1 /* 2 * Linux performance counter support for ARC700 series 3 * 4 * Copyright (C) 2013-2015 Synopsys, Inc. (www.synopsys.com) 5 * 6 * This code is inspired by the perf support of various other architectures. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 */ 13 #include <linux/errno.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/perf_event.h> 18 #include <linux/platform_device.h> 19 #include <asm/arcregs.h> 20 #include <asm/stacktrace.h> 21 22 struct arc_pmu { 23 struct pmu pmu; 24 unsigned int irq; 25 int n_counters; 26 u64 max_period; 27 int ev_hw_idx[PERF_COUNT_ARC_HW_MAX]; 28 }; 29 30 struct arc_pmu_cpu { 31 /* 32 * A 1 bit for an index indicates that the counter is being used for 33 * an event. A 0 means that the counter can be used. 34 */ 35 unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)]; 36 37 /* 38 * The events that are active on the PMU for the given index. 39 */ 40 struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS]; 41 }; 42 43 struct arc_callchain_trace { 44 int depth; 45 void *perf_stuff; 46 }; 47 48 static int callchain_trace(unsigned int addr, void *data) 49 { 50 struct arc_callchain_trace *ctrl = data; 51 struct perf_callchain_entry *entry = ctrl->perf_stuff; 52 perf_callchain_store(entry, addr); 53 54 if (ctrl->depth++ < 3) 55 return 0; 56 57 return -1; 58 } 59 60 void 61 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) 62 { 63 struct arc_callchain_trace ctrl = { 64 .depth = 0, 65 .perf_stuff = entry, 66 }; 67 68 arc_unwind_core(NULL, regs, callchain_trace, &ctrl); 69 } 70 71 void 72 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) 73 { 74 /* 75 * User stack can't be unwound trivially with kernel dwarf unwinder 76 * So for now just record the user PC 77 */ 78 perf_callchain_store(entry, instruction_pointer(regs)); 79 } 80 81 static struct arc_pmu *arc_pmu; 82 static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu); 83 84 /* read counter #idx; note that counter# != event# on ARC! */ 85 static uint64_t arc_pmu_read_counter(int idx) 86 { 87 uint32_t tmp; 88 uint64_t result; 89 90 /* 91 * ARC supports making 'snapshots' of the counters, so we don't 92 * need to care about counters wrapping to 0 underneath our feet 93 */ 94 write_aux_reg(ARC_REG_PCT_INDEX, idx); 95 tmp = read_aux_reg(ARC_REG_PCT_CONTROL); 96 write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN); 97 result = (uint64_t) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32; 98 result |= read_aux_reg(ARC_REG_PCT_SNAPL); 99 100 return result; 101 } 102 103 static void arc_perf_event_update(struct perf_event *event, 104 struct hw_perf_event *hwc, int idx) 105 { 106 uint64_t prev_raw_count = local64_read(&hwc->prev_count); 107 uint64_t new_raw_count = arc_pmu_read_counter(idx); 108 int64_t delta = new_raw_count - prev_raw_count; 109 110 /* 111 * We don't afaraid of hwc->prev_count changing beneath our feet 112 * because there's no way for us to re-enter this function anytime. 113 */ 114 local64_set(&hwc->prev_count, new_raw_count); 115 local64_add(delta, &event->count); 116 local64_sub(delta, &hwc->period_left); 117 } 118 119 static void arc_pmu_read(struct perf_event *event) 120 { 121 arc_perf_event_update(event, &event->hw, event->hw.idx); 122 } 123 124 static int arc_pmu_cache_event(u64 config) 125 { 126 unsigned int cache_type, cache_op, cache_result; 127 int ret; 128 129 cache_type = (config >> 0) & 0xff; 130 cache_op = (config >> 8) & 0xff; 131 cache_result = (config >> 16) & 0xff; 132 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 133 return -EINVAL; 134 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 135 return -EINVAL; 136 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 137 return -EINVAL; 138 139 ret = arc_pmu_cache_map[cache_type][cache_op][cache_result]; 140 141 if (ret == CACHE_OP_UNSUPPORTED) 142 return -ENOENT; 143 144 pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n", 145 cache_type, cache_op, cache_result, ret, 146 arc_pmu_ev_hw_map[ret]); 147 148 return ret; 149 } 150 151 /* initializes hw_perf_event structure if event is supported */ 152 static int arc_pmu_event_init(struct perf_event *event) 153 { 154 struct hw_perf_event *hwc = &event->hw; 155 int ret; 156 157 if (!is_sampling_event(event)) { 158 hwc->sample_period = arc_pmu->max_period; 159 hwc->last_period = hwc->sample_period; 160 local64_set(&hwc->period_left, hwc->sample_period); 161 } 162 163 hwc->config = 0; 164 165 if (is_isa_arcv2()) { 166 /* "exclude user" means "count only kernel" */ 167 if (event->attr.exclude_user) 168 hwc->config |= ARC_REG_PCT_CONFIG_KERN; 169 170 /* "exclude kernel" means "count only user" */ 171 if (event->attr.exclude_kernel) 172 hwc->config |= ARC_REG_PCT_CONFIG_USER; 173 } 174 175 switch (event->attr.type) { 176 case PERF_TYPE_HARDWARE: 177 if (event->attr.config >= PERF_COUNT_HW_MAX) 178 return -ENOENT; 179 if (arc_pmu->ev_hw_idx[event->attr.config] < 0) 180 return -ENOENT; 181 hwc->config |= arc_pmu->ev_hw_idx[event->attr.config]; 182 pr_debug("init event %d with h/w %d \'%s\'\n", 183 (int) event->attr.config, (int) hwc->config, 184 arc_pmu_ev_hw_map[event->attr.config]); 185 return 0; 186 187 case PERF_TYPE_HW_CACHE: 188 ret = arc_pmu_cache_event(event->attr.config); 189 if (ret < 0) 190 return ret; 191 hwc->config |= arc_pmu->ev_hw_idx[ret]; 192 return 0; 193 default: 194 return -ENOENT; 195 } 196 } 197 198 /* starts all counters */ 199 static void arc_pmu_enable(struct pmu *pmu) 200 { 201 uint32_t tmp; 202 tmp = read_aux_reg(ARC_REG_PCT_CONTROL); 203 write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1); 204 } 205 206 /* stops all counters */ 207 static void arc_pmu_disable(struct pmu *pmu) 208 { 209 uint32_t tmp; 210 tmp = read_aux_reg(ARC_REG_PCT_CONTROL); 211 write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0); 212 } 213 214 static int arc_pmu_event_set_period(struct perf_event *event) 215 { 216 struct hw_perf_event *hwc = &event->hw; 217 s64 left = local64_read(&hwc->period_left); 218 s64 period = hwc->sample_period; 219 int idx = hwc->idx; 220 int overflow = 0; 221 u64 value; 222 223 if (unlikely(left <= -period)) { 224 /* left underflowed by more than period. */ 225 left = period; 226 local64_set(&hwc->period_left, left); 227 hwc->last_period = period; 228 overflow = 1; 229 } else if (unlikely(left <= 0)) { 230 /* left underflowed by less than period. */ 231 left += period; 232 local64_set(&hwc->period_left, left); 233 hwc->last_period = period; 234 overflow = 1; 235 } 236 237 if (left > arc_pmu->max_period) 238 left = arc_pmu->max_period; 239 240 value = arc_pmu->max_period - left; 241 local64_set(&hwc->prev_count, value); 242 243 /* Select counter */ 244 write_aux_reg(ARC_REG_PCT_INDEX, idx); 245 246 /* Write value */ 247 write_aux_reg(ARC_REG_PCT_COUNTL, (u32)value); 248 write_aux_reg(ARC_REG_PCT_COUNTH, (value >> 32)); 249 250 perf_event_update_userpage(event); 251 252 return overflow; 253 } 254 255 /* 256 * Assigns hardware counter to hardware condition. 257 * Note that there is no separate start/stop mechanism; 258 * stopping is achieved by assigning the 'never' condition 259 */ 260 static void arc_pmu_start(struct perf_event *event, int flags) 261 { 262 struct hw_perf_event *hwc = &event->hw; 263 int idx = hwc->idx; 264 265 if (WARN_ON_ONCE(idx == -1)) 266 return; 267 268 if (flags & PERF_EF_RELOAD) 269 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 270 271 hwc->state = 0; 272 273 arc_pmu_event_set_period(event); 274 275 /* Enable interrupt for this counter */ 276 if (is_sampling_event(event)) 277 write_aux_reg(ARC_REG_PCT_INT_CTRL, 278 read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx)); 279 280 /* enable ARC pmu here */ 281 write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */ 282 write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */ 283 } 284 285 static void arc_pmu_stop(struct perf_event *event, int flags) 286 { 287 struct hw_perf_event *hwc = &event->hw; 288 int idx = hwc->idx; 289 290 /* Disable interrupt for this counter */ 291 if (is_sampling_event(event)) { 292 /* 293 * Reset interrupt flag by writing of 1. This is required 294 * to make sure pending interrupt was not left. 295 */ 296 write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx); 297 write_aux_reg(ARC_REG_PCT_INT_CTRL, 298 read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~(1 << idx)); 299 } 300 301 if (!(event->hw.state & PERF_HES_STOPPED)) { 302 /* stop ARC pmu here */ 303 write_aux_reg(ARC_REG_PCT_INDEX, idx); 304 305 /* condition code #0 is always "never" */ 306 write_aux_reg(ARC_REG_PCT_CONFIG, 0); 307 308 event->hw.state |= PERF_HES_STOPPED; 309 } 310 311 if ((flags & PERF_EF_UPDATE) && 312 !(event->hw.state & PERF_HES_UPTODATE)) { 313 arc_perf_event_update(event, &event->hw, idx); 314 event->hw.state |= PERF_HES_UPTODATE; 315 } 316 } 317 318 static void arc_pmu_del(struct perf_event *event, int flags) 319 { 320 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); 321 322 arc_pmu_stop(event, PERF_EF_UPDATE); 323 __clear_bit(event->hw.idx, pmu_cpu->used_mask); 324 325 pmu_cpu->act_counter[event->hw.idx] = 0; 326 327 perf_event_update_userpage(event); 328 } 329 330 /* allocate hardware counter and optionally start counting */ 331 static int arc_pmu_add(struct perf_event *event, int flags) 332 { 333 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); 334 struct hw_perf_event *hwc = &event->hw; 335 int idx = hwc->idx; 336 337 if (__test_and_set_bit(idx, pmu_cpu->used_mask)) { 338 idx = find_first_zero_bit(pmu_cpu->used_mask, 339 arc_pmu->n_counters); 340 if (idx == arc_pmu->n_counters) 341 return -EAGAIN; 342 343 __set_bit(idx, pmu_cpu->used_mask); 344 hwc->idx = idx; 345 } 346 347 write_aux_reg(ARC_REG_PCT_INDEX, idx); 348 349 pmu_cpu->act_counter[idx] = event; 350 351 if (is_sampling_event(event)) { 352 /* Mimic full counter overflow as other arches do */ 353 write_aux_reg(ARC_REG_PCT_INT_CNTL, (u32)arc_pmu->max_period); 354 write_aux_reg(ARC_REG_PCT_INT_CNTH, 355 (arc_pmu->max_period >> 32)); 356 } 357 358 write_aux_reg(ARC_REG_PCT_CONFIG, 0); 359 write_aux_reg(ARC_REG_PCT_COUNTL, 0); 360 write_aux_reg(ARC_REG_PCT_COUNTH, 0); 361 local64_set(&hwc->prev_count, 0); 362 363 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 364 if (flags & PERF_EF_START) 365 arc_pmu_start(event, PERF_EF_RELOAD); 366 367 perf_event_update_userpage(event); 368 369 return 0; 370 } 371 372 #ifdef CONFIG_ISA_ARCV2 373 static irqreturn_t arc_pmu_intr(int irq, void *dev) 374 { 375 struct perf_sample_data data; 376 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); 377 struct pt_regs *regs; 378 int active_ints; 379 int idx; 380 381 arc_pmu_disable(&arc_pmu->pmu); 382 383 active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT); 384 385 regs = get_irq_regs(); 386 387 for (idx = 0; idx < arc_pmu->n_counters; idx++) { 388 struct perf_event *event = pmu_cpu->act_counter[idx]; 389 struct hw_perf_event *hwc; 390 391 if (!(active_ints & (1 << idx))) 392 continue; 393 394 /* Reset interrupt flag by writing of 1 */ 395 write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx); 396 397 /* 398 * On reset of "interrupt active" bit corresponding 399 * "interrupt enable" bit gets automatically reset as well. 400 * Now we need to re-enable interrupt for the counter. 401 */ 402 write_aux_reg(ARC_REG_PCT_INT_CTRL, 403 read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx)); 404 405 hwc = &event->hw; 406 407 WARN_ON_ONCE(hwc->idx != idx); 408 409 arc_perf_event_update(event, &event->hw, event->hw.idx); 410 perf_sample_data_init(&data, 0, hwc->last_period); 411 if (!arc_pmu_event_set_period(event)) 412 continue; 413 414 if (perf_event_overflow(event, &data, regs)) 415 arc_pmu_stop(event, 0); 416 } 417 418 arc_pmu_enable(&arc_pmu->pmu); 419 420 return IRQ_HANDLED; 421 } 422 #else 423 424 static irqreturn_t arc_pmu_intr(int irq, void *dev) 425 { 426 return IRQ_NONE; 427 } 428 429 #endif /* CONFIG_ISA_ARCV2 */ 430 431 void arc_cpu_pmu_irq_init(void) 432 { 433 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); 434 435 arc_request_percpu_irq(arc_pmu->irq, smp_processor_id(), arc_pmu_intr, 436 "ARC perf counters", pmu_cpu); 437 438 /* Clear all pending interrupt flags */ 439 write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff); 440 } 441 442 static int arc_pmu_device_probe(struct platform_device *pdev) 443 { 444 struct arc_reg_pct_build pct_bcr; 445 struct arc_reg_cc_build cc_bcr; 446 int i, j, has_interrupts; 447 int counter_size; /* in bits */ 448 449 union cc_name { 450 struct { 451 uint32_t word0, word1; 452 char sentinel; 453 } indiv; 454 char str[9]; 455 } cc_name; 456 457 458 READ_BCR(ARC_REG_PCT_BUILD, pct_bcr); 459 if (!pct_bcr.v) { 460 pr_err("This core does not have performance counters!\n"); 461 return -ENODEV; 462 } 463 BUG_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS); 464 465 READ_BCR(ARC_REG_CC_BUILD, cc_bcr); 466 BUG_ON(!cc_bcr.v); /* Counters exist but No countable conditions ? */ 467 468 arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL); 469 if (!arc_pmu) 470 return -ENOMEM; 471 472 has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0; 473 474 arc_pmu->n_counters = pct_bcr.c; 475 counter_size = 32 + (pct_bcr.s << 4); 476 477 arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL; 478 479 pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n", 480 arc_pmu->n_counters, counter_size, cc_bcr.c, 481 has_interrupts ? ", [overflow IRQ support]":""); 482 483 cc_name.str[8] = 0; 484 for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++) 485 arc_pmu->ev_hw_idx[i] = -1; 486 487 /* loop thru all available h/w condition indexes */ 488 for (j = 0; j < cc_bcr.c; j++) { 489 write_aux_reg(ARC_REG_CC_INDEX, j); 490 cc_name.indiv.word0 = read_aux_reg(ARC_REG_CC_NAME0); 491 cc_name.indiv.word1 = read_aux_reg(ARC_REG_CC_NAME1); 492 493 /* See if it has been mapped to a perf event_id */ 494 for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) { 495 if (arc_pmu_ev_hw_map[i] && 496 !strcmp(arc_pmu_ev_hw_map[i], cc_name.str) && 497 strlen(arc_pmu_ev_hw_map[i])) { 498 pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n", 499 i, cc_name.str, j); 500 arc_pmu->ev_hw_idx[i] = j; 501 } 502 } 503 } 504 505 arc_pmu->pmu = (struct pmu) { 506 .pmu_enable = arc_pmu_enable, 507 .pmu_disable = arc_pmu_disable, 508 .event_init = arc_pmu_event_init, 509 .add = arc_pmu_add, 510 .del = arc_pmu_del, 511 .start = arc_pmu_start, 512 .stop = arc_pmu_stop, 513 .read = arc_pmu_read, 514 }; 515 516 if (has_interrupts) { 517 int irq = platform_get_irq(pdev, 0); 518 unsigned long flags; 519 520 if (irq < 0) { 521 pr_err("Cannot get IRQ number for the platform\n"); 522 return -ENODEV; 523 } 524 525 arc_pmu->irq = irq; 526 527 /* 528 * arc_cpu_pmu_irq_init() needs to be called on all cores for 529 * their respective local PMU. 530 * However we use opencoded on_each_cpu() to ensure it is called 531 * on core0 first, so that arc_request_percpu_irq() sets up 532 * AUTOEN etc. Otherwise enable_percpu_irq() fails to enable 533 * perf IRQ on non master cores. 534 * see arc_request_percpu_irq() 535 */ 536 preempt_disable(); 537 local_irq_save(flags); 538 arc_cpu_pmu_irq_init(); 539 local_irq_restore(flags); 540 smp_call_function((smp_call_func_t)arc_cpu_pmu_irq_init, 0, 1); 541 preempt_enable(); 542 543 /* Clean all pending interrupt flags */ 544 write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff); 545 } else 546 arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 547 548 return perf_pmu_register(&arc_pmu->pmu, pdev->name, PERF_TYPE_RAW); 549 } 550 551 #ifdef CONFIG_OF 552 static const struct of_device_id arc_pmu_match[] = { 553 { .compatible = "snps,arc700-pct" }, 554 { .compatible = "snps,archs-pct" }, 555 {}, 556 }; 557 MODULE_DEVICE_TABLE(of, arc_pmu_match); 558 #endif 559 560 static struct platform_driver arc_pmu_driver = { 561 .driver = { 562 .name = "arc-pct", 563 .of_match_table = of_match_ptr(arc_pmu_match), 564 }, 565 .probe = arc_pmu_device_probe, 566 }; 567 568 module_platform_driver(arc_pmu_driver); 569 570 MODULE_LICENSE("GPL"); 571 MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>"); 572 MODULE_DESCRIPTION("ARC PMU driver"); 573