1 /* 2 * arch/alpha/kernel/traps.c 3 * 4 * (C) Copyright 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file initializes the trap entry points 9 */ 10 11 #include <linux/jiffies.h> 12 #include <linux/mm.h> 13 #include <linux/sched.h> 14 #include <linux/tty.h> 15 #include <linux/delay.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/kallsyms.h> 19 #include <linux/ratelimit.h> 20 21 #include <asm/gentrap.h> 22 #include <asm/uaccess.h> 23 #include <asm/unaligned.h> 24 #include <asm/sysinfo.h> 25 #include <asm/hwrpb.h> 26 #include <asm/mmu_context.h> 27 #include <asm/special_insns.h> 28 29 #include "proto.h" 30 31 /* Work-around for some SRMs which mishandle opDEC faults. */ 32 33 static int opDEC_fix; 34 35 static void __cpuinit 36 opDEC_check(void) 37 { 38 __asm__ __volatile__ ( 39 /* Load the address of... */ 40 " br $16, 1f\n" 41 /* A stub instruction fault handler. Just add 4 to the 42 pc and continue. */ 43 " ldq $16, 8($sp)\n" 44 " addq $16, 4, $16\n" 45 " stq $16, 8($sp)\n" 46 " call_pal %[rti]\n" 47 /* Install the instruction fault handler. */ 48 "1: lda $17, 3\n" 49 " call_pal %[wrent]\n" 50 /* With that in place, the fault from the round-to-minf fp 51 insn will arrive either at the "lda 4" insn (bad) or one 52 past that (good). This places the correct fixup in %0. */ 53 " lda %[fix], 0\n" 54 " cvttq/svm $f31,$f31\n" 55 " lda %[fix], 4" 56 : [fix] "=r" (opDEC_fix) 57 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent) 58 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25"); 59 60 if (opDEC_fix) 61 printk("opDEC fixup enabled.\n"); 62 } 63 64 void 65 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15) 66 { 67 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n", 68 regs->pc, regs->r26, regs->ps, print_tainted()); 69 print_symbol("pc is at %s\n", regs->pc); 70 print_symbol("ra is at %s\n", regs->r26 ); 71 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n", 72 regs->r0, regs->r1, regs->r2); 73 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n", 74 regs->r3, regs->r4, regs->r5); 75 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n", 76 regs->r6, regs->r7, regs->r8); 77 78 if (r9_15) { 79 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n", 80 r9_15[9], r9_15[10], r9_15[11]); 81 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n", 82 r9_15[12], r9_15[13], r9_15[14]); 83 printk("s6 = %016lx\n", r9_15[15]); 84 } 85 86 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n", 87 regs->r16, regs->r17, regs->r18); 88 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n", 89 regs->r19, regs->r20, regs->r21); 90 printk("t8 = %016lx t9 = %016lx t10= %016lx\n", 91 regs->r22, regs->r23, regs->r24); 92 printk("t11= %016lx pv = %016lx at = %016lx\n", 93 regs->r25, regs->r27, regs->r28); 94 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 95 #if 0 96 __halt(); 97 #endif 98 } 99 100 #if 0 101 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", 102 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", 103 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", 104 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"}; 105 #endif 106 107 static void 108 dik_show_code(unsigned int *pc) 109 { 110 long i; 111 112 printk("Code:"); 113 for (i = -6; i < 2; i++) { 114 unsigned int insn; 115 if (__get_user(insn, (unsigned int __user *)pc + i)) 116 break; 117 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>'); 118 } 119 printk("\n"); 120 } 121 122 static void 123 dik_show_trace(unsigned long *sp) 124 { 125 long i = 0; 126 printk("Trace:\n"); 127 while (0x1ff8 & (unsigned long) sp) { 128 extern char _stext[], _etext[]; 129 unsigned long tmp = *sp; 130 sp++; 131 if (tmp < (unsigned long) &_stext) 132 continue; 133 if (tmp >= (unsigned long) &_etext) 134 continue; 135 printk("[<%lx>]", tmp); 136 print_symbol(" %s", tmp); 137 printk("\n"); 138 if (i > 40) { 139 printk(" ..."); 140 break; 141 } 142 } 143 printk("\n"); 144 } 145 146 static int kstack_depth_to_print = 24; 147 148 void show_stack(struct task_struct *task, unsigned long *sp) 149 { 150 unsigned long *stack; 151 int i; 152 153 /* 154 * debugging aid: "show_stack(NULL);" prints the 155 * back trace for this cpu. 156 */ 157 if(sp==NULL) 158 sp=(unsigned long*)&sp; 159 160 stack = sp; 161 for(i=0; i < kstack_depth_to_print; i++) { 162 if (((long) stack & (THREAD_SIZE-1)) == 0) 163 break; 164 if (i && ((i % 4) == 0)) 165 printk("\n "); 166 printk("%016lx ", *stack++); 167 } 168 printk("\n"); 169 dik_show_trace(sp); 170 } 171 172 void dump_stack(void) 173 { 174 show_stack(NULL, NULL); 175 } 176 177 EXPORT_SYMBOL(dump_stack); 178 179 void 180 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15) 181 { 182 if (regs->ps & 8) 183 return; 184 #ifdef CONFIG_SMP 185 printk("CPU %d ", hard_smp_processor_id()); 186 #endif 187 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err); 188 dik_show_regs(regs, r9_15); 189 add_taint(TAINT_DIE); 190 dik_show_trace((unsigned long *)(regs+1)); 191 dik_show_code((unsigned int *)regs->pc); 192 193 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 194 printk("die_if_kernel recursion detected.\n"); 195 local_irq_enable(); 196 while (1); 197 } 198 do_exit(SIGSEGV); 199 } 200 201 #ifndef CONFIG_MATHEMU 202 static long dummy_emul(void) { return 0; } 203 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask) 204 = (void *)dummy_emul; 205 long (*alpha_fp_emul) (unsigned long pc) 206 = (void *)dummy_emul; 207 #else 208 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask); 209 long alpha_fp_emul (unsigned long pc); 210 #endif 211 212 asmlinkage void 213 do_entArith(unsigned long summary, unsigned long write_mask, 214 struct pt_regs *regs) 215 { 216 long si_code = FPE_FLTINV; 217 siginfo_t info; 218 219 if (summary & 1) { 220 /* Software-completion summary bit is set, so try to 221 emulate the instruction. If the processor supports 222 precise exceptions, we don't have to search. */ 223 if (!amask(AMASK_PRECISE_TRAP)) 224 si_code = alpha_fp_emul(regs->pc - 4); 225 else 226 si_code = alpha_fp_emul_imprecise(regs, write_mask); 227 if (si_code == 0) 228 return; 229 } 230 die_if_kernel("Arithmetic fault", regs, 0, NULL); 231 232 info.si_signo = SIGFPE; 233 info.si_errno = 0; 234 info.si_code = si_code; 235 info.si_addr = (void __user *) regs->pc; 236 send_sig_info(SIGFPE, &info, current); 237 } 238 239 asmlinkage void 240 do_entIF(unsigned long type, struct pt_regs *regs) 241 { 242 siginfo_t info; 243 int signo, code; 244 245 if ((regs->ps & ~IPL_MAX) == 0) { 246 if (type == 1) { 247 const unsigned int *data 248 = (const unsigned int *) regs->pc; 249 printk("Kernel bug at %s:%d\n", 250 (const char *)(data[1] | (long)data[2] << 32), 251 data[0]); 252 } 253 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"), 254 regs, type, NULL); 255 } 256 257 switch (type) { 258 case 0: /* breakpoint */ 259 info.si_signo = SIGTRAP; 260 info.si_errno = 0; 261 info.si_code = TRAP_BRKPT; 262 info.si_trapno = 0; 263 info.si_addr = (void __user *) regs->pc; 264 265 if (ptrace_cancel_bpt(current)) { 266 regs->pc -= 4; /* make pc point to former bpt */ 267 } 268 269 send_sig_info(SIGTRAP, &info, current); 270 return; 271 272 case 1: /* bugcheck */ 273 info.si_signo = SIGTRAP; 274 info.si_errno = 0; 275 info.si_code = __SI_FAULT; 276 info.si_addr = (void __user *) regs->pc; 277 info.si_trapno = 0; 278 send_sig_info(SIGTRAP, &info, current); 279 return; 280 281 case 2: /* gentrap */ 282 info.si_addr = (void __user *) regs->pc; 283 info.si_trapno = regs->r16; 284 switch ((long) regs->r16) { 285 case GEN_INTOVF: 286 signo = SIGFPE; 287 code = FPE_INTOVF; 288 break; 289 case GEN_INTDIV: 290 signo = SIGFPE; 291 code = FPE_INTDIV; 292 break; 293 case GEN_FLTOVF: 294 signo = SIGFPE; 295 code = FPE_FLTOVF; 296 break; 297 case GEN_FLTDIV: 298 signo = SIGFPE; 299 code = FPE_FLTDIV; 300 break; 301 case GEN_FLTUND: 302 signo = SIGFPE; 303 code = FPE_FLTUND; 304 break; 305 case GEN_FLTINV: 306 signo = SIGFPE; 307 code = FPE_FLTINV; 308 break; 309 case GEN_FLTINE: 310 signo = SIGFPE; 311 code = FPE_FLTRES; 312 break; 313 case GEN_ROPRAND: 314 signo = SIGFPE; 315 code = __SI_FAULT; 316 break; 317 318 case GEN_DECOVF: 319 case GEN_DECDIV: 320 case GEN_DECINV: 321 case GEN_ASSERTERR: 322 case GEN_NULPTRERR: 323 case GEN_STKOVF: 324 case GEN_STRLENERR: 325 case GEN_SUBSTRERR: 326 case GEN_RANGERR: 327 case GEN_SUBRNG: 328 case GEN_SUBRNG1: 329 case GEN_SUBRNG2: 330 case GEN_SUBRNG3: 331 case GEN_SUBRNG4: 332 case GEN_SUBRNG5: 333 case GEN_SUBRNG6: 334 case GEN_SUBRNG7: 335 default: 336 signo = SIGTRAP; 337 code = __SI_FAULT; 338 break; 339 } 340 341 info.si_signo = signo; 342 info.si_errno = 0; 343 info.si_code = code; 344 info.si_addr = (void __user *) regs->pc; 345 send_sig_info(signo, &info, current); 346 return; 347 348 case 4: /* opDEC */ 349 if (implver() == IMPLVER_EV4) { 350 long si_code; 351 352 /* The some versions of SRM do not handle 353 the opDEC properly - they return the PC of the 354 opDEC fault, not the instruction after as the 355 Alpha architecture requires. Here we fix it up. 356 We do this by intentionally causing an opDEC 357 fault during the boot sequence and testing if 358 we get the correct PC. If not, we set a flag 359 to correct it every time through. */ 360 regs->pc += opDEC_fix; 361 362 /* EV4 does not implement anything except normal 363 rounding. Everything else will come here as 364 an illegal instruction. Emulate them. */ 365 si_code = alpha_fp_emul(regs->pc - 4); 366 if (si_code == 0) 367 return; 368 if (si_code > 0) { 369 info.si_signo = SIGFPE; 370 info.si_errno = 0; 371 info.si_code = si_code; 372 info.si_addr = (void __user *) regs->pc; 373 send_sig_info(SIGFPE, &info, current); 374 return; 375 } 376 } 377 break; 378 379 case 3: /* FEN fault */ 380 /* Irritating users can call PAL_clrfen to disable the 381 FPU for the process. The kernel will then trap in 382 do_switch_stack and undo_switch_stack when we try 383 to save and restore the FP registers. 384 385 Given that GCC by default generates code that uses the 386 FP registers, PAL_clrfen is not useful except for DoS 387 attacks. So turn the bleeding FPU back on and be done 388 with it. */ 389 current_thread_info()->pcb.flags |= 1; 390 __reload_thread(¤t_thread_info()->pcb); 391 return; 392 393 case 5: /* illoc */ 394 default: /* unexpected instruction-fault type */ 395 ; 396 } 397 398 info.si_signo = SIGILL; 399 info.si_errno = 0; 400 info.si_code = ILL_ILLOPC; 401 info.si_addr = (void __user *) regs->pc; 402 send_sig_info(SIGILL, &info, current); 403 } 404 405 /* There is an ifdef in the PALcode in MILO that enables a 406 "kernel debugging entry point" as an unprivileged call_pal. 407 408 We don't want to have anything to do with it, but unfortunately 409 several versions of MILO included in distributions have it enabled, 410 and if we don't put something on the entry point we'll oops. */ 411 412 asmlinkage void 413 do_entDbg(struct pt_regs *regs) 414 { 415 siginfo_t info; 416 417 die_if_kernel("Instruction fault", regs, 0, NULL); 418 419 info.si_signo = SIGILL; 420 info.si_errno = 0; 421 info.si_code = ILL_ILLOPC; 422 info.si_addr = (void __user *) regs->pc; 423 force_sig_info(SIGILL, &info, current); 424 } 425 426 427 /* 428 * entUna has a different register layout to be reasonably simple. It 429 * needs access to all the integer registers (the kernel doesn't use 430 * fp-regs), and it needs to have them in order for simpler access. 431 * 432 * Due to the non-standard register layout (and because we don't want 433 * to handle floating-point regs), user-mode unaligned accesses are 434 * handled separately by do_entUnaUser below. 435 * 436 * Oh, btw, we don't handle the "gp" register correctly, but if we fault 437 * on a gp-register unaligned load/store, something is _very_ wrong 438 * in the kernel anyway.. 439 */ 440 struct allregs { 441 unsigned long regs[32]; 442 unsigned long ps, pc, gp, a0, a1, a2; 443 }; 444 445 struct unaligned_stat { 446 unsigned long count, va, pc; 447 } unaligned[2]; 448 449 450 /* Macro for exception fixup code to access integer registers. */ 451 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)]) 452 453 454 asmlinkage void 455 do_entUna(void * va, unsigned long opcode, unsigned long reg, 456 struct allregs *regs) 457 { 458 long error, tmp1, tmp2, tmp3, tmp4; 459 unsigned long pc = regs->pc - 4; 460 unsigned long *_regs = regs->regs; 461 const struct exception_table_entry *fixup; 462 463 unaligned[0].count++; 464 unaligned[0].va = (unsigned long) va; 465 unaligned[0].pc = pc; 466 467 /* We don't want to use the generic get/put unaligned macros as 468 we want to trap exceptions. Only if we actually get an 469 exception will we decide whether we should have caught it. */ 470 471 switch (opcode) { 472 case 0x0c: /* ldwu */ 473 __asm__ __volatile__( 474 "1: ldq_u %1,0(%3)\n" 475 "2: ldq_u %2,1(%3)\n" 476 " extwl %1,%3,%1\n" 477 " extwh %2,%3,%2\n" 478 "3:\n" 479 ".section __ex_table,\"a\"\n" 480 " .long 1b - .\n" 481 " lda %1,3b-1b(%0)\n" 482 " .long 2b - .\n" 483 " lda %2,3b-2b(%0)\n" 484 ".previous" 485 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 486 : "r"(va), "0"(0)); 487 if (error) 488 goto got_exception; 489 una_reg(reg) = tmp1|tmp2; 490 return; 491 492 case 0x28: /* ldl */ 493 __asm__ __volatile__( 494 "1: ldq_u %1,0(%3)\n" 495 "2: ldq_u %2,3(%3)\n" 496 " extll %1,%3,%1\n" 497 " extlh %2,%3,%2\n" 498 "3:\n" 499 ".section __ex_table,\"a\"\n" 500 " .long 1b - .\n" 501 " lda %1,3b-1b(%0)\n" 502 " .long 2b - .\n" 503 " lda %2,3b-2b(%0)\n" 504 ".previous" 505 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 506 : "r"(va), "0"(0)); 507 if (error) 508 goto got_exception; 509 una_reg(reg) = (int)(tmp1|tmp2); 510 return; 511 512 case 0x29: /* ldq */ 513 __asm__ __volatile__( 514 "1: ldq_u %1,0(%3)\n" 515 "2: ldq_u %2,7(%3)\n" 516 " extql %1,%3,%1\n" 517 " extqh %2,%3,%2\n" 518 "3:\n" 519 ".section __ex_table,\"a\"\n" 520 " .long 1b - .\n" 521 " lda %1,3b-1b(%0)\n" 522 " .long 2b - .\n" 523 " lda %2,3b-2b(%0)\n" 524 ".previous" 525 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 526 : "r"(va), "0"(0)); 527 if (error) 528 goto got_exception; 529 una_reg(reg) = tmp1|tmp2; 530 return; 531 532 /* Note that the store sequences do not indicate that they change 533 memory because it _should_ be affecting nothing in this context. 534 (Otherwise we have other, much larger, problems.) */ 535 case 0x0d: /* stw */ 536 __asm__ __volatile__( 537 "1: ldq_u %2,1(%5)\n" 538 "2: ldq_u %1,0(%5)\n" 539 " inswh %6,%5,%4\n" 540 " inswl %6,%5,%3\n" 541 " mskwh %2,%5,%2\n" 542 " mskwl %1,%5,%1\n" 543 " or %2,%4,%2\n" 544 " or %1,%3,%1\n" 545 "3: stq_u %2,1(%5)\n" 546 "4: stq_u %1,0(%5)\n" 547 "5:\n" 548 ".section __ex_table,\"a\"\n" 549 " .long 1b - .\n" 550 " lda %2,5b-1b(%0)\n" 551 " .long 2b - .\n" 552 " lda %1,5b-2b(%0)\n" 553 " .long 3b - .\n" 554 " lda $31,5b-3b(%0)\n" 555 " .long 4b - .\n" 556 " lda $31,5b-4b(%0)\n" 557 ".previous" 558 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 559 "=&r"(tmp3), "=&r"(tmp4) 560 : "r"(va), "r"(una_reg(reg)), "0"(0)); 561 if (error) 562 goto got_exception; 563 return; 564 565 case 0x2c: /* stl */ 566 __asm__ __volatile__( 567 "1: ldq_u %2,3(%5)\n" 568 "2: ldq_u %1,0(%5)\n" 569 " inslh %6,%5,%4\n" 570 " insll %6,%5,%3\n" 571 " msklh %2,%5,%2\n" 572 " mskll %1,%5,%1\n" 573 " or %2,%4,%2\n" 574 " or %1,%3,%1\n" 575 "3: stq_u %2,3(%5)\n" 576 "4: stq_u %1,0(%5)\n" 577 "5:\n" 578 ".section __ex_table,\"a\"\n" 579 " .long 1b - .\n" 580 " lda %2,5b-1b(%0)\n" 581 " .long 2b - .\n" 582 " lda %1,5b-2b(%0)\n" 583 " .long 3b - .\n" 584 " lda $31,5b-3b(%0)\n" 585 " .long 4b - .\n" 586 " lda $31,5b-4b(%0)\n" 587 ".previous" 588 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 589 "=&r"(tmp3), "=&r"(tmp4) 590 : "r"(va), "r"(una_reg(reg)), "0"(0)); 591 if (error) 592 goto got_exception; 593 return; 594 595 case 0x2d: /* stq */ 596 __asm__ __volatile__( 597 "1: ldq_u %2,7(%5)\n" 598 "2: ldq_u %1,0(%5)\n" 599 " insqh %6,%5,%4\n" 600 " insql %6,%5,%3\n" 601 " mskqh %2,%5,%2\n" 602 " mskql %1,%5,%1\n" 603 " or %2,%4,%2\n" 604 " or %1,%3,%1\n" 605 "3: stq_u %2,7(%5)\n" 606 "4: stq_u %1,0(%5)\n" 607 "5:\n" 608 ".section __ex_table,\"a\"\n\t" 609 " .long 1b - .\n" 610 " lda %2,5b-1b(%0)\n" 611 " .long 2b - .\n" 612 " lda %1,5b-2b(%0)\n" 613 " .long 3b - .\n" 614 " lda $31,5b-3b(%0)\n" 615 " .long 4b - .\n" 616 " lda $31,5b-4b(%0)\n" 617 ".previous" 618 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 619 "=&r"(tmp3), "=&r"(tmp4) 620 : "r"(va), "r"(una_reg(reg)), "0"(0)); 621 if (error) 622 goto got_exception; 623 return; 624 } 625 626 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n", 627 pc, va, opcode, reg); 628 do_exit(SIGSEGV); 629 630 got_exception: 631 /* Ok, we caught the exception, but we don't want it. Is there 632 someone to pass it along to? */ 633 if ((fixup = search_exception_tables(pc)) != 0) { 634 unsigned long newpc; 635 newpc = fixup_exception(una_reg, fixup, pc); 636 637 printk("Forwarding unaligned exception at %lx (%lx)\n", 638 pc, newpc); 639 640 regs->pc = newpc; 641 return; 642 } 643 644 /* 645 * Yikes! No one to forward the exception to. 646 * Since the registers are in a weird format, dump them ourselves. 647 */ 648 649 printk("%s(%d): unhandled unaligned exception\n", 650 current->comm, task_pid_nr(current)); 651 652 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n", 653 pc, una_reg(26), regs->ps); 654 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n", 655 una_reg(0), una_reg(1), una_reg(2)); 656 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n", 657 una_reg(3), una_reg(4), una_reg(5)); 658 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n", 659 una_reg(6), una_reg(7), una_reg(8)); 660 printk("r9 = %016lx r10= %016lx r11= %016lx\n", 661 una_reg(9), una_reg(10), una_reg(11)); 662 printk("r12= %016lx r13= %016lx r14= %016lx\n", 663 una_reg(12), una_reg(13), una_reg(14)); 664 printk("r15= %016lx\n", una_reg(15)); 665 printk("r16= %016lx r17= %016lx r18= %016lx\n", 666 una_reg(16), una_reg(17), una_reg(18)); 667 printk("r19= %016lx r20= %016lx r21= %016lx\n", 668 una_reg(19), una_reg(20), una_reg(21)); 669 printk("r22= %016lx r23= %016lx r24= %016lx\n", 670 una_reg(22), una_reg(23), una_reg(24)); 671 printk("r25= %016lx r27= %016lx r28= %016lx\n", 672 una_reg(25), una_reg(27), una_reg(28)); 673 printk("gp = %016lx sp = %p\n", regs->gp, regs+1); 674 675 dik_show_code((unsigned int *)pc); 676 dik_show_trace((unsigned long *)(regs+1)); 677 678 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { 679 printk("die_if_kernel recursion detected.\n"); 680 local_irq_enable(); 681 while (1); 682 } 683 do_exit(SIGSEGV); 684 } 685 686 /* 687 * Convert an s-floating point value in memory format to the 688 * corresponding value in register format. The exponent 689 * needs to be remapped to preserve non-finite values 690 * (infinities, not-a-numbers, denormals). 691 */ 692 static inline unsigned long 693 s_mem_to_reg (unsigned long s_mem) 694 { 695 unsigned long frac = (s_mem >> 0) & 0x7fffff; 696 unsigned long sign = (s_mem >> 31) & 0x1; 697 unsigned long exp_msb = (s_mem >> 30) & 0x1; 698 unsigned long exp_low = (s_mem >> 23) & 0x7f; 699 unsigned long exp; 700 701 exp = (exp_msb << 10) | exp_low; /* common case */ 702 if (exp_msb) { 703 if (exp_low == 0x7f) { 704 exp = 0x7ff; 705 } 706 } else { 707 if (exp_low == 0x00) { 708 exp = 0x000; 709 } else { 710 exp |= (0x7 << 7); 711 } 712 } 713 return (sign << 63) | (exp << 52) | (frac << 29); 714 } 715 716 /* 717 * Convert an s-floating point value in register format to the 718 * corresponding value in memory format. 719 */ 720 static inline unsigned long 721 s_reg_to_mem (unsigned long s_reg) 722 { 723 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34); 724 } 725 726 /* 727 * Handle user-level unaligned fault. Handling user-level unaligned 728 * faults is *extremely* slow and produces nasty messages. A user 729 * program *should* fix unaligned faults ASAP. 730 * 731 * Notice that we have (almost) the regular kernel stack layout here, 732 * so finding the appropriate registers is a little more difficult 733 * than in the kernel case. 734 * 735 * Finally, we handle regular integer load/stores only. In 736 * particular, load-linked/store-conditionally and floating point 737 * load/stores are not supported. The former make no sense with 738 * unaligned faults (they are guaranteed to fail) and I don't think 739 * the latter will occur in any decent program. 740 * 741 * Sigh. We *do* have to handle some FP operations, because GCC will 742 * uses them as temporary storage for integer memory to memory copies. 743 * However, we need to deal with stt/ldt and sts/lds only. 744 */ 745 746 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \ 747 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \ 748 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \ 749 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */ 750 751 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \ 752 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \ 753 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */ 754 755 #define R(x) ((size_t) &((struct pt_regs *)0)->x) 756 757 static int unauser_reg_offsets[32] = { 758 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8), 759 /* r9 ... r15 are stored in front of regs. */ 760 -56, -48, -40, -32, -24, -16, -8, 761 R(r16), R(r17), R(r18), 762 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26), 763 R(r27), R(r28), R(gp), 764 0, 0 765 }; 766 767 #undef R 768 769 asmlinkage void 770 do_entUnaUser(void __user * va, unsigned long opcode, 771 unsigned long reg, struct pt_regs *regs) 772 { 773 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); 774 775 unsigned long tmp1, tmp2, tmp3, tmp4; 776 unsigned long fake_reg, *reg_addr = &fake_reg; 777 siginfo_t info; 778 long error; 779 780 /* Check the UAC bits to decide what the user wants us to do 781 with the unaliged access. */ 782 783 if (!(current_thread_info()->status & TS_UAC_NOPRINT)) { 784 if (__ratelimit(&ratelimit)) { 785 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n", 786 current->comm, task_pid_nr(current), 787 regs->pc - 4, va, opcode, reg); 788 } 789 } 790 if ((current_thread_info()->status & TS_UAC_SIGBUS)) 791 goto give_sigbus; 792 /* Not sure why you'd want to use this, but... */ 793 if ((current_thread_info()->status & TS_UAC_NOFIX)) 794 return; 795 796 /* Don't bother reading ds in the access check since we already 797 know that this came from the user. Also rely on the fact that 798 the page at TASK_SIZE is unmapped and so can't be touched anyway. */ 799 if (!__access_ok((unsigned long)va, 0, USER_DS)) 800 goto give_sigsegv; 801 802 ++unaligned[1].count; 803 unaligned[1].va = (unsigned long)va; 804 unaligned[1].pc = regs->pc - 4; 805 806 if ((1L << opcode) & OP_INT_MASK) { 807 /* it's an integer load/store */ 808 if (reg < 30) { 809 reg_addr = (unsigned long *) 810 ((char *)regs + unauser_reg_offsets[reg]); 811 } else if (reg == 30) { 812 /* usp in PAL regs */ 813 fake_reg = rdusp(); 814 } else { 815 /* zero "register" */ 816 fake_reg = 0; 817 } 818 } 819 820 /* We don't want to use the generic get/put unaligned macros as 821 we want to trap exceptions. Only if we actually get an 822 exception will we decide whether we should have caught it. */ 823 824 switch (opcode) { 825 case 0x0c: /* ldwu */ 826 __asm__ __volatile__( 827 "1: ldq_u %1,0(%3)\n" 828 "2: ldq_u %2,1(%3)\n" 829 " extwl %1,%3,%1\n" 830 " extwh %2,%3,%2\n" 831 "3:\n" 832 ".section __ex_table,\"a\"\n" 833 " .long 1b - .\n" 834 " lda %1,3b-1b(%0)\n" 835 " .long 2b - .\n" 836 " lda %2,3b-2b(%0)\n" 837 ".previous" 838 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 839 : "r"(va), "0"(0)); 840 if (error) 841 goto give_sigsegv; 842 *reg_addr = tmp1|tmp2; 843 break; 844 845 case 0x22: /* lds */ 846 __asm__ __volatile__( 847 "1: ldq_u %1,0(%3)\n" 848 "2: ldq_u %2,3(%3)\n" 849 " extll %1,%3,%1\n" 850 " extlh %2,%3,%2\n" 851 "3:\n" 852 ".section __ex_table,\"a\"\n" 853 " .long 1b - .\n" 854 " lda %1,3b-1b(%0)\n" 855 " .long 2b - .\n" 856 " lda %2,3b-2b(%0)\n" 857 ".previous" 858 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 859 : "r"(va), "0"(0)); 860 if (error) 861 goto give_sigsegv; 862 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2))); 863 return; 864 865 case 0x23: /* ldt */ 866 __asm__ __volatile__( 867 "1: ldq_u %1,0(%3)\n" 868 "2: ldq_u %2,7(%3)\n" 869 " extql %1,%3,%1\n" 870 " extqh %2,%3,%2\n" 871 "3:\n" 872 ".section __ex_table,\"a\"\n" 873 " .long 1b - .\n" 874 " lda %1,3b-1b(%0)\n" 875 " .long 2b - .\n" 876 " lda %2,3b-2b(%0)\n" 877 ".previous" 878 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 879 : "r"(va), "0"(0)); 880 if (error) 881 goto give_sigsegv; 882 alpha_write_fp_reg(reg, tmp1|tmp2); 883 return; 884 885 case 0x28: /* ldl */ 886 __asm__ __volatile__( 887 "1: ldq_u %1,0(%3)\n" 888 "2: ldq_u %2,3(%3)\n" 889 " extll %1,%3,%1\n" 890 " extlh %2,%3,%2\n" 891 "3:\n" 892 ".section __ex_table,\"a\"\n" 893 " .long 1b - .\n" 894 " lda %1,3b-1b(%0)\n" 895 " .long 2b - .\n" 896 " lda %2,3b-2b(%0)\n" 897 ".previous" 898 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 899 : "r"(va), "0"(0)); 900 if (error) 901 goto give_sigsegv; 902 *reg_addr = (int)(tmp1|tmp2); 903 break; 904 905 case 0x29: /* ldq */ 906 __asm__ __volatile__( 907 "1: ldq_u %1,0(%3)\n" 908 "2: ldq_u %2,7(%3)\n" 909 " extql %1,%3,%1\n" 910 " extqh %2,%3,%2\n" 911 "3:\n" 912 ".section __ex_table,\"a\"\n" 913 " .long 1b - .\n" 914 " lda %1,3b-1b(%0)\n" 915 " .long 2b - .\n" 916 " lda %2,3b-2b(%0)\n" 917 ".previous" 918 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) 919 : "r"(va), "0"(0)); 920 if (error) 921 goto give_sigsegv; 922 *reg_addr = tmp1|tmp2; 923 break; 924 925 /* Note that the store sequences do not indicate that they change 926 memory because it _should_ be affecting nothing in this context. 927 (Otherwise we have other, much larger, problems.) */ 928 case 0x0d: /* stw */ 929 __asm__ __volatile__( 930 "1: ldq_u %2,1(%5)\n" 931 "2: ldq_u %1,0(%5)\n" 932 " inswh %6,%5,%4\n" 933 " inswl %6,%5,%3\n" 934 " mskwh %2,%5,%2\n" 935 " mskwl %1,%5,%1\n" 936 " or %2,%4,%2\n" 937 " or %1,%3,%1\n" 938 "3: stq_u %2,1(%5)\n" 939 "4: stq_u %1,0(%5)\n" 940 "5:\n" 941 ".section __ex_table,\"a\"\n" 942 " .long 1b - .\n" 943 " lda %2,5b-1b(%0)\n" 944 " .long 2b - .\n" 945 " lda %1,5b-2b(%0)\n" 946 " .long 3b - .\n" 947 " lda $31,5b-3b(%0)\n" 948 " .long 4b - .\n" 949 " lda $31,5b-4b(%0)\n" 950 ".previous" 951 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 952 "=&r"(tmp3), "=&r"(tmp4) 953 : "r"(va), "r"(*reg_addr), "0"(0)); 954 if (error) 955 goto give_sigsegv; 956 return; 957 958 case 0x26: /* sts */ 959 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg)); 960 /* FALLTHRU */ 961 962 case 0x2c: /* stl */ 963 __asm__ __volatile__( 964 "1: ldq_u %2,3(%5)\n" 965 "2: ldq_u %1,0(%5)\n" 966 " inslh %6,%5,%4\n" 967 " insll %6,%5,%3\n" 968 " msklh %2,%5,%2\n" 969 " mskll %1,%5,%1\n" 970 " or %2,%4,%2\n" 971 " or %1,%3,%1\n" 972 "3: stq_u %2,3(%5)\n" 973 "4: stq_u %1,0(%5)\n" 974 "5:\n" 975 ".section __ex_table,\"a\"\n" 976 " .long 1b - .\n" 977 " lda %2,5b-1b(%0)\n" 978 " .long 2b - .\n" 979 " lda %1,5b-2b(%0)\n" 980 " .long 3b - .\n" 981 " lda $31,5b-3b(%0)\n" 982 " .long 4b - .\n" 983 " lda $31,5b-4b(%0)\n" 984 ".previous" 985 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 986 "=&r"(tmp3), "=&r"(tmp4) 987 : "r"(va), "r"(*reg_addr), "0"(0)); 988 if (error) 989 goto give_sigsegv; 990 return; 991 992 case 0x27: /* stt */ 993 fake_reg = alpha_read_fp_reg(reg); 994 /* FALLTHRU */ 995 996 case 0x2d: /* stq */ 997 __asm__ __volatile__( 998 "1: ldq_u %2,7(%5)\n" 999 "2: ldq_u %1,0(%5)\n" 1000 " insqh %6,%5,%4\n" 1001 " insql %6,%5,%3\n" 1002 " mskqh %2,%5,%2\n" 1003 " mskql %1,%5,%1\n" 1004 " or %2,%4,%2\n" 1005 " or %1,%3,%1\n" 1006 "3: stq_u %2,7(%5)\n" 1007 "4: stq_u %1,0(%5)\n" 1008 "5:\n" 1009 ".section __ex_table,\"a\"\n\t" 1010 " .long 1b - .\n" 1011 " lda %2,5b-1b(%0)\n" 1012 " .long 2b - .\n" 1013 " lda %1,5b-2b(%0)\n" 1014 " .long 3b - .\n" 1015 " lda $31,5b-3b(%0)\n" 1016 " .long 4b - .\n" 1017 " lda $31,5b-4b(%0)\n" 1018 ".previous" 1019 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), 1020 "=&r"(tmp3), "=&r"(tmp4) 1021 : "r"(va), "r"(*reg_addr), "0"(0)); 1022 if (error) 1023 goto give_sigsegv; 1024 return; 1025 1026 default: 1027 /* What instruction were you trying to use, exactly? */ 1028 goto give_sigbus; 1029 } 1030 1031 /* Only integer loads should get here; everyone else returns early. */ 1032 if (reg == 30) 1033 wrusp(fake_reg); 1034 return; 1035 1036 give_sigsegv: 1037 regs->pc -= 4; /* make pc point to faulting insn */ 1038 info.si_signo = SIGSEGV; 1039 info.si_errno = 0; 1040 1041 /* We need to replicate some of the logic in mm/fault.c, 1042 since we don't have access to the fault code in the 1043 exception handling return path. */ 1044 if (!__access_ok((unsigned long)va, 0, USER_DS)) 1045 info.si_code = SEGV_ACCERR; 1046 else { 1047 struct mm_struct *mm = current->mm; 1048 down_read(&mm->mmap_sem); 1049 if (find_vma(mm, (unsigned long)va)) 1050 info.si_code = SEGV_ACCERR; 1051 else 1052 info.si_code = SEGV_MAPERR; 1053 up_read(&mm->mmap_sem); 1054 } 1055 info.si_addr = va; 1056 send_sig_info(SIGSEGV, &info, current); 1057 return; 1058 1059 give_sigbus: 1060 regs->pc -= 4; 1061 info.si_signo = SIGBUS; 1062 info.si_errno = 0; 1063 info.si_code = BUS_ADRALN; 1064 info.si_addr = va; 1065 send_sig_info(SIGBUS, &info, current); 1066 return; 1067 } 1068 1069 void __cpuinit 1070 trap_init(void) 1071 { 1072 /* Tell PAL-code what global pointer we want in the kernel. */ 1073 register unsigned long gptr __asm__("$29"); 1074 wrkgp(gptr); 1075 1076 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have 1077 a bug in the handling of the opDEC fault. Fix it up if so. */ 1078 if (implver() == IMPLVER_EV4) 1079 opDEC_check(); 1080 1081 wrent(entArith, 1); 1082 wrent(entMM, 2); 1083 wrent(entIF, 3); 1084 wrent(entUna, 4); 1085 wrent(entSys, 5); 1086 wrent(entDbg, 6); 1087 } 1088