xref: /linux/arch/arc/kernel/kprobes.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4  */
5 
6 #include <linux/types.h>
7 #include <linux/kprobes.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/kdebug.h>
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <asm/cacheflush.h>
14 #include <asm/current.h>
15 #include <asm/disasm.h>
16 
17 #define MIN_STACK_SIZE(addr)	min((unsigned long)MAX_STACK_SIZE, \
18 		(unsigned long)current_thread_info() + THREAD_SIZE - (addr))
19 
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22 
23 int __kprobes arch_prepare_kprobe(struct kprobe *p)
24 {
25 	/* Attempt to probe at unaligned address */
26 	if ((unsigned long)p->addr & 0x01)
27 		return -EINVAL;
28 
29 	/* Address should not be in exception handling code */
30 
31 	p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
32 	p->opcode = *p->addr;
33 
34 	return 0;
35 }
36 
37 void __kprobes arch_arm_kprobe(struct kprobe *p)
38 {
39 	*p->addr = UNIMP_S_INSTRUCTION;
40 
41 	flush_icache_range((unsigned long)p->addr,
42 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
43 }
44 
45 void __kprobes arch_disarm_kprobe(struct kprobe *p)
46 {
47 	*p->addr = p->opcode;
48 
49 	flush_icache_range((unsigned long)p->addr,
50 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
51 }
52 
53 void __kprobes arch_remove_kprobe(struct kprobe *p)
54 {
55 	arch_disarm_kprobe(p);
56 
57 	/* Can we remove the kprobe in the middle of kprobe handling? */
58 	if (p->ainsn.t1_addr) {
59 		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
60 
61 		flush_icache_range((unsigned long)p->ainsn.t1_addr,
62 				   (unsigned long)p->ainsn.t1_addr +
63 				   sizeof(kprobe_opcode_t));
64 
65 		p->ainsn.t1_addr = NULL;
66 	}
67 
68 	if (p->ainsn.t2_addr) {
69 		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
70 
71 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
72 				   (unsigned long)p->ainsn.t2_addr +
73 				   sizeof(kprobe_opcode_t));
74 
75 		p->ainsn.t2_addr = NULL;
76 	}
77 }
78 
79 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
80 {
81 	kcb->prev_kprobe.kp = kprobe_running();
82 	kcb->prev_kprobe.status = kcb->kprobe_status;
83 }
84 
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86 {
87 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88 	kcb->kprobe_status = kcb->prev_kprobe.status;
89 }
90 
91 static inline void __kprobes set_current_kprobe(struct kprobe *p)
92 {
93 	__this_cpu_write(current_kprobe, p);
94 }
95 
96 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
97 				       struct pt_regs *regs)
98 {
99 	/* Remove the trap instructions inserted for single step and
100 	 * restore the original instructions
101 	 */
102 	if (p->ainsn.t1_addr) {
103 		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
104 
105 		flush_icache_range((unsigned long)p->ainsn.t1_addr,
106 				   (unsigned long)p->ainsn.t1_addr +
107 				   sizeof(kprobe_opcode_t));
108 
109 		p->ainsn.t1_addr = NULL;
110 	}
111 
112 	if (p->ainsn.t2_addr) {
113 		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
114 
115 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
116 				   (unsigned long)p->ainsn.t2_addr +
117 				   sizeof(kprobe_opcode_t));
118 
119 		p->ainsn.t2_addr = NULL;
120 	}
121 
122 	return;
123 }
124 
125 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
126 {
127 	unsigned long next_pc;
128 	unsigned long tgt_if_br = 0;
129 	int is_branch;
130 	unsigned long bta;
131 
132 	/* Copy the opcode back to the kprobe location and execute the
133 	 * instruction. Because of this we will not be able to get into the
134 	 * same kprobe until this kprobe is done
135 	 */
136 	*(p->addr) = p->opcode;
137 
138 	flush_icache_range((unsigned long)p->addr,
139 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
140 
141 	/* Now we insert the trap at the next location after this instruction to
142 	 * single step. If it is a branch we insert the trap at possible branch
143 	 * targets
144 	 */
145 
146 	bta = regs->bta;
147 
148 	if (regs->status32 & 0x40) {
149 		/* We are in a delay slot with the branch taken */
150 
151 		next_pc = bta & ~0x01;
152 
153 		if (!p->ainsn.is_short) {
154 			if (bta & 0x01)
155 				regs->blink += 2;
156 			else {
157 				/* Branch not taken */
158 				next_pc += 2;
159 
160 				/* next pc is taken from bta after executing the
161 				 * delay slot instruction
162 				 */
163 				regs->bta += 2;
164 			}
165 		}
166 
167 		is_branch = 0;
168 	} else
169 		is_branch =
170 		    disasm_next_pc((unsigned long)p->addr, regs,
171 			(struct callee_regs *) current->thread.callee_reg,
172 			&next_pc, &tgt_if_br);
173 
174 	p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175 	p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176 	*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
177 
178 	flush_icache_range((unsigned long)p->ainsn.t1_addr,
179 			   (unsigned long)p->ainsn.t1_addr +
180 			   sizeof(kprobe_opcode_t));
181 
182 	if (is_branch) {
183 		p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184 		p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185 		*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
186 
187 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
188 				   (unsigned long)p->ainsn.t2_addr +
189 				   sizeof(kprobe_opcode_t));
190 	}
191 }
192 
193 static int
194 __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
195 {
196 	struct kprobe *p;
197 	struct kprobe_ctlblk *kcb;
198 
199 	preempt_disable();
200 
201 	kcb = get_kprobe_ctlblk();
202 	p = get_kprobe((unsigned long *)addr);
203 
204 	if (p) {
205 		/*
206 		 * We have reentered the kprobe_handler, since another kprobe
207 		 * was hit while within the handler, we save the original
208 		 * kprobes and single step on the instruction of the new probe
209 		 * without calling any user handlers to avoid recursive
210 		 * kprobes.
211 		 */
212 		if (kprobe_running()) {
213 			save_previous_kprobe(kcb);
214 			set_current_kprobe(p);
215 			kprobes_inc_nmissed_count(p);
216 			setup_singlestep(p, regs);
217 			kcb->kprobe_status = KPROBE_REENTER;
218 			return 1;
219 		}
220 
221 		set_current_kprobe(p);
222 		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
223 
224 		/* If we have no pre-handler or it returned 0, we continue with
225 		 * normal processing. If we have a pre-handler and it returned
226 		 * non-zero - which means user handler setup registers to exit
227 		 * to another instruction, we must skip the single stepping.
228 		 */
229 		if (!p->pre_handler || !p->pre_handler(p, regs)) {
230 			setup_singlestep(p, regs);
231 			kcb->kprobe_status = KPROBE_HIT_SS;
232 		} else {
233 			reset_current_kprobe();
234 			preempt_enable_no_resched();
235 		}
236 
237 		return 1;
238 	}
239 
240 	/* no_kprobe: */
241 	preempt_enable_no_resched();
242 	return 0;
243 }
244 
245 static int
246 __kprobes arc_post_kprobe_handler(unsigned long addr, struct pt_regs *regs)
247 {
248 	struct kprobe *cur = kprobe_running();
249 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
250 
251 	if (!cur)
252 		return 0;
253 
254 	resume_execution(cur, addr, regs);
255 
256 	/* Rearm the kprobe */
257 	arch_arm_kprobe(cur);
258 
259 	/*
260 	 * When we return from trap instruction we go to the next instruction
261 	 * We restored the actual instruction in resume_exectuiont and we to
262 	 * return to the same address and execute it
263 	 */
264 	regs->ret = addr;
265 
266 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
267 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
268 		cur->post_handler(cur, regs, 0);
269 	}
270 
271 	if (kcb->kprobe_status == KPROBE_REENTER) {
272 		restore_previous_kprobe(kcb);
273 		goto out;
274 	}
275 
276 	reset_current_kprobe();
277 
278 out:
279 	preempt_enable_no_resched();
280 	return 1;
281 }
282 
283 /*
284  * Fault can be for the instruction being single stepped or for the
285  * pre/post handlers in the module.
286  * This is applicable for applications like user probes, where we have the
287  * probe in user space and the handlers in the kernel
288  */
289 
290 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
291 {
292 	struct kprobe *cur = kprobe_running();
293 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
294 
295 	switch (kcb->kprobe_status) {
296 	case KPROBE_HIT_SS:
297 	case KPROBE_REENTER:
298 		/*
299 		 * We are here because the instruction being single stepped
300 		 * caused the fault. We reset the current kprobe and allow the
301 		 * exception handler as if it is regular exception. In our
302 		 * case it doesn't matter because the system will be halted
303 		 */
304 		resume_execution(cur, (unsigned long)cur->addr, regs);
305 
306 		if (kcb->kprobe_status == KPROBE_REENTER)
307 			restore_previous_kprobe(kcb);
308 		else
309 			reset_current_kprobe();
310 
311 		preempt_enable_no_resched();
312 		break;
313 
314 	case KPROBE_HIT_ACTIVE:
315 	case KPROBE_HIT_SSDONE:
316 		/*
317 		 * We are here because the instructions in the pre/post handler
318 		 * caused the fault.
319 		 */
320 
321 		/*
322 		 * In case the user-specified fault handler returned zero,
323 		 * try to fix up.
324 		 */
325 		if (fixup_exception(regs))
326 			return 1;
327 
328 		/*
329 		 * fixup_exception() could not handle it,
330 		 * Let do_page_fault() fix it.
331 		 */
332 		break;
333 
334 	default:
335 		break;
336 	}
337 	return 0;
338 }
339 
340 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
341 				       unsigned long val, void *data)
342 {
343 	struct die_args *args = data;
344 	unsigned long addr = args->err;
345 	int ret = NOTIFY_DONE;
346 
347 	switch (val) {
348 	case DIE_IERR:
349 		if (arc_kprobe_handler(addr, args->regs))
350 			return NOTIFY_STOP;
351 		break;
352 
353 	case DIE_TRAP:
354 		if (arc_post_kprobe_handler(addr, args->regs))
355 			return NOTIFY_STOP;
356 		break;
357 
358 	default:
359 		break;
360 	}
361 
362 	return ret;
363 }
364 
365 static void __used kretprobe_trampoline_holder(void)
366 {
367 	__asm__ __volatile__(".global __kretprobe_trampoline\n"
368 			     "__kretprobe_trampoline:\n"
369 			     "nop\n");
370 }
371 
372 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
373 				      struct pt_regs *regs)
374 {
375 
376 	ri->ret_addr = (kprobe_opcode_t *) regs->blink;
377 	ri->fp = NULL;
378 
379 	/* Replace the return addr with trampoline addr */
380 	regs->blink = (unsigned long)&__kretprobe_trampoline;
381 }
382 
383 static int __kprobes trampoline_probe_handler(struct kprobe *p,
384 					      struct pt_regs *regs)
385 {
386 	regs->ret = __kretprobe_trampoline_handler(regs, NULL);
387 
388 	/* By returning a non zero value, we are telling the kprobe handler
389 	 * that we don't want the post_handler to run
390 	 */
391 	return 1;
392 }
393 
394 static struct kprobe trampoline_p = {
395 	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
396 	.pre_handler = trampoline_probe_handler
397 };
398 
399 int __init arch_init_kprobes(void)
400 {
401 	/* Registering the trampoline code for the kret probe */
402 	return register_kprobe(&trampoline_p);
403 }
404 
405 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
406 {
407 	if (p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline)
408 		return 1;
409 
410 	return 0;
411 }
412 
413 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
414 {
415 	notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
416 }
417