to be at system level, so only once by Master core
1037  *    Non-Masters need not be accessing caches at that time
1038  *    - They are either HALT_ON_RESET and kick started much later or
1039  *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1040  *      doesn't perturb caches or coherency unit
1041  *
1042  * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1043  *    otherwise any straggler data might behave strangely post IOC enabling
1044  *
1045  * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1046  *    Coherency transactions
1047  */
1048 static noinline void __init arc_ioc_setup(void)
1049 {
1050 	unsigned int ioc_base, mem_sz;
1051 
1052 	/*
1053 	 * If IOC was already enabled (due to bootloader) it technically needs to
1054 	 * be reconfigured with aperture base,size corresponding to Linux memory map
1055 	 * which will certainly be different than uboot's. But disabling and
1056 	 * reenabling IOC when DMA might be potentially active is tricky business.
1057 	 * To avoid random memory issues later, just panic here and ask user to
1058 	 * upgrade bootloader to one which doesn't enable IOC
1059 	 */
1060 	if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT)
1061 		panic("IOC already enabled, please upgrade bootloader!\n");
1062 
1063 	if (!ioc_enable)
1064 		return;
1065 
1066 	/* Flush + invalidate + disable L1 dcache */
1067 	__dc_disable();
1068 
1069 	/* Flush + invalidate SLC */
1070 	if (read_aux_reg(ARC_REG_SLC_BCR))
1071 		slc_entire_op(OP_FLUSH_N_INV);
1072 
1073 	/*
1074 	 * currently IOC Aperture covers entire DDR
1075 	 * TBD: fix for PGU + 1GB of low mem
1076 	 * TBD: fix for PAE
1077 	 */
1078 	mem_sz = arc_get_mem_sz();
1079 
1080 	if (!is_power_of_2(mem_sz) || mem_sz < 4096)
1081 		panic("IOC Aperture size must be power of 2 larger than 4KB");
1082 
1083 	/*
1084 	 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1085 	 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1086 	 */
1087 	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
1088 
1089 	/* for now assume kernel base is start of IOC aperture */
1090 	ioc_base = CONFIG_LINUX_RAM_BASE;
1091 
1092 	if (ioc_base % mem_sz != 0)
1093 		panic("IOC Aperture start must be aligned to the size of the aperture");
1094 
1095 	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
1096 	write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT);
1097 	write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT);
1098 
1099 	/* Re-enable L1 dcache */
1100 	__dc_enable();
1101 }
1102 
1103 /*
1104  * Cache related boot time checks/setups only needed on master CPU:
1105  *  - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1106  *    Assume SMP only, so all cores will have same cache config. A check on
1107  *    one core suffices for all
1108  *  - IOC setup / dma callbacks only need to be done once
1109  */
1110 static noinline void __init arc_cache_init_master(void)
1111 {
1112 	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1113 		struct cpuinfo_arc_cache *ic = &ic_info;
1114 
1115 		if (!ic->line_len)
1116 			panic("cache support enabled but non-existent cache\n");
1117 
1118 		if (ic->line_len != L1_CACHE_BYTES)
1119 			panic("ICache line [%d] != kernel Config [%d]",
1120 			      ic->line_len, L1_CACHE_BYTES);
1121 
1122 		/*
1123 		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1124 		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1125 		 */
1126 		if (is_isa_arcv2() && ic->colors > 1)
1127 			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1128 		else
1129 			_cache_line_loop_ic_fn = __cache_line_loop;
1130 	}
1131 
1132 	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1133 		struct cpuinfo_arc_cache *dc = &dc_info;
1134 
1135 		if (!dc->line_len)
1136 			panic("cache support enabled but non-existent cache\n");
1137 
1138 		if (dc->line_len != L1_CACHE_BYTES)
1139 			panic("DCache line [%d] != kernel Config [%d]",
1140 			      dc->line_len, L1_CACHE_BYTES);
1141 
1142 		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1143 		if (is_isa_arcompact()) {
1144 			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1145 
1146 			if (dc->colors > 1) {
1147 				if (!handled)
1148 					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1149 				if (CACHE_COLORS_NUM != dc->colors)
1150 					panic("CACHE_COLORS_NUM not optimized for config\n");
1151 			} else if (handled && dc->colors == 1) {
1152 				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1153 			}
1154 		}
1155 	}
1156 
1157 	/*
1158 	 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1159 	 * or equal to any cache line length.
1160 	 */
1161 	BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES,
1162 			 "SMP_CACHE_BYTES must be >= any cache line length");
1163 	if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES))
1164 		panic("L2 Cache line [%d] > kernel Config [%d]\n",
1165 		      l2_line_sz, SMP_CACHE_BYTES);
1166 
1167 	/* Note that SLC disable not formally supported till HS 3.0 */
1168 	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1169 		arc_slc_disable();
1170 
1171 	if (is_isa_arcv2() && ioc_exists)
1172 		arc_ioc_setup();
1173 
1174 	if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1175 		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1176 		__dma_cache_inv = __dma_cache_inv_slc;
1177 		__dma_cache_wback = __dma_cache_wback_slc;
1178 	} else {
1179 		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1180 		__dma_cache_inv = __dma_cache_inv_l1;
1181 		__dma_cache_wback = __dma_cache_wback_l1;
1182 	}
1183 	/*
1184 	 * In case of IOC (say IOC+SLC case), pointers above could still be set
1185 	 * but end up not being relevant as the first function in chain is not
1186 	 * called at all for devices using coherent DMA.
1187 	 *     arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*()
1188 	 */
1189 }
1190 
1191 void __ref arc_cache_init(void)
1192 {
1193 	unsigned int __maybe_unused cpu = smp_processor_id();
1194 
1195 	if (!cpu)
1196 		arc_cache_init_master();
1197 
1198 	/*
1199 	 * In PAE regime, TLB and cache maintenance ops take wider addresses
1200 	 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1201 	 * to be zeroed to keep the ops sane.
1202 	 * As an optimization for more common !PAE enabled case, zero them out
1203 	 * once at init, rather than checking/setting to 0 for every runtime op
1204 	 */
1205 	if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1206 
1207 		if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1208 			write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1209 
1210 		if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1211 			write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1212 
1213 		if (l2_line_sz) {
1214 			write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1215 			write_aux_reg(ARC_REG_SLC_RGN_START1, 0);
1216 		}
1217 	}
1218 }
1219