1/* 2 * arch/alpha/lib/ev6-csum_ipv6_magic.S 3 * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com> 4 * 5 * unsigned short csum_ipv6_magic(struct in6_addr *saddr, 6 * struct in6_addr *daddr, 7 * __u32 len, 8 * unsigned short proto, 9 * unsigned int csum); 10 * 11 * Much of the information about 21264 scheduling/coding comes from: 12 * Compiler Writer's Guide for the Alpha 21264 13 * abbreviated as 'CWG' in other comments here 14 * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html 15 * Scheduling notation: 16 * E - either cluster 17 * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1 18 * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1 19 * Try not to change the actual algorithm if possible for consistency. 20 * Determining actual stalls (other than slotting) doesn't appear to be easy to do. 21 * 22 * unsigned short csum_ipv6_magic(struct in6_addr *saddr, 23 * struct in6_addr *daddr, 24 * __u32 len, 25 * unsigned short proto, 26 * unsigned int csum); 27 * 28 * Swap <proto> (takes form 0xaabb) 29 * Then shift it left by 48, so result is: 30 * 0xbbaa0000 00000000 31 * Then turn it back into a sign extended 32-bit item 32 * 0xbbaa0000 33 * 34 * Swap <len> (an unsigned int) using Mike Burrows' 7-instruction sequence 35 * (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence) 36 * Assume input takes form 0xAABBCCDD 37 * 38 * Finally, original 'folding' approach is to split the long into 4 unsigned shorts 39 * add 4 ushorts, resulting in ushort/carry 40 * add carry bits + ushort --> ushort 41 * add carry bits + ushort --> ushort (in case the carry results in an overflow) 42 * Truncate to a ushort. (took 13 instructions) 43 * From doing some testing, using the approach in checksum.c:from64to16() 44 * results in the same outcome: 45 * split into 2 uints, add those, generating a ulong 46 * add the 3 low ushorts together, generating a uint 47 * a final add of the 2 lower ushorts 48 * truncating the result. 49 * 50 * Misalignment handling added by Ivan Kokshaysky <ink@jurassic.park.msu.ru> 51 * The cost is 16 instructions (~8 cycles), including two extra loads which 52 * may cause additional delay in rare cases (load-load replay traps). 53 */ 54 55#include <asm/export.h> 56 .globl csum_ipv6_magic 57 .align 4 58 .ent csum_ipv6_magic 59 .frame $30,0,$26,0 60csum_ipv6_magic: 61 .prologue 0 62 63 ldq_u $0,0($16) # L : Latency: 3 64 inslh $18,7,$4 # U : 0000000000AABBCC 65 ldq_u $1,8($16) # L : Latency: 3 66 sll $19,8,$7 # U : U L U L : 0x00000000 00aabb00 67 68 and $16,7,$6 # E : src misalignment 69 ldq_u $5,15($16) # L : Latency: 3 70 zapnot $20,15,$20 # U : zero extend incoming csum 71 ldq_u $2,0($17) # L : U L U L : Latency: 3 72 73 extql $0,$6,$0 # U : 74 extqh $1,$6,$22 # U : 75 ldq_u $3,8($17) # L : Latency: 3 76 sll $19,24,$19 # U : U U L U : 0x000000aa bb000000 77 78 cmoveq $6,$31,$22 # E : src aligned? 79 ldq_u $23,15($17) # L : Latency: 3 80 inswl $18,3,$18 # U : 000000CCDD000000 81 addl $19,$7,$19 # E : U L U L : <sign bits>bbaabb00 82 83 or $0,$22,$0 # E : 1st src word complete 84 extql $1,$6,$1 # U : 85 or $18,$4,$18 # E : 000000CCDDAABBCC 86 extqh $5,$6,$5 # U : L U L U 87 88 and $17,7,$6 # E : dst misalignment 89 extql $2,$6,$2 # U : 90 or $1,$5,$1 # E : 2nd src word complete 91 extqh $3,$6,$22 # U : L U L U : 92 93 cmoveq $6,$31,$22 # E : dst aligned? 94 extql $3,$6,$3 # U : 95 addq $20,$0,$20 # E : begin summing the words 96 extqh $23,$6,$23 # U : L U L U : 97 98 srl $18,16,$4 # U : 0000000000CCDDAA 99 or $2,$22,$2 # E : 1st dst word complete 100 zap $19,0x3,$19 # U : <sign bits>bbaa0000 101 or $3,$23,$3 # E : U L U L : 2nd dst word complete 102 103 cmpult $20,$0,$0 # E : 104 addq $20,$1,$20 # E : 105 zapnot $18,0xa,$18 # U : 00000000DD00BB00 106 zap $4,0xa,$4 # U : U U L L : 0000000000CC00AA 107 108 or $18,$4,$18 # E : 00000000DDCCBBAA 109 nop # E : 110 cmpult $20,$1,$1 # E : 111 addq $20,$2,$20 # E : U L U L 112 113 cmpult $20,$2,$2 # E : 114 addq $20,$3,$20 # E : 115 cmpult $20,$3,$3 # E : (1 cycle stall on $20) 116 addq $20,$18,$20 # E : U L U L (1 cycle stall on $20) 117 118 cmpult $20,$18,$18 # E : 119 addq $20,$19,$20 # E : (1 cycle stall on $20) 120 addq $0,$1,$0 # E : merge the carries back into the csum 121 addq $2,$3,$2 # E : 122 123 cmpult $20,$19,$19 # E : 124 addq $18,$19,$18 # E : (1 cycle stall on $19) 125 addq $0,$2,$0 # E : 126 addq $20,$18,$20 # E : U L U L : 127 /* (1 cycle stall on $18, 2 cycles on $20) */ 128 129 addq $0,$20,$0 # E : 130 zapnot $0,15,$1 # U : Start folding output (1 cycle stall on $0) 131 nop # E : 132 srl $0,32,$0 # U : U L U L : (1 cycle stall on $0) 133 134 addq $1,$0,$1 # E : Finished generating ulong 135 extwl $1,2,$2 # U : ushort[1] (1 cycle stall on $1) 136 zapnot $1,3,$0 # U : ushort[0] (1 cycle stall on $1) 137 extwl $1,4,$1 # U : ushort[2] (1 cycle stall on $1) 138 139 addq $0,$2,$0 # E 140 addq $0,$1,$3 # E : Finished generating uint 141 /* (1 cycle stall on $0) */ 142 extwl $3,2,$1 # U : ushort[1] (1 cycle stall on $3) 143 nop # E : L U L U 144 145 addq $1,$3,$0 # E : Final carry 146 not $0,$4 # E : complement (1 cycle stall on $0) 147 zapnot $4,3,$0 # U : clear upper garbage bits 148 /* (1 cycle stall on $4) */ 149 ret # L0 : L U L U 150 151 .end csum_ipv6_magic 152 EXPORT_SYMBOL(csum_ipv6_magic) 153