xref: /linux/arch/alpha/lib/stxncpy.S (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * arch/alpha/lib/stxncpy.S
4 * Contributed by Richard Henderson (rth@tamu.edu)
5 *
6 * Copy no more than COUNT bytes of the null-terminated string from
7 * SRC to DST.
8 *
9 * This is an internal routine used by strncpy, stpncpy, and strncat.
10 * As such, it uses special linkage conventions to make implementation
11 * of these public functions more efficient.
12 *
13 * On input:
14 *	t9 = return address
15 *	a0 = DST
16 *	a1 = SRC
17 *	a2 = COUNT
18 *
19 * Furthermore, COUNT may not be zero.
20 *
21 * On output:
22 *	t0  = last word written
23 *	t10 = bitmask (with one bit set) indicating the byte position of
24 *	      the end of the range specified by COUNT
25 *	t12 = bitmask (with one bit set) indicating the last byte written
26 *	a0  = unaligned address of the last *word* written
27 *	a2  = the number of full words left in COUNT
28 *
29 * Furthermore, v0, a3-a5, t11, and $at are untouched.
30 */
31
32#include <asm/regdef.h>
33
34	.set noat
35	.set noreorder
36
37	.text
38
39/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
40   doesn't like putting the entry point for a procedure somewhere in the
41   middle of the procedure descriptor.  Work around this by putting the
42   aligned copy in its own procedure descriptor */
43
44	.ent stxncpy_aligned
45	.align 3
46stxncpy_aligned:
47	.frame sp, 0, t9, 0
48	.prologue 0
49
50	/* On entry to this basic block:
51	   t0 == the first destination word for masking back in
52	   t1 == the first source word.  */
53
54	/* Create the 1st output word and detect 0's in the 1st input word.  */
55	lda	t2, -1		# e1    : build a mask against false zero
56	mskqh	t2, a1, t2	# e0    :   detection in the src word
57	mskqh	t1, a1, t3	# e0    :
58	ornot	t1, t2, t2	# .. e1 :
59	mskql	t0, a1, t0	# e0    : assemble the first output word
60	cmpbge	zero, t2, t8	# .. e1 : bits set iff null found
61	or	t0, t3, t0	# e0    :
62	beq	a2, $a_eoc	# .. e1 :
63	bne	t8, $a_eos	# .. e1 :
64
65	/* On entry to this basic block:
66	   t0 == a source word not containing a null.  */
67
68$a_loop:
69	stq_u	t0, 0(a0)	# e0    :
70	addq	a0, 8, a0	# .. e1 :
71	ldq_u	t0, 0(a1)	# e0    :
72	addq	a1, 8, a1	# .. e1 :
73	subq	a2, 1, a2	# e0    :
74	cmpbge	zero, t0, t8	# .. e1 (stall)
75	beq	a2, $a_eoc      # e1    :
76	beq	t8, $a_loop	# e1    :
77
78	/* Take care of the final (partial) word store.  At this point
79	   the end-of-count bit is set in t8 iff it applies.
80
81	   On entry to this basic block we have:
82	   t0 == the source word containing the null
83	   t8 == the cmpbge mask that found it.  */
84
85$a_eos:
86	negq	t8, t12		# e0    : find low bit set
87	and	t8, t12, t12	# e1 (stall)
88
89	/* For the sake of the cache, don't read a destination word
90	   if we're not going to need it.  */
91	and	t12, 0x80, t6	# e0    :
92	bne	t6, 1f		# .. e1 (zdb)
93
94	/* We're doing a partial word store and so need to combine
95	   our source and original destination words.  */
96	ldq_u	t1, 0(a0)	# e0    :
97	subq	t12, 1, t6	# .. e1 :
98	or	t12, t6, t8	# e0    :
99	unop			#
100	zapnot	t0, t8, t0	# e0    : clear src bytes > null
101	zap	t1, t8, t1	# .. e1 : clear dst bytes <= null
102	or	t0, t1, t0	# e1    :
103
1041:	stq_u	t0, 0(a0)	# e0    :
105	ret	(t9)		# e1    :
106
107	/* Add the end-of-count bit to the eos detection bitmask.  */
108$a_eoc:
109	or	t10, t8, t8
110	br	$a_eos
111
112	.end stxncpy_aligned
113
114	.align 3
115	.ent __stxncpy
116	.globl __stxncpy
117__stxncpy:
118	.frame sp, 0, t9, 0
119	.prologue 0
120
121	/* Are source and destination co-aligned?  */
122	xor	a0, a1, t1	# e0    :
123	and	a0, 7, t0	# .. e1 : find dest misalignment
124	and	t1, 7, t1	# e0    :
125	addq	a2, t0, a2	# .. e1 : bias count by dest misalignment
126	subq	a2, 1, a2	# e0    :
127	and	a2, 7, t2	# e1    :
128	srl	a2, 3, a2	# e0    : a2 = loop counter = (count - 1)/8
129	addq	zero, 1, t10	# .. e1 :
130	sll	t10, t2, t10	# e0    : t10 = bitmask of last count byte
131	bne	t1, $unaligned	# .. e1 :
132
133	/* We are co-aligned; take care of a partial first word.  */
134
135	ldq_u	t1, 0(a1)	# e0    : load first src word
136	addq	a1, 8, a1	# .. e1 :
137
138	beq	t0, stxncpy_aligned     # avoid loading dest word if not needed
139	ldq_u	t0, 0(a0)	# e0    :
140	br	stxncpy_aligned	# .. e1 :
141
142
143/* The source and destination are not co-aligned.  Align the destination
144   and cope.  We have to be very careful about not reading too much and
145   causing a SEGV.  */
146
147	.align 3
148$u_head:
149	/* We know just enough now to be able to assemble the first
150	   full source word.  We can still find a zero at the end of it
151	   that prevents us from outputting the whole thing.
152
153	   On entry to this basic block:
154	   t0 == the first dest word, unmasked
155	   t1 == the shifted low bits of the first source word
156	   t6 == bytemask that is -1 in dest word bytes */
157
158	ldq_u	t2, 8(a1)	# e0    : load second src word
159	addq	a1, 8, a1	# .. e1 :
160	mskql	t0, a0, t0	# e0    : mask trailing garbage in dst
161	extqh	t2, a1, t4	# e0    :
162	or	t1, t4, t1	# e1    : first aligned src word complete
163	mskqh	t1, a0, t1	# e0    : mask leading garbage in src
164	or	t0, t1, t0	# e0    : first output word complete
165	or	t0, t6, t6	# e1    : mask original data for zero test
166	cmpbge	zero, t6, t8	# e0    :
167	beq	a2, $u_eocfin	# .. e1 :
168	lda	t6, -1		# e0    :
169	bne	t8, $u_final	# .. e1 :
170
171	mskql	t6, a1, t6	# e0    : mask out bits already seen
172	nop			# .. e1 :
173	stq_u	t0, 0(a0)	# e0    : store first output word
174	or      t6, t2, t2	# .. e1 :
175	cmpbge	zero, t2, t8	# e0    : find nulls in second partial
176	addq	a0, 8, a0	# .. e1 :
177	subq	a2, 1, a2	# e0    :
178	bne	t8, $u_late_head_exit	# .. e1 :
179
180	/* Finally, we've got all the stupid leading edge cases taken care
181	   of and we can set up to enter the main loop.  */
182
183	extql	t2, a1, t1	# e0    : position hi-bits of lo word
184	beq	a2, $u_eoc	# .. e1 :
185	ldq_u	t2, 8(a1)	# e0    : read next high-order source word
186	addq	a1, 8, a1	# .. e1 :
187	extqh	t2, a1, t0	# e0    : position lo-bits of hi word (stall)
188	cmpbge	zero, t2, t8	# .. e1 :
189	nop			# e0    :
190	bne	t8, $u_eos	# .. e1 :
191
192	/* Unaligned copy main loop.  In order to avoid reading too much,
193	   the loop is structured to detect zeros in aligned source words.
194	   This has, unfortunately, effectively pulled half of a loop
195	   iteration out into the head and half into the tail, but it does
196	   prevent nastiness from accumulating in the very thing we want
197	   to run as fast as possible.
198
199	   On entry to this basic block:
200	   t0 == the shifted low-order bits from the current source word
201	   t1 == the shifted high-order bits from the previous source word
202	   t2 == the unshifted current source word
203
204	   We further know that t2 does not contain a null terminator.  */
205
206	.align 3
207$u_loop:
208	or	t0, t1, t0	# e0    : current dst word now complete
209	subq	a2, 1, a2	# .. e1 : decrement word count
210	stq_u	t0, 0(a0)	# e0    : save the current word
211	addq	a0, 8, a0	# .. e1 :
212	extql	t2, a1, t1	# e0    : extract high bits for next time
213	beq	a2, $u_eoc	# .. e1 :
214	ldq_u	t2, 8(a1)	# e0    : load high word for next time
215	addq	a1, 8, a1	# .. e1 :
216	nop			# e0    :
217	cmpbge	zero, t2, t8	# e1    : test new word for eos (stall)
218	extqh	t2, a1, t0	# e0    : extract low bits for current word
219	beq	t8, $u_loop	# .. e1 :
220
221	/* We've found a zero somewhere in the source word we just read.
222	   If it resides in the lower half, we have one (probably partial)
223	   word to write out, and if it resides in the upper half, we
224	   have one full and one partial word left to write out.
225
226	   On entry to this basic block:
227	   t0 == the shifted low-order bits from the current source word
228	   t1 == the shifted high-order bits from the previous source word
229	   t2 == the unshifted current source word.  */
230$u_eos:
231	or	t0, t1, t0	# e0    : first (partial) source word complete
232	nop			# .. e1 :
233	cmpbge	zero, t0, t8	# e0    : is the null in this first bit?
234	bne	t8, $u_final	# .. e1 (zdb)
235
236	stq_u	t0, 0(a0)	# e0    : the null was in the high-order bits
237	addq	a0, 8, a0	# .. e1 :
238	subq	a2, 1, a2	# e1    :
239
240$u_late_head_exit:
241	extql	t2, a1, t0	# .. e0 :
242	cmpbge	zero, t0, t8	# e0    :
243	or	t8, t10, t6	# e1    :
244	cmoveq	a2, t6, t8	# e0    :
245	nop			# .. e1 :
246
247	/* Take care of a final (probably partial) result word.
248	   On entry to this basic block:
249	   t0 == assembled source word
250	   t8 == cmpbge mask that found the null.  */
251$u_final:
252	negq	t8, t6		# e0    : isolate low bit set
253	and	t6, t8, t12	# e1    :
254
255	and	t12, 0x80, t6	# e0    : avoid dest word load if we can
256	bne	t6, 1f		# .. e1 (zdb)
257
258	ldq_u	t1, 0(a0)	# e0    :
259	subq	t12, 1, t6	# .. e1 :
260	or	t6, t12, t8	# e0    :
261	zapnot	t0, t8, t0	# .. e1 : kill source bytes > null
262	zap	t1, t8, t1	# e0    : kill dest bytes <= null
263	or	t0, t1, t0	# e1    :
264
2651:	stq_u	t0, 0(a0)	# e0    :
266	ret	(t9)		# .. e1 :
267
268	/* Got to end-of-count before end of string.
269	   On entry to this basic block:
270	   t1 == the shifted high-order bits from the previous source word  */
271$u_eoc:
272	and	a1, 7, t6	# e1    :
273	sll	t10, t6, t6	# e0    :
274	and	t6, 0xff, t6	# e0    :
275	bne	t6, 1f		# .. e1 :
276
277	ldq_u	t2, 8(a1)	# e0    : load final src word
278	nop			# .. e1 :
279	extqh	t2, a1, t0	# e0    : extract low bits for last word
280	or	t1, t0, t1	# e1    :
281
2821:	cmpbge	zero, t1, t8
283	mov	t1, t0
284
285$u_eocfin:			# end-of-count, final word
286	or	t10, t8, t8
287	br	$u_final
288
289	/* Unaligned copy entry point.  */
290	.align 3
291$unaligned:
292
293	ldq_u	t1, 0(a1)	# e0    : load first source word
294
295	and	a0, 7, t4	# .. e1 : find dest misalignment
296	and	a1, 7, t5	# e0    : find src misalignment
297
298	/* Conditionally load the first destination word and a bytemask
299	   with 0xff indicating that the destination byte is sacrosanct.  */
300
301	mov	zero, t0	# .. e1 :
302	mov	zero, t6	# e0    :
303	beq	t4, 1f		# .. e1 :
304	ldq_u	t0, 0(a0)	# e0    :
305	lda	t6, -1		# .. e1 :
306	mskql	t6, a0, t6	# e0    :
307	subq	a1, t4, a1	# .. e1 : sub dest misalignment from src addr
308
309	/* If source misalignment is larger than dest misalignment, we need
310	   extra startup checks to avoid SEGV.  */
311
3121:	cmplt	t4, t5, t12	# e1    :
313	extql	t1, a1, t1	# .. e0 : shift src into place
314	lda	t2, -1		# e0    : for creating masks later
315	beq	t12, $u_head	# .. e1 :
316
317	extql	t2, a1, t2	# e0    :
318	cmpbge	zero, t1, t8	# .. e1 : is there a zero?
319	andnot	t2, t6, t2	# e0    : dest mask for a single word copy
320	or	t8, t10, t5	# .. e1 : test for end-of-count too
321	cmpbge	zero, t2, t3	# e0    :
322	cmoveq	a2, t5, t8	# .. e1 :
323	andnot	t8, t3, t8	# e0    :
324	beq	t8, $u_head	# .. e1 (zdb)
325
326	/* At this point we've found a zero in the first partial word of
327	   the source.  We need to isolate the valid source data and mask
328	   it into the original destination data.  (Incidentally, we know
329	   that we'll need at least one byte of that original dest word.) */
330
331	ldq_u	t0, 0(a0)	# e0    :
332	negq	t8, t6		# .. e1 : build bitmask of bytes <= zero
333	mskqh	t1, t4, t1	# e0    :
334	and	t6, t8, t12	# .. e1 :
335	subq	t12, 1, t6	# e0    :
336	or	t6, t12, t8	# e1    :
337
338	zapnot	t2, t8, t2	# e0    : prepare source word; mirror changes
339	zapnot	t1, t8, t1	# .. e1 : to source validity mask
340
341	andnot	t0, t2, t0	# e0    : zero place for source to reside
342	or	t0, t1, t0	# e1    : and put it there
343	stq_u	t0, 0(a0)	# e0    :
344	ret	(t9)		# .. e1 :
345
346	.end __stxncpy
347