xref: /linux/arch/arc/kernel/kprobes.c (revision 680e6ffa15103ab610c0fc1241d2f98c801b13e2)
1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/types.h>
10 #include <linux/kprobes.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/kdebug.h>
14 #include <linux/sched.h>
15 #include <linux/uaccess.h>
16 #include <asm/cacheflush.h>
17 #include <asm/current.h>
18 #include <asm/disasm.h>
19 
20 #define MIN_STACK_SIZE(addr)	min((unsigned long)MAX_STACK_SIZE, \
21 		(unsigned long)current_thread_info() + THREAD_SIZE - (addr))
22 
23 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
24 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
25 
26 int __kprobes arch_prepare_kprobe(struct kprobe *p)
27 {
28 	/* Attempt to probe at unaligned address */
29 	if ((unsigned long)p->addr & 0x01)
30 		return -EINVAL;
31 
32 	/* Address should not be in exception handling code */
33 
34 	p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
35 	p->opcode = *p->addr;
36 
37 	return 0;
38 }
39 
40 void __kprobes arch_arm_kprobe(struct kprobe *p)
41 {
42 	*p->addr = UNIMP_S_INSTRUCTION;
43 
44 	flush_icache_range((unsigned long)p->addr,
45 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
46 }
47 
48 void __kprobes arch_disarm_kprobe(struct kprobe *p)
49 {
50 	*p->addr = p->opcode;
51 
52 	flush_icache_range((unsigned long)p->addr,
53 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
54 }
55 
56 void __kprobes arch_remove_kprobe(struct kprobe *p)
57 {
58 	arch_disarm_kprobe(p);
59 
60 	/* Can we remove the kprobe in the middle of kprobe handling? */
61 	if (p->ainsn.t1_addr) {
62 		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
63 
64 		flush_icache_range((unsigned long)p->ainsn.t1_addr,
65 				   (unsigned long)p->ainsn.t1_addr +
66 				   sizeof(kprobe_opcode_t));
67 
68 		p->ainsn.t1_addr = NULL;
69 	}
70 
71 	if (p->ainsn.t2_addr) {
72 		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
73 
74 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
75 				   (unsigned long)p->ainsn.t2_addr +
76 				   sizeof(kprobe_opcode_t));
77 
78 		p->ainsn.t2_addr = NULL;
79 	}
80 }
81 
82 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
83 {
84 	kcb->prev_kprobe.kp = kprobe_running();
85 	kcb->prev_kprobe.status = kcb->kprobe_status;
86 }
87 
88 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
89 {
90 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
91 	kcb->kprobe_status = kcb->prev_kprobe.status;
92 }
93 
94 static inline void __kprobes set_current_kprobe(struct kprobe *p)
95 {
96 	__this_cpu_write(current_kprobe, p);
97 }
98 
99 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
100 				       struct pt_regs *regs)
101 {
102 	/* Remove the trap instructions inserted for single step and
103 	 * restore the original instructions
104 	 */
105 	if (p->ainsn.t1_addr) {
106 		*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
107 
108 		flush_icache_range((unsigned long)p->ainsn.t1_addr,
109 				   (unsigned long)p->ainsn.t1_addr +
110 				   sizeof(kprobe_opcode_t));
111 
112 		p->ainsn.t1_addr = NULL;
113 	}
114 
115 	if (p->ainsn.t2_addr) {
116 		*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
117 
118 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
119 				   (unsigned long)p->ainsn.t2_addr +
120 				   sizeof(kprobe_opcode_t));
121 
122 		p->ainsn.t2_addr = NULL;
123 	}
124 
125 	return;
126 }
127 
128 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
129 {
130 	unsigned long next_pc;
131 	unsigned long tgt_if_br = 0;
132 	int is_branch;
133 	unsigned long bta;
134 
135 	/* Copy the opcode back to the kprobe location and execute the
136 	 * instruction. Because of this we will not be able to get into the
137 	 * same kprobe until this kprobe is done
138 	 */
139 	*(p->addr) = p->opcode;
140 
141 	flush_icache_range((unsigned long)p->addr,
142 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
143 
144 	/* Now we insert the trap at the next location after this instruction to
145 	 * single step. If it is a branch we insert the trap at possible branch
146 	 * targets
147 	 */
148 
149 	bta = regs->bta;
150 
151 	if (regs->status32 & 0x40) {
152 		/* We are in a delay slot with the branch taken */
153 
154 		next_pc = bta & ~0x01;
155 
156 		if (!p->ainsn.is_short) {
157 			if (bta & 0x01)
158 				regs->blink += 2;
159 			else {
160 				/* Branch not taken */
161 				next_pc += 2;
162 
163 				/* next pc is taken from bta after executing the
164 				 * delay slot instruction
165 				 */
166 				regs->bta += 2;
167 			}
168 		}
169 
170 		is_branch = 0;
171 	} else
172 		is_branch =
173 		    disasm_next_pc((unsigned long)p->addr, regs,
174 			(struct callee_regs *) current->thread.callee_reg,
175 			&next_pc, &tgt_if_br);
176 
177 	p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
178 	p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
179 	*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
180 
181 	flush_icache_range((unsigned long)p->ainsn.t1_addr,
182 			   (unsigned long)p->ainsn.t1_addr +
183 			   sizeof(kprobe_opcode_t));
184 
185 	if (is_branch) {
186 		p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
187 		p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
188 		*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
189 
190 		flush_icache_range((unsigned long)p->ainsn.t2_addr,
191 				   (unsigned long)p->ainsn.t2_addr +
192 				   sizeof(kprobe_opcode_t));
193 	}
194 }
195 
196 int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
197 {
198 	struct kprobe *p;
199 	struct kprobe_ctlblk *kcb;
200 
201 	preempt_disable();
202 
203 	kcb = get_kprobe_ctlblk();
204 	p = get_kprobe((unsigned long *)addr);
205 
206 	if (p) {
207 		/*
208 		 * We have reentered the kprobe_handler, since another kprobe
209 		 * was hit while within the handler, we save the original
210 		 * kprobes and single step on the instruction of the new probe
211 		 * without calling any user handlers to avoid recursive
212 		 * kprobes.
213 		 */
214 		if (kprobe_running()) {
215 			save_previous_kprobe(kcb);
216 			set_current_kprobe(p);
217 			kprobes_inc_nmissed_count(p);
218 			setup_singlestep(p, regs);
219 			kcb->kprobe_status = KPROBE_REENTER;
220 			return 1;
221 		}
222 
223 		set_current_kprobe(p);
224 		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
225 
226 		/* If we have no pre-handler or it returned 0, we continue with
227 		 * normal processing. If we have a pre-handler and it returned
228 		 * non-zero - which means user handler setup registers to exit
229 		 * to another instruction, we must skip the single stepping.
230 		 */
231 		if (!p->pre_handler || !p->pre_handler(p, regs)) {
232 			setup_singlestep(p, regs);
233 			kcb->kprobe_status = KPROBE_HIT_SS;
234 		} else {
235 			reset_current_kprobe();
236 			preempt_enable_no_resched();
237 		}
238 
239 		return 1;
240 	}
241 
242 	/* no_kprobe: */
243 	preempt_enable_no_resched();
244 	return 0;
245 }
246 
247 static int __kprobes arc_post_kprobe_handler(unsigned long addr,
248 					 struct pt_regs *regs)
249 {
250 	struct kprobe *cur = kprobe_running();
251 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
252 
253 	if (!cur)
254 		return 0;
255 
256 	resume_execution(cur, addr, regs);
257 
258 	/* Rearm the kprobe */
259 	arch_arm_kprobe(cur);
260 
261 	/*
262 	 * When we return from trap instruction we go to the next instruction
263 	 * We restored the actual instruction in resume_exectuiont and we to
264 	 * return to the same address and execute it
265 	 */
266 	regs->ret = addr;
267 
268 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
269 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
270 		cur->post_handler(cur, regs, 0);
271 	}
272 
273 	if (kcb->kprobe_status == KPROBE_REENTER) {
274 		restore_previous_kprobe(kcb);
275 		goto out;
276 	}
277 
278 	reset_current_kprobe();
279 
280 out:
281 	preempt_enable_no_resched();
282 	return 1;
283 }
284 
285 /*
286  * Fault can be for the instruction being single stepped or for the
287  * pre/post handlers in the module.
288  * This is applicable for applications like user probes, where we have the
289  * probe in user space and the handlers in the kernel
290  */
291 
292 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
293 {
294 	struct kprobe *cur = kprobe_running();
295 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
296 
297 	switch (kcb->kprobe_status) {
298 	case KPROBE_HIT_SS:
299 	case KPROBE_REENTER:
300 		/*
301 		 * We are here because the instruction being single stepped
302 		 * caused the fault. We reset the current kprobe and allow the
303 		 * exception handler as if it is regular exception. In our
304 		 * case it doesn't matter because the system will be halted
305 		 */
306 		resume_execution(cur, (unsigned long)cur->addr, regs);
307 
308 		if (kcb->kprobe_status == KPROBE_REENTER)
309 			restore_previous_kprobe(kcb);
310 		else
311 			reset_current_kprobe();
312 
313 		preempt_enable_no_resched();
314 		break;
315 
316 	case KPROBE_HIT_ACTIVE:
317 	case KPROBE_HIT_SSDONE:
318 		/*
319 		 * We are here because the instructions in the pre/post handler
320 		 * caused the fault.
321 		 */
322 
323 		/* We increment the nmissed count for accounting,
324 		 * we can also use npre/npostfault count for accounting
325 		 * these specific fault cases.
326 		 */
327 		kprobes_inc_nmissed_count(cur);
328 
329 		/*
330 		 * We come here because instructions in the pre/post
331 		 * handler caused the page_fault, this could happen
332 		 * if handler tries to access user space by
333 		 * copy_from_user(), get_user() etc. Let the
334 		 * user-specified handler try to fix it first.
335 		 */
336 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
337 			return 1;
338 
339 		/*
340 		 * In case the user-specified fault handler returned zero,
341 		 * try to fix up.
342 		 */
343 		if (fixup_exception(regs))
344 			return 1;
345 
346 		/*
347 		 * fixup_exception() could not handle it,
348 		 * Let do_page_fault() fix it.
349 		 */
350 		break;
351 
352 	default:
353 		break;
354 	}
355 	return 0;
356 }
357 
358 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
359 				       unsigned long val, void *data)
360 {
361 	struct die_args *args = data;
362 	unsigned long addr = args->err;
363 	int ret = NOTIFY_DONE;
364 
365 	switch (val) {
366 	case DIE_IERR:
367 		if (arc_kprobe_handler(addr, args->regs))
368 			return NOTIFY_STOP;
369 		break;
370 
371 	case DIE_TRAP:
372 		if (arc_post_kprobe_handler(addr, args->regs))
373 			return NOTIFY_STOP;
374 		break;
375 
376 	default:
377 		break;
378 	}
379 
380 	return ret;
381 }
382 
383 static void __used kretprobe_trampoline_holder(void)
384 {
385 	__asm__ __volatile__(".global kretprobe_trampoline\n"
386 			     "kretprobe_trampoline:\n" "nop\n");
387 }
388 
389 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
390 				      struct pt_regs *regs)
391 {
392 
393 	ri->ret_addr = (kprobe_opcode_t *) regs->blink;
394 
395 	/* Replace the return addr with trampoline addr */
396 	regs->blink = (unsigned long)&kretprobe_trampoline;
397 }
398 
399 static int __kprobes trampoline_probe_handler(struct kprobe *p,
400 					      struct pt_regs *regs)
401 {
402 	struct kretprobe_instance *ri = NULL;
403 	struct hlist_head *head, empty_rp;
404 	struct hlist_node *tmp;
405 	unsigned long flags, orig_ret_address = 0;
406 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
407 
408 	INIT_HLIST_HEAD(&empty_rp);
409 	kretprobe_hash_lock(current, &head, &flags);
410 
411 	/*
412 	 * It is possible to have multiple instances associated with a given
413 	 * task either because an multiple functions in the call path
414 	 * have a return probe installed on them, and/or more than one return
415 	 * return probe was registered for a target function.
416 	 *
417 	 * We can handle this because:
418 	 *     - instances are always inserted at the head of the list
419 	 *     - when multiple return probes are registered for the same
420 	 *       function, the first instance's ret_addr will point to the
421 	 *       real return address, and all the rest will point to
422 	 *       kretprobe_trampoline
423 	 */
424 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
425 		if (ri->task != current)
426 			/* another task is sharing our hash bucket */
427 			continue;
428 
429 		if (ri->rp && ri->rp->handler)
430 			ri->rp->handler(ri, regs);
431 
432 		orig_ret_address = (unsigned long)ri->ret_addr;
433 		recycle_rp_inst(ri, &empty_rp);
434 
435 		if (orig_ret_address != trampoline_address) {
436 			/*
437 			 * This is the real return address. Any other
438 			 * instances associated with this task are for
439 			 * other calls deeper on the call stack
440 			 */
441 			break;
442 		}
443 	}
444 
445 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
446 	regs->ret = orig_ret_address;
447 
448 	kretprobe_hash_unlock(current, &flags);
449 
450 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
451 		hlist_del(&ri->hlist);
452 		kfree(ri);
453 	}
454 
455 	/* By returning a non zero value, we are telling the kprobe handler
456 	 * that we don't want the post_handler to run
457 	 */
458 	return 1;
459 }
460 
461 static struct kprobe trampoline_p = {
462 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
463 	.pre_handler = trampoline_probe_handler
464 };
465 
466 int __init arch_init_kprobes(void)
467 {
468 	/* Registering the trampoline code for the kret probe */
469 	return register_kprobe(&trampoline_p);
470 }
471 
472 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
473 {
474 	if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
475 		return 1;
476 
477 	return 0;
478 }
479 
480 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
481 {
482 	notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
483 }
484