xref: /linux/arch/alpha/kernel/time.c (revision fddd87d6e135924b92499917bace103e46c22d00)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/rtc.h>
50 
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 #include <linux/clocksource.h>
55 
56 #include "proto.h"
57 #include "irq_impl.h"
58 
59 static int set_rtc_mmss(unsigned long);
60 
61 DEFINE_SPINLOCK(rtc_lock);
62 EXPORT_SYMBOL(rtc_lock);
63 
64 #define TICK_SIZE (tick_nsec / 1000)
65 
66 /*
67  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
68  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69  * for large CPU clock rates.
70  */
71 #define FIX_SHIFT	48
72 
73 /* lump static variables together for more efficient access: */
74 static struct {
75 	/* cycle counter last time it got invoked */
76 	__u32 last_time;
77 	/* ticks/cycle * 2^48 */
78 	unsigned long scaled_ticks_per_cycle;
79 	/* partial unused tick */
80 	unsigned long partial_tick;
81 } state;
82 
83 unsigned long est_cycle_freq;
84 
85 #ifdef CONFIG_IRQ_WORK
86 
87 DEFINE_PER_CPU(u8, irq_work_pending);
88 
89 #define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
90 #define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
91 #define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
92 
93 void arch_irq_work_raise(void)
94 {
95 	set_irq_work_pending_flag();
96 }
97 
98 #else  /* CONFIG_IRQ_WORK */
99 
100 #define test_irq_work_pending()      0
101 #define clear_irq_work_pending()
102 
103 #endif /* CONFIG_IRQ_WORK */
104 
105 
106 static inline __u32 rpcc(void)
107 {
108 	return __builtin_alpha_rpcc();
109 }
110 
111 int update_persistent_clock(struct timespec now)
112 {
113 	return set_rtc_mmss(now.tv_sec);
114 }
115 
116 void read_persistent_clock(struct timespec *ts)
117 {
118 	unsigned int year, mon, day, hour, min, sec, epoch;
119 
120 	sec = CMOS_READ(RTC_SECONDS);
121 	min = CMOS_READ(RTC_MINUTES);
122 	hour = CMOS_READ(RTC_HOURS);
123 	day = CMOS_READ(RTC_DAY_OF_MONTH);
124 	mon = CMOS_READ(RTC_MONTH);
125 	year = CMOS_READ(RTC_YEAR);
126 
127 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
128 		sec = bcd2bin(sec);
129 		min = bcd2bin(min);
130 		hour = bcd2bin(hour);
131 		day = bcd2bin(day);
132 		mon = bcd2bin(mon);
133 		year = bcd2bin(year);
134 	}
135 
136 	/* PC-like is standard; used for year >= 70 */
137 	epoch = 1900;
138 	if (year < 20)
139 		epoch = 2000;
140 	else if (year >= 20 && year < 48)
141 		/* NT epoch */
142 		epoch = 1980;
143 	else if (year >= 48 && year < 70)
144 		/* Digital UNIX epoch */
145 		epoch = 1952;
146 
147 	printk(KERN_INFO "Using epoch = %d\n", epoch);
148 
149 	if ((year += epoch) < 1970)
150 		year += 100;
151 
152 	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
153 	ts->tv_nsec = 0;
154 }
155 
156 
157 
158 /*
159  * timer_interrupt() needs to keep up the real-time clock,
160  * as well as call the "xtime_update()" routine every clocktick
161  */
162 irqreturn_t timer_interrupt(int irq, void *dev)
163 {
164 	unsigned long delta;
165 	__u32 now;
166 	long nticks;
167 
168 #ifndef CONFIG_SMP
169 	/* Not SMP, do kernel PC profiling here.  */
170 	profile_tick(CPU_PROFILING);
171 #endif
172 
173 	/*
174 	 * Calculate how many ticks have passed since the last update,
175 	 * including any previous partial leftover.  Save any resulting
176 	 * fraction for the next pass.
177 	 */
178 	now = rpcc();
179 	delta = now - state.last_time;
180 	state.last_time = now;
181 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
182 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
183 	nticks = delta >> FIX_SHIFT;
184 
185 	if (nticks)
186 		xtime_update(nticks);
187 
188 	if (test_irq_work_pending()) {
189 		clear_irq_work_pending();
190 		irq_work_run();
191 	}
192 
193 #ifndef CONFIG_SMP
194 	while (nticks--)
195 		update_process_times(user_mode(get_irq_regs()));
196 #endif
197 
198 	return IRQ_HANDLED;
199 }
200 
201 void __init
202 common_init_rtc(void)
203 {
204 	unsigned char x, sel = 0;
205 
206 	/* Reset periodic interrupt frequency.  */
207 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
208  	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
209 	/* Test includes known working values on various platforms
210 	   where 0x26 is wrong; we refuse to change those. */
211  	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
212 		sel = RTC_REF_CLCK_32KHZ + 6;
213 	}
214 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
215 	sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
216 #else
217 # error "Unknown HZ from arch/alpha/Kconfig"
218 #endif
219 	if (sel) {
220 		printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
221 		       CONFIG_HZ, sel);
222 		CMOS_WRITE(sel, RTC_FREQ_SELECT);
223  	}
224 
225 	/* Turn on periodic interrupts.  */
226 	x = CMOS_READ(RTC_CONTROL);
227 	if (!(x & RTC_PIE)) {
228 		printk("Turning on RTC interrupts.\n");
229 		x |= RTC_PIE;
230 		x &= ~(RTC_AIE | RTC_UIE);
231 		CMOS_WRITE(x, RTC_CONTROL);
232 	}
233 	(void) CMOS_READ(RTC_INTR_FLAGS);
234 
235 	outb(0x36, 0x43);	/* pit counter 0: system timer */
236 	outb(0x00, 0x40);
237 	outb(0x00, 0x40);
238 
239 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
240 	outb(0x31, 0x42);
241 	outb(0x13, 0x42);
242 
243 	init_rtc_irq();
244 }
245 
246 unsigned int common_get_rtc_time(struct rtc_time *time)
247 {
248 	return __get_rtc_time(time);
249 }
250 
251 int common_set_rtc_time(struct rtc_time *time)
252 {
253 	return __set_rtc_time(time);
254 }
255 
256 /* Validate a computed cycle counter result against the known bounds for
257    the given processor core.  There's too much brokenness in the way of
258    timing hardware for any one method to work everywhere.  :-(
259 
260    Return 0 if the result cannot be trusted, otherwise return the argument.  */
261 
262 static unsigned long __init
263 validate_cc_value(unsigned long cc)
264 {
265 	static struct bounds {
266 		unsigned int min, max;
267 	} cpu_hz[] __initdata = {
268 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
269 		[EV4_CPU]    = {  100000000,  300000000 },
270 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
271 		[EV45_CPU]   = {  200000000,  300000000 },
272 		[EV5_CPU]    = {  250000000,  433000000 },
273 		[EV56_CPU]   = {  333000000,  667000000 },
274 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
275 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
276 		[EV6_CPU]    = {  466000000,  600000000 },
277 		[EV67_CPU]   = {  600000000,  750000000 },
278 		[EV68AL_CPU] = {  750000000,  940000000 },
279 		[EV68CB_CPU] = { 1000000000, 1333333333 },
280 		/* None of the following are shipping as of 2001-11-01.  */
281 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
282 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
283 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
284 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
285 	};
286 
287 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
288 	const unsigned int deviation = 10000000;
289 
290 	struct percpu_struct *cpu;
291 	unsigned int index;
292 
293 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
294 	index = cpu->type & 0xffffffff;
295 
296 	/* If index out of bounds, no way to validate.  */
297 	if (index >= ARRAY_SIZE(cpu_hz))
298 		return cc;
299 
300 	/* If index contains no data, no way to validate.  */
301 	if (cpu_hz[index].max == 0)
302 		return cc;
303 
304 	if (cc < cpu_hz[index].min - deviation
305 	    || cc > cpu_hz[index].max + deviation)
306 		return 0;
307 
308 	return cc;
309 }
310 
311 
312 /*
313  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
314  * arch/i386/time.c.
315  */
316 
317 #define CALIBRATE_LATCH	0xffff
318 #define TIMEOUT_COUNT	0x100000
319 
320 static unsigned long __init
321 calibrate_cc_with_pit(void)
322 {
323 	int cc, count = 0;
324 
325 	/* Set the Gate high, disable speaker */
326 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
327 
328 	/*
329 	 * Now let's take care of CTC channel 2
330 	 *
331 	 * Set the Gate high, program CTC channel 2 for mode 0,
332 	 * (interrupt on terminal count mode), binary count,
333 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
334 	 */
335 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
336 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
337 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
338 
339 	cc = rpcc();
340 	do {
341 		count++;
342 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
343 	cc = rpcc() - cc;
344 
345 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
346 	if (count <= 1 || count == TIMEOUT_COUNT)
347 		return 0;
348 
349 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
350 }
351 
352 /* The Linux interpretation of the CMOS clock register contents:
353    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
354    RTC registers show the second which has precisely just started.
355    Let's hope other operating systems interpret the RTC the same way.  */
356 
357 static unsigned long __init
358 rpcc_after_update_in_progress(void)
359 {
360 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
361 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
362 
363 	return rpcc();
364 }
365 
366 #ifndef CONFIG_SMP
367 /* Until and unless we figure out how to get cpu cycle counters
368    in sync and keep them there, we can't use the rpcc.  */
369 static cycle_t read_rpcc(struct clocksource *cs)
370 {
371 	cycle_t ret = (cycle_t)rpcc();
372 	return ret;
373 }
374 
375 static struct clocksource clocksource_rpcc = {
376 	.name                   = "rpcc",
377 	.rating                 = 300,
378 	.read                   = read_rpcc,
379 	.mask                   = CLOCKSOURCE_MASK(32),
380 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
381 };
382 
383 static inline void register_rpcc_clocksource(long cycle_freq)
384 {
385 	clocksource_register_hz(&clocksource_rpcc, cycle_freq);
386 }
387 #else /* !CONFIG_SMP */
388 static inline void register_rpcc_clocksource(long cycle_freq)
389 {
390 }
391 #endif /* !CONFIG_SMP */
392 
393 void __init
394 time_init(void)
395 {
396 	unsigned int cc1, cc2;
397 	unsigned long cycle_freq, tolerance;
398 	long diff;
399 
400 	/* Calibrate CPU clock -- attempt #1.  */
401 	if (!est_cycle_freq)
402 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
403 
404 	cc1 = rpcc();
405 
406 	/* Calibrate CPU clock -- attempt #2.  */
407 	if (!est_cycle_freq) {
408 		cc1 = rpcc_after_update_in_progress();
409 		cc2 = rpcc_after_update_in_progress();
410 		est_cycle_freq = validate_cc_value(cc2 - cc1);
411 		cc1 = cc2;
412 	}
413 
414 	cycle_freq = hwrpb->cycle_freq;
415 	if (est_cycle_freq) {
416 		/* If the given value is within 250 PPM of what we calculated,
417 		   accept it.  Otherwise, use what we found.  */
418 		tolerance = cycle_freq / 4000;
419 		diff = cycle_freq - est_cycle_freq;
420 		if (diff < 0)
421 			diff = -diff;
422 		if ((unsigned long)diff > tolerance) {
423 			cycle_freq = est_cycle_freq;
424 			printk("HWRPB cycle frequency bogus.  "
425 			       "Estimated %lu Hz\n", cycle_freq);
426 		} else {
427 			est_cycle_freq = 0;
428 		}
429 	} else if (! validate_cc_value (cycle_freq)) {
430 		printk("HWRPB cycle frequency bogus, "
431 		       "and unable to estimate a proper value!\n");
432 	}
433 
434 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
435 	   to settle, as the Update-In-Progress bit going low isn't good
436 	   enough on some hardware.  2ms is our guess; we haven't found
437 	   bogomips yet, but this is close on a 500Mhz box.  */
438 	__delay(1000000);
439 
440 
441 	if (HZ > (1<<16)) {
442 		extern void __you_loose (void);
443 		__you_loose();
444 	}
445 
446 	register_rpcc_clocksource(cycle_freq);
447 
448 	state.last_time = cc1;
449 	state.scaled_ticks_per_cycle
450 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
451 	state.partial_tick = 0L;
452 
453 	/* Startup the timer source. */
454 	alpha_mv.init_rtc();
455 }
456 
457 /*
458  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
459  * called 500 ms after the second nowtime has started, because when
460  * nowtime is written into the registers of the CMOS clock, it will
461  * jump to the next second precisely 500 ms later. Check the Motorola
462  * MC146818A or Dallas DS12887 data sheet for details.
463  *
464  * BUG: This routine does not handle hour overflow properly; it just
465  *      sets the minutes. Usually you won't notice until after reboot!
466  */
467 
468 
469 static int
470 set_rtc_mmss(unsigned long nowtime)
471 {
472 	int retval = 0;
473 	int real_seconds, real_minutes, cmos_minutes;
474 	unsigned char save_control, save_freq_select;
475 
476 	/* irq are locally disabled here */
477 	spin_lock(&rtc_lock);
478 	/* Tell the clock it's being set */
479 	save_control = CMOS_READ(RTC_CONTROL);
480 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
481 
482 	/* Stop and reset prescaler */
483 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
484 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
485 
486 	cmos_minutes = CMOS_READ(RTC_MINUTES);
487 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
488 		cmos_minutes = bcd2bin(cmos_minutes);
489 
490 	/*
491 	 * since we're only adjusting minutes and seconds,
492 	 * don't interfere with hour overflow. This avoids
493 	 * messing with unknown time zones but requires your
494 	 * RTC not to be off by more than 15 minutes
495 	 */
496 	real_seconds = nowtime % 60;
497 	real_minutes = nowtime / 60;
498 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
499 		/* correct for half hour time zone */
500 		real_minutes += 30;
501 	}
502 	real_minutes %= 60;
503 
504 	if (abs(real_minutes - cmos_minutes) < 30) {
505 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
506 			real_seconds = bin2bcd(real_seconds);
507 			real_minutes = bin2bcd(real_minutes);
508 		}
509 		CMOS_WRITE(real_seconds,RTC_SECONDS);
510 		CMOS_WRITE(real_minutes,RTC_MINUTES);
511 	} else {
512 		printk_once(KERN_NOTICE
513 		       "set_rtc_mmss: can't update from %d to %d\n",
514 		       cmos_minutes, real_minutes);
515  		retval = -1;
516 	}
517 
518 	/* The following flags have to be released exactly in this order,
519 	 * otherwise the DS12887 (popular MC146818A clone with integrated
520 	 * battery and quartz) will not reset the oscillator and will not
521 	 * update precisely 500 ms later. You won't find this mentioned in
522 	 * the Dallas Semiconductor data sheets, but who believes data
523 	 * sheets anyway ...                           -- Markus Kuhn
524 	 */
525 	CMOS_WRITE(save_control, RTC_CONTROL);
526 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
527 	spin_unlock(&rtc_lock);
528 
529 	return retval;
530 }
531