xref: /linux/arch/alpha/kernel/traps.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/alpha/kernel/traps.c
4  *
5  * (C) Copyright 1994 Linus Torvalds
6  */
7 
8 /*
9  * This file initializes the trap entry points
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/jiffies.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/debug.h>
17 #include <linux/tty.h>
18 #include <linux/delay.h>
19 #include <linux/extable.h>
20 #include <linux/kallsyms.h>
21 #include <linux/ratelimit.h>
22 
23 #include <asm/gentrap.h>
24 #include <linux/uaccess.h>
25 #include <linux/unaligned.h>
26 #include <asm/sysinfo.h>
27 #include <asm/hwrpb.h>
28 #include <asm/mmu_context.h>
29 #include <asm/special_insns.h>
30 
31 #include "proto.h"
32 
33 void
34 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
35 {
36 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
37 	       regs->pc, regs->r26, regs->ps, print_tainted());
38 	printk("pc is at %pSR\n", (void *)regs->pc);
39 	printk("ra is at %pSR\n", (void *)regs->r26);
40 	printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
41 	       regs->r0, regs->r1, regs->r2);
42 	printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
43  	       regs->r3, regs->r4, regs->r5);
44 	printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
45 	       regs->r6, regs->r7, regs->r8);
46 
47 	if (r9_15) {
48 		printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
49 		       r9_15[9], r9_15[10], r9_15[11]);
50 		printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
51 		       r9_15[12], r9_15[13], r9_15[14]);
52 		printk("s6 = %016lx\n", r9_15[15]);
53 	}
54 
55 	printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
56 	       regs->r16, regs->r17, regs->r18);
57 	printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
58  	       regs->r19, regs->r20, regs->r21);
59  	printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
60 	       regs->r22, regs->r23, regs->r24);
61 	printk("t11= %016lx  pv = %016lx  at = %016lx\n",
62 	       regs->r25, regs->r27, regs->r28);
63 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
64 #if 0
65 __halt();
66 #endif
67 }
68 
69 #if 0
70 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
71 			   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
72 			   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
73 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
74 #endif
75 
76 static void
77 dik_show_code(unsigned int *pc)
78 {
79 	long i;
80 
81 	printk("Code:");
82 	for (i = -6; i < 2; i++) {
83 		unsigned int insn;
84 		if (__get_user(insn, (unsigned int __user *)pc + i))
85 			break;
86 		printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
87 	}
88 	printk("\n");
89 }
90 
91 static void
92 dik_show_trace(unsigned long *sp, const char *loglvl)
93 {
94 	long i = 0;
95 	printk("%sTrace:\n", loglvl);
96 	while (0x1ff8 & (unsigned long) sp) {
97 		extern char _stext[], _etext[];
98 		unsigned long tmp = *sp;
99 		sp++;
100 		if (!is_kernel_text(tmp))
101 			continue;
102 		printk("%s[<%lx>] %pSR\n", loglvl, tmp, (void *)tmp);
103 		if (i > 40) {
104 			printk("%s ...", loglvl);
105 			break;
106 		}
107 	}
108 	printk("%s\n", loglvl);
109 }
110 
111 static int kstack_depth_to_print = 24;
112 
113 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
114 {
115 	unsigned long *stack;
116 	int i;
117 
118 	/*
119 	 * debugging aid: "show_stack(NULL, NULL, KERN_EMERG);" prints the
120 	 * back trace for this cpu.
121 	 */
122 	if(sp==NULL)
123 		sp=(unsigned long*)&sp;
124 
125 	stack = sp;
126 	for(i=0; i < kstack_depth_to_print; i++) {
127 		if (((long) stack & (THREAD_SIZE-1)) == 0)
128 			break;
129 		if ((i % 4) == 0) {
130 			if (i)
131 				pr_cont("\n");
132 			printk("%s       ", loglvl);
133 		} else {
134 			pr_cont(" ");
135 		}
136 		pr_cont("%016lx", *stack++);
137 	}
138 	pr_cont("\n");
139 	dik_show_trace(sp, loglvl);
140 }
141 
142 void
143 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
144 {
145 	if (regs->ps & 8)
146 		return;
147 #ifdef CONFIG_SMP
148 	printk("CPU %d ", hard_smp_processor_id());
149 #endif
150 	printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
151 	dik_show_regs(regs, r9_15);
152 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
153 	dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
154 	dik_show_code((unsigned int *)regs->pc);
155 
156 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
157 		printk("die_if_kernel recursion detected.\n");
158 		local_irq_enable();
159 		while (1);
160 	}
161 	make_task_dead(SIGSEGV);
162 }
163 
164 #ifndef CONFIG_MATHEMU
165 static long dummy_emul(void) { return 0; }
166 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
167   = (void *)dummy_emul;
168 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
169 long (*alpha_fp_emul) (unsigned long pc)
170   = (void *)dummy_emul;
171 EXPORT_SYMBOL_GPL(alpha_fp_emul);
172 #else
173 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
174 long alpha_fp_emul (unsigned long pc);
175 #endif
176 
177 asmlinkage void
178 do_entArith(unsigned long summary, unsigned long write_mask,
179 	    struct pt_regs *regs)
180 {
181 	long si_code = FPE_FLTINV;
182 
183 	if (summary & 1) {
184 		/* Software-completion summary bit is set, so try to
185 		   emulate the instruction.  If the processor supports
186 		   precise exceptions, we don't have to search.  */
187 		if (!amask(AMASK_PRECISE_TRAP))
188 			si_code = alpha_fp_emul(regs->pc - 4);
189 		else
190 			si_code = alpha_fp_emul_imprecise(regs, write_mask);
191 		if (si_code == 0)
192 			return;
193 	}
194 	die_if_kernel("Arithmetic fault", regs, 0, NULL);
195 
196 	send_sig_fault_trapno(SIGFPE, si_code, (void __user *) regs->pc, 0, current);
197 }
198 
199 asmlinkage void
200 do_entIF(unsigned long type, struct pt_regs *regs)
201 {
202 	int signo, code;
203 
204 	if (type == 3) { /* FEN fault */
205 		/* Irritating users can call PAL_clrfen to disable the
206 		   FPU for the process.  The kernel will then trap in
207 		   do_switch_stack and undo_switch_stack when we try
208 		   to save and restore the FP registers.
209 
210 		   Given that GCC by default generates code that uses the
211 		   FP registers, PAL_clrfen is not useful except for DoS
212 		   attacks.  So turn the bleeding FPU back on and be done
213 		   with it.  */
214 		current_thread_info()->pcb.flags |= 1;
215 		__reload_thread(&current_thread_info()->pcb);
216 		return;
217 	}
218 	if (!user_mode(regs)) {
219 		if (type == 1) {
220 			const unsigned int *data
221 			  = (const unsigned int *) regs->pc;
222 			printk("Kernel bug at %s:%d\n",
223 			       (const char *)(data[1] | (long)data[2] << 32),
224 			       data[0]);
225 		}
226 #ifdef CONFIG_ALPHA_WTINT
227 		if (type == 4) {
228 			/* If CALL_PAL WTINT is totally unsupported by the
229 			   PALcode, e.g. MILO, "emulate" it by overwriting
230 			   the insn.  */
231 			unsigned int *pinsn
232 			  = (unsigned int *) regs->pc - 1;
233 			if (*pinsn == PAL_wtint) {
234 				*pinsn = 0x47e01400; /* mov 0,$0 */
235 				imb();
236 				regs->r0 = 0;
237 				return;
238 			}
239 		}
240 #endif /* ALPHA_WTINT */
241 		die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
242 			      regs, type, NULL);
243 	}
244 
245 	switch (type) {
246 	      case 0: /* breakpoint */
247 		if (ptrace_cancel_bpt(current)) {
248 			regs->pc -= 4;	/* make pc point to former bpt */
249 		}
250 
251 		send_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->pc,
252 			       current);
253 		return;
254 
255 	      case 1: /* bugcheck */
256 		send_sig_fault_trapno(SIGTRAP, TRAP_UNK,
257 				      (void __user *) regs->pc, 0, current);
258 		return;
259 
260 	      case 2: /* gentrap */
261 		switch ((long) regs->r16) {
262 		case GEN_INTOVF:
263 			signo = SIGFPE;
264 			code = FPE_INTOVF;
265 			break;
266 		case GEN_INTDIV:
267 			signo = SIGFPE;
268 			code = FPE_INTDIV;
269 			break;
270 		case GEN_FLTOVF:
271 			signo = SIGFPE;
272 			code = FPE_FLTOVF;
273 			break;
274 		case GEN_FLTDIV:
275 			signo = SIGFPE;
276 			code = FPE_FLTDIV;
277 			break;
278 		case GEN_FLTUND:
279 			signo = SIGFPE;
280 			code = FPE_FLTUND;
281 			break;
282 		case GEN_FLTINV:
283 			signo = SIGFPE;
284 			code = FPE_FLTINV;
285 			break;
286 		case GEN_FLTINE:
287 			signo = SIGFPE;
288 			code = FPE_FLTRES;
289 			break;
290 		case GEN_ROPRAND:
291 			signo = SIGFPE;
292 			code = FPE_FLTUNK;
293 			break;
294 
295 		case GEN_DECOVF:
296 		case GEN_DECDIV:
297 		case GEN_DECINV:
298 		case GEN_ASSERTERR:
299 		case GEN_NULPTRERR:
300 		case GEN_STKOVF:
301 		case GEN_STRLENERR:
302 		case GEN_SUBSTRERR:
303 		case GEN_RANGERR:
304 		case GEN_SUBRNG:
305 		case GEN_SUBRNG1:
306 		case GEN_SUBRNG2:
307 		case GEN_SUBRNG3:
308 		case GEN_SUBRNG4:
309 		case GEN_SUBRNG5:
310 		case GEN_SUBRNG6:
311 		case GEN_SUBRNG7:
312 		default:
313 			signo = SIGTRAP;
314 			code = TRAP_UNK;
315 			break;
316 		}
317 
318 		send_sig_fault_trapno(signo, code, (void __user *) regs->pc,
319 				      regs->r16, current);
320 		return;
321 
322 	      case 4: /* opDEC */
323 		break;
324 
325 	      case 5: /* illoc */
326 	      default: /* unexpected instruction-fault type */
327 		      ;
328 	}
329 
330 	send_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, current);
331 }
332 
333 /* There is an ifdef in the PALcode in MILO that enables a
334    "kernel debugging entry point" as an unprivileged call_pal.
335 
336    We don't want to have anything to do with it, but unfortunately
337    several versions of MILO included in distributions have it enabled,
338    and if we don't put something on the entry point we'll oops.  */
339 
340 asmlinkage void
341 do_entDbg(struct pt_regs *regs)
342 {
343 	die_if_kernel("Instruction fault", regs, 0, NULL);
344 
345 	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc);
346 }
347 
348 
349 /*
350  * entUna has a different register layout to be reasonably simple. It
351  * needs access to all the integer registers (the kernel doesn't use
352  * fp-regs), and it needs to have them in order for simpler access.
353  *
354  * Due to the non-standard register layout (and because we don't want
355  * to handle floating-point regs), user-mode unaligned accesses are
356  * handled separately by do_entUnaUser below.
357  *
358  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
359  * on a gp-register unaligned load/store, something is _very_ wrong
360  * in the kernel anyway..
361  */
362 struct allregs {
363 	unsigned long regs[32];
364 	unsigned long ps, pc, gp, a0, a1, a2;
365 };
366 
367 struct unaligned_stat {
368 	unsigned long count, va, pc;
369 } unaligned[2];
370 
371 
372 /* Macro for exception fixup code to access integer registers.  */
373 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
374 
375 
376 asmlinkage void
377 do_entUna(void * va, unsigned long opcode, unsigned long reg,
378 	  struct allregs *regs)
379 {
380 	long error, tmp1, tmp2, tmp3, tmp4;
381 	unsigned long pc = regs->pc - 4;
382 	unsigned long *_regs = regs->regs;
383 	const struct exception_table_entry *fixup;
384 
385 	unaligned[0].count++;
386 	unaligned[0].va = (unsigned long) va;
387 	unaligned[0].pc = pc;
388 
389 	/* We don't want to use the generic get/put unaligned macros as
390 	   we want to trap exceptions.  Only if we actually get an
391 	   exception will we decide whether we should have caught it.  */
392 
393 	switch (opcode) {
394 	case 0x0c: /* ldwu */
395 		__asm__ __volatile__(
396 		"1:	ldq_u %1,0(%3)\n"
397 		"2:	ldq_u %2,1(%3)\n"
398 		"	extwl %1,%3,%1\n"
399 		"	extwh %2,%3,%2\n"
400 		"3:\n"
401 		EXC(1b,3b,%1,%0)
402 		EXC(2b,3b,%2,%0)
403 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
404 			: "r"(va), "0"(0));
405 		if (error)
406 			goto got_exception;
407 		una_reg(reg) = tmp1|tmp2;
408 		return;
409 
410 	case 0x28: /* ldl */
411 		__asm__ __volatile__(
412 		"1:	ldq_u %1,0(%3)\n"
413 		"2:	ldq_u %2,3(%3)\n"
414 		"	extll %1,%3,%1\n"
415 		"	extlh %2,%3,%2\n"
416 		"3:\n"
417 		EXC(1b,3b,%1,%0)
418 		EXC(2b,3b,%2,%0)
419 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
420 			: "r"(va), "0"(0));
421 		if (error)
422 			goto got_exception;
423 		una_reg(reg) = (int)(tmp1|tmp2);
424 		return;
425 
426 	case 0x29: /* ldq */
427 		__asm__ __volatile__(
428 		"1:	ldq_u %1,0(%3)\n"
429 		"2:	ldq_u %2,7(%3)\n"
430 		"	extql %1,%3,%1\n"
431 		"	extqh %2,%3,%2\n"
432 		"3:\n"
433 		EXC(1b,3b,%1,%0)
434 		EXC(2b,3b,%2,%0)
435 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
436 			: "r"(va), "0"(0));
437 		if (error)
438 			goto got_exception;
439 		una_reg(reg) = tmp1|tmp2;
440 		return;
441 
442 	/* Note that the store sequences do not indicate that they change
443 	   memory because it _should_ be affecting nothing in this context.
444 	   (Otherwise we have other, much larger, problems.)  */
445 	case 0x0d: /* stw */
446 		__asm__ __volatile__(
447 		"1:	ldq_u %2,1(%5)\n"
448 		"2:	ldq_u %1,0(%5)\n"
449 		"	inswh %6,%5,%4\n"
450 		"	inswl %6,%5,%3\n"
451 		"	mskwh %2,%5,%2\n"
452 		"	mskwl %1,%5,%1\n"
453 		"	or %2,%4,%2\n"
454 		"	or %1,%3,%1\n"
455 		"3:	stq_u %2,1(%5)\n"
456 		"4:	stq_u %1,0(%5)\n"
457 		"5:\n"
458 		EXC(1b,5b,%2,%0)
459 		EXC(2b,5b,%1,%0)
460 		EXC(3b,5b,$31,%0)
461 		EXC(4b,5b,$31,%0)
462 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
463 			  "=&r"(tmp3), "=&r"(tmp4)
464 			: "r"(va), "r"(una_reg(reg)), "0"(0));
465 		if (error)
466 			goto got_exception;
467 		return;
468 
469 	case 0x2c: /* stl */
470 		__asm__ __volatile__(
471 		"1:	ldq_u %2,3(%5)\n"
472 		"2:	ldq_u %1,0(%5)\n"
473 		"	inslh %6,%5,%4\n"
474 		"	insll %6,%5,%3\n"
475 		"	msklh %2,%5,%2\n"
476 		"	mskll %1,%5,%1\n"
477 		"	or %2,%4,%2\n"
478 		"	or %1,%3,%1\n"
479 		"3:	stq_u %2,3(%5)\n"
480 		"4:	stq_u %1,0(%5)\n"
481 		"5:\n"
482 		EXC(1b,5b,%2,%0)
483 		EXC(2b,5b,%1,%0)
484 		EXC(3b,5b,$31,%0)
485 		EXC(4b,5b,$31,%0)
486 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
487 			  "=&r"(tmp3), "=&r"(tmp4)
488 			: "r"(va), "r"(una_reg(reg)), "0"(0));
489 		if (error)
490 			goto got_exception;
491 		return;
492 
493 	case 0x2d: /* stq */
494 		__asm__ __volatile__(
495 		"1:	ldq_u %2,7(%5)\n"
496 		"2:	ldq_u %1,0(%5)\n"
497 		"	insqh %6,%5,%4\n"
498 		"	insql %6,%5,%3\n"
499 		"	mskqh %2,%5,%2\n"
500 		"	mskql %1,%5,%1\n"
501 		"	or %2,%4,%2\n"
502 		"	or %1,%3,%1\n"
503 		"3:	stq_u %2,7(%5)\n"
504 		"4:	stq_u %1,0(%5)\n"
505 		"5:\n"
506 		EXC(1b,5b,%2,%0)
507 		EXC(2b,5b,%1,%0)
508 		EXC(3b,5b,$31,%0)
509 		EXC(4b,5b,$31,%0)
510 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
511 			  "=&r"(tmp3), "=&r"(tmp4)
512 			: "r"(va), "r"(una_reg(reg)), "0"(0));
513 		if (error)
514 			goto got_exception;
515 		return;
516 	}
517 
518 	printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
519 		pc, va, opcode, reg);
520 	make_task_dead(SIGSEGV);
521 
522 got_exception:
523 	/* Ok, we caught the exception, but we don't want it.  Is there
524 	   someone to pass it along to?  */
525 	if ((fixup = search_exception_tables(pc)) != 0) {
526 		unsigned long newpc;
527 		newpc = fixup_exception(una_reg, fixup, pc);
528 
529 		printk("Forwarding unaligned exception at %lx (%lx)\n",
530 		       pc, newpc);
531 
532 		regs->pc = newpc;
533 		return;
534 	}
535 
536 	/*
537 	 * Yikes!  No one to forward the exception to.
538 	 * Since the registers are in a weird format, dump them ourselves.
539  	 */
540 
541 	printk("%s(%d): unhandled unaligned exception\n",
542 	       current->comm, task_pid_nr(current));
543 
544 	printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
545 	       pc, una_reg(26), regs->ps);
546 	printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
547 	       una_reg(0), una_reg(1), una_reg(2));
548 	printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
549  	       una_reg(3), una_reg(4), una_reg(5));
550 	printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
551 	       una_reg(6), una_reg(7), una_reg(8));
552 	printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
553 	       una_reg(9), una_reg(10), una_reg(11));
554 	printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
555 	       una_reg(12), una_reg(13), una_reg(14));
556 	printk("r15= %016lx\n", una_reg(15));
557 	printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
558 	       una_reg(16), una_reg(17), una_reg(18));
559 	printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
560  	       una_reg(19), una_reg(20), una_reg(21));
561  	printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
562 	       una_reg(22), una_reg(23), una_reg(24));
563 	printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
564 	       una_reg(25), una_reg(27), una_reg(28));
565 	printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
566 
567 	dik_show_code((unsigned int *)pc);
568 	dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
569 
570 	if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
571 		printk("die_if_kernel recursion detected.\n");
572 		local_irq_enable();
573 		while (1);
574 	}
575 	make_task_dead(SIGSEGV);
576 }
577 
578 /*
579  * Convert an s-floating point value in memory format to the
580  * corresponding value in register format.  The exponent
581  * needs to be remapped to preserve non-finite values
582  * (infinities, not-a-numbers, denormals).
583  */
584 static inline unsigned long
585 s_mem_to_reg (unsigned long s_mem)
586 {
587 	unsigned long frac    = (s_mem >>  0) & 0x7fffff;
588 	unsigned long sign    = (s_mem >> 31) & 0x1;
589 	unsigned long exp_msb = (s_mem >> 30) & 0x1;
590 	unsigned long exp_low = (s_mem >> 23) & 0x7f;
591 	unsigned long exp;
592 
593 	exp = (exp_msb << 10) | exp_low;	/* common case */
594 	if (exp_msb) {
595 		if (exp_low == 0x7f) {
596 			exp = 0x7ff;
597 		}
598 	} else {
599 		if (exp_low == 0x00) {
600 			exp = 0x000;
601 		} else {
602 			exp |= (0x7 << 7);
603 		}
604 	}
605 	return (sign << 63) | (exp << 52) | (frac << 29);
606 }
607 
608 /*
609  * Convert an s-floating point value in register format to the
610  * corresponding value in memory format.
611  */
612 static inline unsigned long
613 s_reg_to_mem (unsigned long s_reg)
614 {
615 	return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
616 }
617 
618 /*
619  * Handle user-level unaligned fault.  Handling user-level unaligned
620  * faults is *extremely* slow and produces nasty messages.  A user
621  * program *should* fix unaligned faults ASAP.
622  *
623  * Notice that we have (almost) the regular kernel stack layout here,
624  * so finding the appropriate registers is a little more difficult
625  * than in the kernel case.
626  *
627  * Finally, we handle regular integer load/stores only.  In
628  * particular, load-linked/store-conditionally and floating point
629  * load/stores are not supported.  The former make no sense with
630  * unaligned faults (they are guaranteed to fail) and I don't think
631  * the latter will occur in any decent program.
632  *
633  * Sigh. We *do* have to handle some FP operations, because GCC will
634  * uses them as temporary storage for integer memory to memory copies.
635  * However, we need to deal with stt/ldt and sts/lds only.
636  */
637 
638 #define OP_INT_MASK	( 1L << 0x28 | 1L << 0x2c   /* ldl stl */	\
639 			| 1L << 0x29 | 1L << 0x2d   /* ldq stq */	\
640 			| 1L << 0x0c | 1L << 0x0d   /* ldwu stw */	\
641 			| 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
642 
643 #define OP_WRITE_MASK	( 1L << 0x26 | 1L << 0x27   /* sts stt */	\
644 			| 1L << 0x2c | 1L << 0x2d   /* stl stq */	\
645 			| 1L << 0x0d | 1L << 0x0e ) /* stw stb */
646 
647 #define R(x)	((size_t) &((struct pt_regs *)0)->x)
648 
649 static int unauser_reg_offsets[32] = {
650 	R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
651 	/* r9 ... r15 are stored in front of regs.  */
652 	-56, -48, -40, -32, -24, -16, -8,
653 	R(r16), R(r17), R(r18),
654 	R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
655 	R(r27), R(r28), R(gp),
656 	0, 0
657 };
658 
659 #undef R
660 
661 asmlinkage void
662 do_entUnaUser(void __user * va, unsigned long opcode,
663 	      unsigned long reg, struct pt_regs *regs)
664 {
665 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
666 
667 	unsigned long tmp1, tmp2, tmp3, tmp4;
668 	unsigned long fake_reg, *reg_addr = &fake_reg;
669 	int si_code;
670 	long error;
671 
672 	/* Check the UAC bits to decide what the user wants us to do
673 	   with the unaligned access.  */
674 
675 	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
676 		if (__ratelimit(&ratelimit)) {
677 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
678 			       current->comm, task_pid_nr(current),
679 			       regs->pc - 4, va, opcode, reg);
680 		}
681 	}
682 	if ((current_thread_info()->status & TS_UAC_SIGBUS))
683 		goto give_sigbus;
684 	/* Not sure why you'd want to use this, but... */
685 	if ((current_thread_info()->status & TS_UAC_NOFIX))
686 		return;
687 
688 	/* Don't bother reading ds in the access check since we already
689 	   know that this came from the user.  Also rely on the fact that
690 	   the page at TASK_SIZE is unmapped and so can't be touched anyway. */
691 	if ((unsigned long)va >= TASK_SIZE)
692 		goto give_sigsegv;
693 
694 	++unaligned[1].count;
695 	unaligned[1].va = (unsigned long)va;
696 	unaligned[1].pc = regs->pc - 4;
697 
698 	if ((1L << opcode) & OP_INT_MASK) {
699 		/* it's an integer load/store */
700 		if (reg < 30) {
701 			reg_addr = (unsigned long *)
702 			  ((char *)regs + unauser_reg_offsets[reg]);
703 		} else if (reg == 30) {
704 			/* usp in PAL regs */
705 			fake_reg = rdusp();
706 		} else {
707 			/* zero "register" */
708 			fake_reg = 0;
709 		}
710 	}
711 
712 	/* We don't want to use the generic get/put unaligned macros as
713 	   we want to trap exceptions.  Only if we actually get an
714 	   exception will we decide whether we should have caught it.  */
715 
716 	switch (opcode) {
717 	case 0x0c: /* ldwu */
718 		__asm__ __volatile__(
719 		"1:	ldq_u %1,0(%3)\n"
720 		"2:	ldq_u %2,1(%3)\n"
721 		"	extwl %1,%3,%1\n"
722 		"	extwh %2,%3,%2\n"
723 		"3:\n"
724 		EXC(1b,3b,%1,%0)
725 		EXC(2b,3b,%2,%0)
726 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
727 			: "r"(va), "0"(0));
728 		if (error)
729 			goto give_sigsegv;
730 		*reg_addr = tmp1|tmp2;
731 		break;
732 
733 	case 0x22: /* lds */
734 		__asm__ __volatile__(
735 		"1:	ldq_u %1,0(%3)\n"
736 		"2:	ldq_u %2,3(%3)\n"
737 		"	extll %1,%3,%1\n"
738 		"	extlh %2,%3,%2\n"
739 		"3:\n"
740 		EXC(1b,3b,%1,%0)
741 		EXC(2b,3b,%2,%0)
742 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
743 			: "r"(va), "0"(0));
744 		if (error)
745 			goto give_sigsegv;
746 		alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
747 		return;
748 
749 	case 0x23: /* ldt */
750 		__asm__ __volatile__(
751 		"1:	ldq_u %1,0(%3)\n"
752 		"2:	ldq_u %2,7(%3)\n"
753 		"	extql %1,%3,%1\n"
754 		"	extqh %2,%3,%2\n"
755 		"3:\n"
756 		EXC(1b,3b,%1,%0)
757 		EXC(2b,3b,%2,%0)
758 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
759 			: "r"(va), "0"(0));
760 		if (error)
761 			goto give_sigsegv;
762 		alpha_write_fp_reg(reg, tmp1|tmp2);
763 		return;
764 
765 	case 0x28: /* ldl */
766 		__asm__ __volatile__(
767 		"1:	ldq_u %1,0(%3)\n"
768 		"2:	ldq_u %2,3(%3)\n"
769 		"	extll %1,%3,%1\n"
770 		"	extlh %2,%3,%2\n"
771 		"3:\n"
772 		EXC(1b,3b,%1,%0)
773 		EXC(2b,3b,%2,%0)
774 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
775 			: "r"(va), "0"(0));
776 		if (error)
777 			goto give_sigsegv;
778 		*reg_addr = (int)(tmp1|tmp2);
779 		break;
780 
781 	case 0x29: /* ldq */
782 		__asm__ __volatile__(
783 		"1:	ldq_u %1,0(%3)\n"
784 		"2:	ldq_u %2,7(%3)\n"
785 		"	extql %1,%3,%1\n"
786 		"	extqh %2,%3,%2\n"
787 		"3:\n"
788 		EXC(1b,3b,%1,%0)
789 		EXC(2b,3b,%2,%0)
790 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
791 			: "r"(va), "0"(0));
792 		if (error)
793 			goto give_sigsegv;
794 		*reg_addr = tmp1|tmp2;
795 		break;
796 
797 	/* Note that the store sequences do not indicate that they change
798 	   memory because it _should_ be affecting nothing in this context.
799 	   (Otherwise we have other, much larger, problems.)  */
800 	case 0x0d: /* stw */
801 		__asm__ __volatile__(
802 		"1:	ldq_u %2,1(%5)\n"
803 		"2:	ldq_u %1,0(%5)\n"
804 		"	inswh %6,%5,%4\n"
805 		"	inswl %6,%5,%3\n"
806 		"	mskwh %2,%5,%2\n"
807 		"	mskwl %1,%5,%1\n"
808 		"	or %2,%4,%2\n"
809 		"	or %1,%3,%1\n"
810 		"3:	stq_u %2,1(%5)\n"
811 		"4:	stq_u %1,0(%5)\n"
812 		"5:\n"
813 		EXC(1b,5b,%2,%0)
814 		EXC(2b,5b,%1,%0)
815 		EXC(3b,5b,$31,%0)
816 		EXC(4b,5b,$31,%0)
817 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
818 			  "=&r"(tmp3), "=&r"(tmp4)
819 			: "r"(va), "r"(*reg_addr), "0"(0));
820 		if (error)
821 			goto give_sigsegv;
822 		return;
823 
824 	case 0x26: /* sts */
825 		fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
826 		fallthrough;
827 
828 	case 0x2c: /* stl */
829 		__asm__ __volatile__(
830 		"1:	ldq_u %2,3(%5)\n"
831 		"2:	ldq_u %1,0(%5)\n"
832 		"	inslh %6,%5,%4\n"
833 		"	insll %6,%5,%3\n"
834 		"	msklh %2,%5,%2\n"
835 		"	mskll %1,%5,%1\n"
836 		"	or %2,%4,%2\n"
837 		"	or %1,%3,%1\n"
838 		"3:	stq_u %2,3(%5)\n"
839 		"4:	stq_u %1,0(%5)\n"
840 		"5:\n"
841 		EXC(1b,5b,%2,%0)
842 		EXC(2b,5b,%1,%0)
843 		EXC(3b,5b,$31,%0)
844 		EXC(4b,5b,$31,%0)
845 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
846 			  "=&r"(tmp3), "=&r"(tmp4)
847 			: "r"(va), "r"(*reg_addr), "0"(0));
848 		if (error)
849 			goto give_sigsegv;
850 		return;
851 
852 	case 0x27: /* stt */
853 		fake_reg = alpha_read_fp_reg(reg);
854 		fallthrough;
855 
856 	case 0x2d: /* stq */
857 		__asm__ __volatile__(
858 		"1:	ldq_u %2,7(%5)\n"
859 		"2:	ldq_u %1,0(%5)\n"
860 		"	insqh %6,%5,%4\n"
861 		"	insql %6,%5,%3\n"
862 		"	mskqh %2,%5,%2\n"
863 		"	mskql %1,%5,%1\n"
864 		"	or %2,%4,%2\n"
865 		"	or %1,%3,%1\n"
866 		"3:	stq_u %2,7(%5)\n"
867 		"4:	stq_u %1,0(%5)\n"
868 		"5:\n"
869 		EXC(1b,5b,%2,%0)
870 		EXC(2b,5b,%1,%0)
871 		EXC(3b,5b,$31,%0)
872 		EXC(4b,5b,$31,%0)
873 			: "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
874 			  "=&r"(tmp3), "=&r"(tmp4)
875 			: "r"(va), "r"(*reg_addr), "0"(0));
876 		if (error)
877 			goto give_sigsegv;
878 		return;
879 
880 	default:
881 		/* What instruction were you trying to use, exactly?  */
882 		goto give_sigbus;
883 	}
884 
885 	/* Only integer loads should get here; everyone else returns early. */
886 	if (reg == 30)
887 		wrusp(fake_reg);
888 	return;
889 
890 give_sigsegv:
891 	regs->pc -= 4;  /* make pc point to faulting insn */
892 
893 	/* We need to replicate some of the logic in mm/fault.c,
894 	   since we don't have access to the fault code in the
895 	   exception handling return path.  */
896 	if ((unsigned long)va >= TASK_SIZE)
897 		si_code = SEGV_ACCERR;
898 	else {
899 		struct mm_struct *mm = current->mm;
900 		mmap_read_lock(mm);
901 		if (find_vma(mm, (unsigned long)va))
902 			si_code = SEGV_ACCERR;
903 		else
904 			si_code = SEGV_MAPERR;
905 		mmap_read_unlock(mm);
906 	}
907 	send_sig_fault(SIGSEGV, si_code, va, current);
908 	return;
909 
910 give_sigbus:
911 	regs->pc -= 4;
912 	send_sig_fault(SIGBUS, BUS_ADRALN, va, current);
913 	return;
914 }
915 
916 void
917 trap_init(void)
918 {
919 	/* Tell PAL-code what global pointer we want in the kernel.  */
920 	register unsigned long gptr __asm__("$29");
921 	wrkgp(gptr);
922 
923 	wrent(entArith, 1);
924 	wrent(entMM, 2);
925 	wrent(entIF, 3);
926 	wrent(entUna, 4);
927 	wrent(entSys, 5);
928 	wrent(entDbg, 6);
929 }
930