1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/alpha/kernel/traps.c 4 * 5 * (C) Copyright 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file initializes the trap entry points 10 */ 11 12 #include <linux/cpu.h> 13 #include <linux/jiffies.h> 14 #include <linux/mm.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/debug.h> 17 #include <linux/tty.h> 18 #include <linux/delay.h> 19 #include <linux/extable.h> 20 #include <linux/kallsyms.h> 21 #include <linux/ratelimit.h> 22 23 #include <asm/gentrap.h> 24 #include <linux/uaccess.h> 25 #include <asm/unaligned.h> 26 #include <asm/sysinfo.h> 27 #include <asm/hwrpb.h> 28 #include <asm/mmu_context.h> 29 #include <asm/special_insns.h> 30 31 #include "proto.h" 32 33 /* Work-around for some SRMs which mishandle opDEC faults. */ 34 35 static int opDEC_fix; 36 37 static void 38 opDEC_check(void) 39 { 40 __asm__ __volatile__ ( 41 /* Load the address of... */ 42 " br $16, 1f\n" 43 /* A stub instruction fault handler. Just add 4 to the 44 pc and continue. */ 45 " ldq $16, 8($sp)\n" 46 " addq $16, 4, $16\n" 47 " stq $16, 8($sp)\n" 48 " call_pal %[rti]\n" 49 /* Install the instruction fault handler. */ 50 "1: lda $17, 3\n" 51 " call_pal %[wrent]\n" 52 /* With that in place, the fault from the round-to-minf fp 53 insn will arrive either at the "lda 4" insn (bad) or one 54 past that (good). This places the correct fixup in %0. */ 55 " lda %[fix], 0\n" 56 " cvttq/svm $f31,$f31\n" 57 " lda %[fix], 4" 58 : [fix] "=r" (opDEC_fix) 59 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent) 60 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25"); 61 62 if (opDEC_fix) 63 printk("opDEC fixup enabled.\n"); 64 } 65 66 void 67 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15) 68 { 69 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n", 70 regs->pc, regs->r26, regs->ps, print_tainted()); 71 printk("pc is at %pSR\n", (void *)regs->pc); 72 printk("ra is at %pSR\n", (void *)regs->r26); 73 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n", 74 regs->r0, regs->r1, regs->r2); 75 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n", 76 regs->r3, regs->r4, regs->r5); 77 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n", 78 regs->r6, regs->r7, regs->r8); 79 80 if (r9_15) { 81 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n", 82 r9_15[9], r9_15[10], r9_15[11]); 83 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n", 84 r9_15[12], r9_15[13], r9_15[14]); 85 printk("s6 = %016lx\n", r9_15[15]); 86 } 87 88 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n", 89 regs->r16, regs->r17, regs->r18); 90 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n", 91 regs->r19, regs->r20, regs->r21); 92 printk("t8 = %016lx t9 = %016lx t10= %016lx\n", 93 regs->r22, regs->r23, regs->r24); 94 printk("t11= %016lx pv = %016lx at = %016lx\n", 95 regs->r25, regs->r27, regs->r28); 96 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 97 #if 0 98 __halt(); 99 #endif 100 } 101 102 #if 0 103 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", 104 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", 105 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", 106 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"}; 107 #endif 108 109 static void 110 dik_show_code(unsigned int *pc) 111 { 112 long i; 113 114 printk("Code:"); 115 for (i = -6; i < 2; i++) { 116 unsigned int insn; 117 if (__get_user(insn, (unsigned int __user *)pc + i)) 118 break; 119 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>'); 120 } 121 printk("\n"); 122 } 123 124 static void 125 dik_show_trace(unsigned long *sp, const char *loglvl) 126 { 127 long i = 0; 128 printk("%sTrace:\n", loglvl); 129 while (0x1ff8 & (unsigned long) sp) { 130 extern char _stext[], _etext[]; 131 unsigned long tmp = *sp; 132 sp++; 133 if (!is_kernel_text(tmp)) 134 continue; 135 printk("%s[<%lx>] %pSR\n", loglvl, tmp, (void *)tmp); 136 if (i > 40) { 137 printk("%s ...", loglvl); 138 break; 139 } 140 } 141 printk("%s\n", loglvl); 142 } 143 144 static int kstack_depth_to_print = 24; 145 146 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl) 147 { 148 unsigned long *stack; 149 int i; 150 151 /* 152 * debugging aid: "show_stack(NULL, NULL, KERN_EMERG);" prints the 153 * back trace for this cpu. 154 */ 155 if(sp==NULL) 156 sp=(unsigned long*)&sp; 157 158 stack = sp; 159 for(i=0; i < kstack_depth_to_print; i++) { 160 if (((long) stack & (THREAD_SIZE-1)) == 0) 161 break; 162 if ((i % 4) == 0) { 163 if (i) 164 pr_cont("\n"); 165 printk("%s ", loglvl); 166 } else { 167 pr_cont(" "); 168 } 169 pr_cont("%016lx", *stack++); 170 } 171 pr_cont("\n"); 172 dik_show_trace(sp, loglvl); 173 } 174 175 void 176 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15) 177 { 178 if (regs->ps & 8) 179 return; 180 #ifdef CONFIG_SMP 181 printk("CPU %d ", hard_smp_processor_id()); 182 #endif 183 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err); 184 dik_show_regs(regs, r9_15); 185 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 186 dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT); 187 dik_show_code((unsigned int *)regs->pc); 188 189 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 190 printk("die_if_kernel recursion detected.\n"); 191 local_irq_enable(); 192 while (1); 193 } 194 make_task_dead(SIGSEGV); 195 } 196 197 #ifndef CONFIG_MATHEMU 198 static long dummy_emul(void) { return 0; } 199 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask) 200 = (void *)dummy_emul; 201 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise); 202 long (*alpha_fp_emul) (unsigned long pc) 203 = (void *)dummy_emul; 204 EXPORT_SYMBOL_GPL(alpha_fp_emul); 205 #else 206 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask); 207 long alpha_fp_emul (unsigned long pc); 208 #endif 209 210 asmlinkage void 211 do_entArith(unsigned long summary, unsigned long write_mask, 212 struct pt_regs *regs) 213 { 214 long si_code = FPE_FLTINV; 215 216 if (summary & 1) { 217 /* Software-completion summary bit is set, so try to 218 emulate the instruction. If the processor supports 219 precise exceptions, we don't have to search. */ 220 if (!amask(AMASK_PRECISE_TRAP)) 221 si_code = alpha_fp_emul(regs->pc - 4); 222 else 223 si_code = alpha_fp_emul_imprecise(regs, write_mask); 224 if (si_code == 0) 225 return; 226 } 227 die_if_kernel("Arithmetic fault", regs, 0, NULL); 228 229 send_sig_fault_trapno(SIGFPE, si_code, (void __user *) regs->pc, 0, current); 230 } 231 232 asmlinkage void 233 do_entIF(unsigned long type, struct pt_regs *regs) 234 { 235 int signo, code; 236 237 if (type == 3) { /* FEN fault */ 238 /* Irritating users can call PAL_clrfen to disable the 239 FPU for the process. The kernel will then trap in 240 do_switch_stack and undo_switch_stack when we try 241 to save and restore the FP registers. 242 243 Given that GCC by default generates code that uses the 244 FP registers, PAL_clrfen is not useful except for DoS 245 attacks. So turn the bleeding FPU back on and be done 246 with it. */ 247 current_thread_info()->pcb.flags |= 1; 248 __reload_thread(¤t_thread_info()->pcb); 249 return; 250 } 251 if (!user_mode(regs)) { 252 if (type == 1) { 253 const unsigned int *data 254 = (const unsigned int *) regs->pc; 255 printk("Kernel bug at %s:%d\n", 256 (const char *)(data[1] | (long)data[2] << 32), 257 data[0]); 258 } 259 #ifdef CONFIG_ALPHA_WTINT 260 if (type == 4) { 261 /* If CALL_PAL WTINT is totally unsupported by the 262 PALcode, e.g. MILO, "emulate" it by overwriting 263 the insn. */ 264 unsigned int *pinsn 265 = (unsigned int *) regs->pc - 1; 266 if (*pinsn == PAL_wtint) { 267 *pinsn = 0x47e01400; /* mov 0,$0 */ 268 imb(); 269 regs->r0 = 0; 270 return; 271 } 272 } 273 #endif /* ALPHA_WTINT */ 274 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"), 275 regs, type, NULL); 276 } 277 278 switch (type) { 279 case 0: /* breakpoint */ 280 if (ptrace_cancel_bpt(current)) { 281 regs->pc -= 4; /* make pc point to former bpt */ 282 } 283 284 send_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->pc, 285 current); 286 return; 287 288 case 1: /* bugcheck */ 289 send_sig_fault_trapno(SIGTRAP, TRAP_UNK, 290 (void __user *) regs->pc, 0, current); 291 return; 292 293 case 2: /* gentrap */ 294 switch ((long) regs->r16) { 295 case GEN_INTOVF: 296 signo = SIGFPE; 297 code = FPE_INTOVF; 298 break; 299 case GEN_INTDIV: 300 signo = SIGFPE; 301 code = FPE_INTDIV; 302 break; 303 case GEN_FLTOVF: 304 signo = SIGFPE; 305 code = FPE_FLTOVF; 306 break; 307 case GEN_FLTDIV: 308 signo = SIGFPE; 309 code = FPE_FLTDIV; 310 break; 311 case GEN_FLTUND: 312 signo = SIGFPE; 313 code = FPE_FLTUND; 314 break; 315 case GEN_FLTINV: 316 signo = SIGFPE; 317 code = FPE_FLTINV; 318 break; 319 case GEN_FLTINE: 320 signo = SIGFPE; 321 code = FPE_FLTRES; 322 break; 323 case GEN_ROPRAND: 324 signo = SIGFPE; 325 code = FPE_FLTUNK; 326 break; 327 328 case GEN_DECOVF: 329 case GEN_DECDIV: 330 case GEN_DECINV: 331 case GEN_ASSERTERR: 332 case GEN_NULPTRERR: 333 case GEN_STKOVF: 334 case GEN_STRLENERR: 335 case GEN_SUBSTRERR: 336 case GEN_RANGERR: 337 case GEN_SUBRNG: 338 case GEN_SUBRNG1: 339 case GEN_SUBRNG2: 340 case GEN_SUBRNG3: 341 case GEN_SUBRNG4: 342 case GEN_SUBRNG5: 343 case GEN_SUBRNG6: 344 case GEN_SUBRNG7: 345 default: 346 signo = SIGTRAP; 347 code = TRAP_UNK; 348 break; 349 } 350 351 send_sig_fault_trapno(signo, code, (void __user *) regs->pc, 352 regs->r16, current); 353 return; 354 355 case 4: /* opDEC */ 356 if (implver() == IMPLVER_EV4) { 357 long si_code; 358 359 /* The some versions of SRM do not handle 360 the opDEC properly - they return the PC of the 361 opDEC fault, not the instruction after as the 362 Alpha architecture requires. Here we fix it up. 363 We do this by intentionally causing an opDEC 364 fault during the boot sequence and testing if 365 we get the correct PC. If not, we set a flag 366 to correct it every time through. */ 367 regs->pc += opDEC_fix; 368 369 /* EV4 does not implement anything except normal 370 rounding. Everything else will come here as 371 an illegal instruction. Emulate them. */ 372 si_code = alpha_fp_emul(regs->pc - 4); 373 if (si_code == 0) 374 return; 375 if (si_code > 0) { 376 send_sig_fault_trapno(SIGFPE, si_code, 377 (void __user *) regs->pc, 378 0, current); 379 return; 380 } 381 } 382 break; 383 384 case 5: /* illoc */ 385 default: /* unexpected instruction-fault type */ 386 ; 387 } 388 389 send_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, current); 390 } 391 392 /* There is an ifdef in the PALcode in MILO that enables a 393 "kernel debugging entry point" as an unprivileged call_pal. 394 395 We don't want to have anything to do with it, but unfortunately 396 several versions of MILO included in distributions have it enabled, 397 and if we don't put something on the entry point we'll oops. */ 398 399 asmlinkage void 400 do_entDbg(struct pt_regs *regs) 401 { 402 die_if_kernel("Instruction fault", regs, 0, NULL); 403 404 force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc); 405 } 406 407 408 /* 409 * entUna has a different register layout to be reasonably simple. It 410 * needs access to all the integer registers (the kernel doesn't use 411 * fp-regs), and it needs to have them in order for simpler access. 412 * 413 * Due to the non-standard register layout (and because we don't want 414 * to handle floating-point regs), user-mode unaligned accesses are 415 * handled separately by do_entUnaUser below. 416 * 417 * Oh, btw, we don't handle the "gp" register correctly, but if we fault 418 * on a gp-register unaligned load/store, something is _very_ wrong 419 * in the kernel anyway.. 420 */ 421 struct allregs { 422 unsigned long regs[32]; 423 unsigned long ps, pc, gp, a0, a1, a2; 424 }; 425 426 struct unaligned_stat { 427 unsigned long count, va, pc; 428 } unaligned[2]; 429 430 431 /* Macro for exception fixup code to access integer registers. */ 432 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)]) 433 434 435 asmlinkage void 436 do_entUna(void * va, unsigned long opcode, unsigned long reg, 437 struct allregs *regs) 438 { 439 long error, tmp1, tmp2, tmp3, tmp4; 440 unsigned long pc = regs->pc - 4; 441 unsigned long *_regs = regs->regs; 442 const struct exception_table_entry *fixup; 443 444 unaligned[0].count++; 445 unaligned[0].va = (unsigned long) va; 446 unaligned[0].pc = pc; 447 448 /* We don't want to use the generic get/put unaligned macros as 449 we want to trap exceptions. Only if we actually get an 450 exception will we decide whether we should have caught it. */ 451 452 switch (opcode) { 453 case 0x0c: /* ldwu */ 454 __asm__ __volatile__( 455 "1: ldq_u %1,0(%3)\n" 456 "2: ldq_u %2,1(%3)\n" 457 " extwl %1,%3,%1\n" 458 " extwh %2,%3,%2\n" 459 "3:\n" 460 EXC(1b,3b,%1,%0) 461 EXC(2b,3b,%2,%0) 462 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 463 : "r"(va), "0"(0)); 464 if (error) 465 goto got_exception; 466 una_reg(reg) = tmp1|tmp2; 467 return; 468 469 case 0x28: /* ldl */ 470 __asm__ __volatile__( 471 "1: ldq_u %1,0(%3)\n" 472 "2: ldq_u %2,3(%3)\n" 473 " extll %1,%3,%1\n" 474 " extlh %2,%3,%2\n" 475 "3:\n" 476 EXC(1b,3b,%1,%0) 477 EXC(2b,3b,%2,%0) 478 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 479 : "r"(va), "0"(0)); 480 if (error) 481 goto got_exception; 482 una_reg(reg) = (int)(tmp1|tmp2); 483 return; 484 485 case 0x29: /* ldq */ 486 __asm__ __volatile__( 487 "1: ldq_u %1,0(%3)\n" 488 "2: ldq_u %2,7(%3)\n" 489 " extql %1,%3,%1\n" 490 " extqh %2,%3,%2\n" 491 "3:\n" 492 EXC(1b,3b,%1,%0) 493 EXC(2b,3b,%2,%0) 494 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 495 : "r"(va), "0"(0)); 496 if (error) 497 goto got_exception; 498 una_reg(reg) = tmp1|tmp2; 499 return; 500 501 /* Note that the store sequences do not indicate that they change 502 memory because it _should_ be affecting nothing in this context. 503 (Otherwise we have other, much larger, problems.) */ 504 case 0x0d: /* stw */ 505 __asm__ __volatile__( 506 "1: ldq_u %2,1(%5)\n" 507 "2: ldq_u %1,0(%5)\n" 508 " inswh %6,%5,%4\n" 509 " inswl %6,%5,%3\n" 510 " mskwh %2,%5,%2\n" 511 " mskwl %1,%5,%1\n" 512 " or %2,%4,%2\n" 513 " or %1,%3,%1\n" 514 "3: stq_u %2,1(%5)\n" 515 "4: stq_u %1,0(%5)\n" 516 "5:\n" 517 EXC(1b,5b,%2,%0) 518 EXC(2b,5b,%1,%0) 519 EXC(3b,5b,$31,%0) 520 EXC(4b,5b,$31,%0) 521 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 522 "=&r"(tmp3), "=&r"(tmp4) 523 : "r"(va), "r"(una_reg(reg)), "0"(0)); 524 if (error) 525 goto got_exception; 526 return; 527 528 case 0x2c: /* stl */ 529 __asm__ __volatile__( 530 "1: ldq_u %2,3(%5)\n" 531 "2: ldq_u %1,0(%5)\n" 532 " inslh %6,%5,%4\n" 533 " insll %6,%5,%3\n" 534 " msklh %2,%5,%2\n" 535 " mskll %1,%5,%1\n" 536 " or %2,%4,%2\n" 537 " or %1,%3,%1\n" 538 "3: stq_u %2,3(%5)\n" 539 "4: stq_u %1,0(%5)\n" 540 "5:\n" 541 EXC(1b,5b,%2,%0) 542 EXC(2b,5b,%1,%0) 543 EXC(3b,5b,$31,%0) 544 EXC(4b,5b,$31,%0) 545 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 546 "=&r"(tmp3), "=&r"(tmp4) 547 : "r"(va), "r"(una_reg(reg)), "0"(0)); 548 if (error) 549 goto got_exception; 550 return; 551 552 case 0x2d: /* stq */ 553 __asm__ __volatile__( 554 "1: ldq_u %2,7(%5)\n" 555 "2: ldq_u %1,0(%5)\n" 556 " insqh %6,%5,%4\n" 557 " insql %6,%5,%3\n" 558 " mskqh %2,%5,%2\n" 559 " mskql %1,%5,%1\n" 560 " or %2,%4,%2\n" 561 " or %1,%3,%1\n" 562 "3: stq_u %2,7(%5)\n" 563 "4: stq_u %1,0(%5)\n" 564 "5:\n" 565 EXC(1b,5b,%2,%0) 566 EXC(2b,5b,%1,%0) 567 EXC(3b,5b,$31,%0) 568 EXC(4b,5b,$31,%0) 569 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 570 "=&r"(tmp3), "=&r"(tmp4) 571 : "r"(va), "r"(una_reg(reg)), "0"(0)); 572 if (error) 573 goto got_exception; 574 return; 575 } 576 577 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n", 578 pc, va, opcode, reg); 579 make_task_dead(SIGSEGV); 580 581 got_exception: 582 /* Ok, we caught the exception, but we don't want it. Is there 583 someone to pass it along to? */ 584 if ((fixup = search_exception_tables(pc)) != 0) { 585 unsigned long newpc; 586 newpc = fixup_exception(una_reg, fixup, pc); 587 588 printk("Forwarding unaligned exception at %lx (%lx)\n", 589 pc, newpc); 590 591 regs->pc = newpc; 592 return; 593 } 594 595 /* 596 * Yikes! No one to forward the exception to. 597 * Since the registers are in a weird format, dump them ourselves. 598 */ 599 600 printk("%s(%d): unhandled unaligned exception\n", 601 current->comm, task_pid_nr(current)); 602 603 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n", 604 pc, una_reg(26), regs->ps); 605 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n", 606 una_reg(0), una_reg(1), una_reg(2)); 607 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n", 608 una_reg(3), una_reg(4), una_reg(5)); 609 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n", 610 una_reg(6), una_reg(7), una_reg(8)); 611 printk("r9 = %016lx r10= %016lx r11= %016lx\n", 612 una_reg(9), una_reg(10), una_reg(11)); 613 printk("r12= %016lx r13= %016lx r14= %016lx\n", 614 una_reg(12), una_reg(13), una_reg(14)); 615 printk("r15= %016lx\n", una_reg(15)); 616 printk("r16= %016lx r17= %016lx r18= %016lx\n", 617 una_reg(16), una_reg(17), una_reg(18)); 618 printk("r19= %016lx r20= %016lx r21= %016lx\n", 619 una_reg(19), una_reg(20), una_reg(21)); 620 printk("r22= %016lx r23= %016lx r24= %016lx\n", 621 una_reg(22), una_reg(23), una_reg(24)); 622 printk("r25= %016lx r27= %016lx r28= %016lx\n", 623 una_reg(25), una_reg(27), una_reg(28)); 624 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 625 626 dik_show_code((unsigned int *)pc); 627 dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT); 628 629 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 630 printk("die_if_kernel recursion detected.\n"); 631 local_irq_enable(); 632 while (1); 633 } 634 make_task_dead(SIGSEGV); 635 } 636 637 /* 638 * Convert an s-floating point value in memory format to the 639 * corresponding value in register format. The exponent 640 * needs to be remapped to preserve non-finite values 641 * (infinities, not-a-numbers, denormals). 642 */ 643 static inline unsigned long 644 s_mem_to_reg (unsigned long s_mem) 645 { 646 unsigned long frac = (s_mem >> 0) & 0x7fffff; 647 unsigned long sign = (s_mem >> 31) & 0x1; 648 unsigned long exp_msb = (s_mem >> 30) & 0x1; 649 unsigned long exp_low = (s_mem >> 23) & 0x7f; 650 unsigned long exp; 651 652 exp = (exp_msb << 10) | exp_low; /* common case */ 653 if (exp_msb) { 654 if (exp_low == 0x7f) { 655 exp = 0x7ff; 656 } 657 } else { 658 if (exp_low == 0x00) { 659 exp = 0x000; 660 } else { 661 exp |= (0x7 << 7); 662 } 663 } 664 return (sign << 63) | (exp << 52) | (frac << 29); 665 } 666 667 /* 668 * Convert an s-floating point value in register format to the 669 * corresponding value in memory format. 670 */ 671 static inline unsigned long 672 s_reg_to_mem (unsigned long s_reg) 673 { 674 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34); 675 } 676 677 /* 678 * Handle user-level unaligned fault. Handling user-level unaligned 679 * faults is *extremely* slow and produces nasty messages. A user 680 * program *should* fix unaligned faults ASAP. 681 * 682 * Notice that we have (almost) the regular kernel stack layout here, 683 * so finding the appropriate registers is a little more difficult 684 * than in the kernel case. 685 * 686 * Finally, we handle regular integer load/stores only. In 687 * particular, load-linked/store-conditionally and floating point 688 * load/stores are not supported. The former make no sense with 689 * unaligned faults (they are guaranteed to fail) and I don't think 690 * the latter will occur in any decent program. 691 * 692 * Sigh. We *do* have to handle some FP operations, because GCC will 693 * uses them as temporary storage for integer memory to memory copies. 694 * However, we need to deal with stt/ldt and sts/lds only. 695 */ 696 697 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \ 698 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \ 699 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \ 700 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */ 701 702 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \ 703 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \ 704 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */ 705 706 #define R(x) ((size_t) &((struct pt_regs *)0)->x) 707 708 static int unauser_reg_offsets[32] = { 709 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8), 710 /* r9 ... r15 are stored in front of regs. */ 711 -56, -48, -40, -32, -24, -16, -8, 712 R(r16), R(r17), R(r18), 713 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26), 714 R(r27), R(r28), R(gp), 715 0, 0 716 }; 717 718 #undef R 719 720 asmlinkage void 721 do_entUnaUser(void __user * va, unsigned long opcode, 722 unsigned long reg, struct pt_regs *regs) 723 { 724 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); 725 726 unsigned long tmp1, tmp2, tmp3, tmp4; 727 unsigned long fake_reg, *reg_addr = &fake_reg; 728 int si_code; 729 long error; 730 731 /* Check the UAC bits to decide what the user wants us to do 732 with the unaligned access. */ 733 734 if (!(current_thread_info()->status & TS_UAC_NOPRINT)) { 735 if (__ratelimit(&ratelimit)) { 736 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n", 737 current->comm, task_pid_nr(current), 738 regs->pc - 4, va, opcode, reg); 739 } 740 } 741 if ((current_thread_info()->status & TS_UAC_SIGBUS)) 742 goto give_sigbus; 743 /* Not sure why you'd want to use this, but... */ 744 if ((current_thread_info()->status & TS_UAC_NOFIX)) 745 return; 746 747 /* Don't bother reading ds in the access check since we already 748 know that this came from the user. Also rely on the fact that 749 the page at TASK_SIZE is unmapped and so can't be touched anyway. */ 750 if ((unsigned long)va >= TASK_SIZE) 751 goto give_sigsegv; 752 753 ++unaligned[1].count; 754 unaligned[1].va = (unsigned long)va; 755 unaligned[1].pc = regs->pc - 4; 756 757 if ((1L << opcode) & OP_INT_MASK) { 758 /* it's an integer load/store */ 759 if (reg < 30) { 760 reg_addr = (unsigned long *) 761 ((char *)regs + unauser_reg_offsets[reg]); 762 } else if (reg == 30) { 763 /* usp in PAL regs */ 764 fake_reg = rdusp(); 765 } else { 766 /* zero "register" */ 767 fake_reg = 0; 768 } 769 } 770 771 /* We don't want to use the generic get/put unaligned macros as 772 we want to trap exceptions. Only if we actually get an 773 exception will we decide whether we should have caught it. */ 774 775 switch (opcode) { 776 case 0x0c: /* ldwu */ 777 __asm__ __volatile__( 778 "1: ldq_u %1,0(%3)\n" 779 "2: ldq_u %2,1(%3)\n" 780 " extwl %1,%3,%1\n" 781 " extwh %2,%3,%2\n" 782 "3:\n" 783 EXC(1b,3b,%1,%0) 784 EXC(2b,3b,%2,%0) 785 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 786 : "r"(va), "0"(0)); 787 if (error) 788 goto give_sigsegv; 789 *reg_addr = tmp1|tmp2; 790 break; 791 792 case 0x22: /* lds */ 793 __asm__ __volatile__( 794 "1: ldq_u %1,0(%3)\n" 795 "2: ldq_u %2,3(%3)\n" 796 " extll %1,%3,%1\n" 797 " extlh %2,%3,%2\n" 798 "3:\n" 799 EXC(1b,3b,%1,%0) 800 EXC(2b,3b,%2,%0) 801 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 802 : "r"(va), "0"(0)); 803 if (error) 804 goto give_sigsegv; 805 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2))); 806 return; 807 808 case 0x23: /* ldt */ 809 __asm__ __volatile__( 810 "1: ldq_u %1,0(%3)\n" 811 "2: ldq_u %2,7(%3)\n" 812 " extql %1,%3,%1\n" 813 " extqh %2,%3,%2\n" 814 "3:\n" 815 EXC(1b,3b,%1,%0) 816 EXC(2b,3b,%2,%0) 817 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 818 : "r"(va), "0"(0)); 819 if (error) 820 goto give_sigsegv; 821 alpha_write_fp_reg(reg, tmp1|tmp2); 822 return; 823 824 case 0x28: /* ldl */ 825 __asm__ __volatile__( 826 "1: ldq_u %1,0(%3)\n" 827 "2: ldq_u %2,3(%3)\n" 828 " extll %1,%3,%1\n" 829 " extlh %2,%3,%2\n" 830 "3:\n" 831 EXC(1b,3b,%1,%0) 832 EXC(2b,3b,%2,%0) 833 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 834 : "r"(va), "0"(0)); 835 if (error) 836 goto give_sigsegv; 837 *reg_addr = (int)(tmp1|tmp2); 838 break; 839 840 case 0x29: /* ldq */ 841 __asm__ __volatile__( 842 "1: ldq_u %1,0(%3)\n" 843 "2: ldq_u %2,7(%3)\n" 844 " extql %1,%3,%1\n" 845 " extqh %2,%3,%2\n" 846 "3:\n" 847 EXC(1b,3b,%1,%0) 848 EXC(2b,3b,%2,%0) 849 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 850 : "r"(va), "0"(0)); 851 if (error) 852 goto give_sigsegv; 853 *reg_addr = tmp1|tmp2; 854 break; 855 856 /* Note that the store sequences do not indicate that they change 857 memory because it _should_ be affecting nothing in this context. 858 (Otherwise we have other, much larger, problems.) */ 859 case 0x0d: /* stw */ 860 __asm__ __volatile__( 861 "1: ldq_u %2,1(%5)\n" 862 "2: ldq_u %1,0(%5)\n" 863 " inswh %6,%5,%4\n" 864 " inswl %6,%5,%3\n" 865 " mskwh %2,%5,%2\n" 866 " mskwl %1,%5,%1\n" 867 " or %2,%4,%2\n" 868 " or %1,%3,%1\n" 869 "3: stq_u %2,1(%5)\n" 870 "4: stq_u %1,0(%5)\n" 871 "5:\n" 872 EXC(1b,5b,%2,%0) 873 EXC(2b,5b,%1,%0) 874 EXC(3b,5b,$31,%0) 875 EXC(4b,5b,$31,%0) 876 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 877 "=&r"(tmp3), "=&r"(tmp4) 878 : "r"(va), "r"(*reg_addr), "0"(0)); 879 if (error) 880 goto give_sigsegv; 881 return; 882 883 case 0x26: /* sts */ 884 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg)); 885 fallthrough; 886 887 case 0x2c: /* stl */ 888 __asm__ __volatile__( 889 "1: ldq_u %2,3(%5)\n" 890 "2: ldq_u %1,0(%5)\n" 891 " inslh %6,%5,%4\n" 892 " insll %6,%5,%3\n" 893 " msklh %2,%5,%2\n" 894 " mskll %1,%5,%1\n" 895 " or %2,%4,%2\n" 896 " or %1,%3,%1\n" 897 "3: stq_u %2,3(%5)\n" 898 "4: stq_u %1,0(%5)\n" 899 "5:\n" 900 EXC(1b,5b,%2,%0) 901 EXC(2b,5b,%1,%0) 902 EXC(3b,5b,$31,%0) 903 EXC(4b,5b,$31,%0) 904 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 905 "=&r"(tmp3), "=&r"(tmp4) 906 : "r"(va), "r"(*reg_addr), "0"(0)); 907 if (error) 908 goto give_sigsegv; 909 return; 910 911 case 0x27: /* stt */ 912 fake_reg = alpha_read_fp_reg(reg); 913 fallthrough; 914 915 case 0x2d: /* stq */ 916 __asm__ __volatile__( 917 "1: ldq_u %2,7(%5)\n" 918 "2: ldq_u %1,0(%5)\n" 919 " insqh %6,%5,%4\n" 920 " insql %6,%5,%3\n" 921 " mskqh %2,%5,%2\n" 922 " mskql %1,%5,%1\n" 923 " or %2,%4,%2\n" 924 " or %1,%3,%1\n" 925 "3: stq_u %2,7(%5)\n" 926 "4: stq_u %1,0(%5)\n" 927 "5:\n" 928 EXC(1b,5b,%2,%0) 929 EXC(2b,5b,%1,%0) 930 EXC(3b,5b,$31,%0) 931 EXC(4b,5b,$31,%0) 932 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 933 "=&r"(tmp3), "=&r"(tmp4) 934 : "r"(va), "r"(*reg_addr), "0"(0)); 935 if (error) 936 goto give_sigsegv; 937 return; 938 939 default: 940 /* What instruction were you trying to use, exactly? */ 941 goto give_sigbus; 942 } 943 944 /* Only integer loads should get here; everyone else returns early. */ 945 if (reg == 30) 946 wrusp(fake_reg); 947 return; 948 949 give_sigsegv: 950 regs->pc -= 4; /* make pc point to faulting insn */ 951 952 /* We need to replicate some of the logic in mm/fault.c, 953 since we don't have access to the fault code in the 954 exception handling return path. */ 955 if ((unsigned long)va >= TASK_SIZE) 956 si_code = SEGV_ACCERR; 957 else { 958 struct mm_struct *mm = current->mm; 959 mmap_read_lock(mm); 960 if (find_vma(mm, (unsigned long)va)) 961 si_code = SEGV_ACCERR; 962 else 963 si_code = SEGV_MAPERR; 964 mmap_read_unlock(mm); 965 } 966 send_sig_fault(SIGSEGV, si_code, va, current); 967 return; 968 969 give_sigbus: 970 regs->pc -= 4; 971 send_sig_fault(SIGBUS, BUS_ADRALN, va, current); 972 return; 973 } 974 975 void 976 trap_init(void) 977 { 978 /* Tell PAL-code what global pointer we want in the kernel. */ 979 register unsigned long gptr __asm__("$29"); 980 wrkgp(gptr); 981 982 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have 983 a bug in the handling of the opDEC fault. Fix it up if so. */ 984 if (implver() == IMPLVER_EV4) 985 opDEC_check(); 986 987 wrent(entArith, 1); 988 wrent(entMM, 2); 989 wrent(entIF, 3); 990 wrent(entUna, 4); 991 wrent(entSys, 5); 992 wrent(entDbg, 6); 993 } 994