1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 #include <linux/irq_work.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/io.h> 48 #include <asm/hwrpb.h> 49 #include <asm/rtc.h> 50 51 #include <linux/mc146818rtc.h> 52 #include <linux/time.h> 53 #include <linux/timex.h> 54 #include <linux/clocksource.h> 55 56 #include "proto.h" 57 #include "irq_impl.h" 58 59 static int set_rtc_mmss(unsigned long); 60 61 DEFINE_SPINLOCK(rtc_lock); 62 EXPORT_SYMBOL(rtc_lock); 63 64 #define TICK_SIZE (tick_nsec / 1000) 65 66 /* 67 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 69 * for large CPU clock rates. 70 */ 71 #define FIX_SHIFT 48 72 73 /* lump static variables together for more efficient access: */ 74 static struct { 75 /* cycle counter last time it got invoked */ 76 __u32 last_time; 77 /* ticks/cycle * 2^48 */ 78 unsigned long scaled_ticks_per_cycle; 79 /* partial unused tick */ 80 unsigned long partial_tick; 81 } state; 82 83 unsigned long est_cycle_freq; 84 85 #ifdef CONFIG_IRQ_WORK 86 87 DEFINE_PER_CPU(u8, irq_work_pending); 88 89 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 90 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) 91 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 92 93 void arch_irq_work_raise(void) 94 { 95 set_irq_work_pending_flag(); 96 } 97 98 #else /* CONFIG_IRQ_WORK */ 99 100 #define test_irq_work_pending() 0 101 #define clear_irq_work_pending() 102 103 #endif /* CONFIG_IRQ_WORK */ 104 105 106 static inline __u32 rpcc(void) 107 { 108 return __builtin_alpha_rpcc(); 109 } 110 111 int update_persistent_clock(struct timespec now) 112 { 113 return set_rtc_mmss(now.tv_sec); 114 } 115 116 void read_persistent_clock(struct timespec *ts) 117 { 118 unsigned int year, mon, day, hour, min, sec, epoch; 119 120 sec = CMOS_READ(RTC_SECONDS); 121 min = CMOS_READ(RTC_MINUTES); 122 hour = CMOS_READ(RTC_HOURS); 123 day = CMOS_READ(RTC_DAY_OF_MONTH); 124 mon = CMOS_READ(RTC_MONTH); 125 year = CMOS_READ(RTC_YEAR); 126 127 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 128 sec = bcd2bin(sec); 129 min = bcd2bin(min); 130 hour = bcd2bin(hour); 131 day = bcd2bin(day); 132 mon = bcd2bin(mon); 133 year = bcd2bin(year); 134 } 135 136 /* PC-like is standard; used for year >= 70 */ 137 epoch = 1900; 138 if (year < 20) 139 epoch = 2000; 140 else if (year >= 20 && year < 48) 141 /* NT epoch */ 142 epoch = 1980; 143 else if (year >= 48 && year < 70) 144 /* Digital UNIX epoch */ 145 epoch = 1952; 146 147 printk(KERN_INFO "Using epoch = %d\n", epoch); 148 149 if ((year += epoch) < 1970) 150 year += 100; 151 152 ts->tv_sec = mktime(year, mon, day, hour, min, sec); 153 ts->tv_nsec = 0; 154 } 155 156 157 158 /* 159 * timer_interrupt() needs to keep up the real-time clock, 160 * as well as call the "xtime_update()" routine every clocktick 161 */ 162 irqreturn_t timer_interrupt(int irq, void *dev) 163 { 164 unsigned long delta; 165 __u32 now; 166 long nticks; 167 168 #ifndef CONFIG_SMP 169 /* Not SMP, do kernel PC profiling here. */ 170 profile_tick(CPU_PROFILING); 171 #endif 172 173 /* 174 * Calculate how many ticks have passed since the last update, 175 * including any previous partial leftover. Save any resulting 176 * fraction for the next pass. 177 */ 178 now = rpcc(); 179 delta = now - state.last_time; 180 state.last_time = now; 181 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 182 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 183 nticks = delta >> FIX_SHIFT; 184 185 if (nticks) 186 xtime_update(nticks); 187 188 if (test_irq_work_pending()) { 189 clear_irq_work_pending(); 190 irq_work_run(); 191 } 192 193 #ifndef CONFIG_SMP 194 while (nticks--) 195 update_process_times(user_mode(get_irq_regs())); 196 #endif 197 198 return IRQ_HANDLED; 199 } 200 201 void __init 202 common_init_rtc(void) 203 { 204 unsigned char x, sel = 0; 205 206 /* Reset periodic interrupt frequency. */ 207 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200 208 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 209 /* Test includes known working values on various platforms 210 where 0x26 is wrong; we refuse to change those. */ 211 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 212 sel = RTC_REF_CLCK_32KHZ + 6; 213 } 214 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32 215 sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ); 216 #else 217 # error "Unknown HZ from arch/alpha/Kconfig" 218 #endif 219 if (sel) { 220 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n", 221 CONFIG_HZ, sel); 222 CMOS_WRITE(sel, RTC_FREQ_SELECT); 223 } 224 225 /* Turn on periodic interrupts. */ 226 x = CMOS_READ(RTC_CONTROL); 227 if (!(x & RTC_PIE)) { 228 printk("Turning on RTC interrupts.\n"); 229 x |= RTC_PIE; 230 x &= ~(RTC_AIE | RTC_UIE); 231 CMOS_WRITE(x, RTC_CONTROL); 232 } 233 (void) CMOS_READ(RTC_INTR_FLAGS); 234 235 outb(0x36, 0x43); /* pit counter 0: system timer */ 236 outb(0x00, 0x40); 237 outb(0x00, 0x40); 238 239 outb(0xb6, 0x43); /* pit counter 2: speaker */ 240 outb(0x31, 0x42); 241 outb(0x13, 0x42); 242 243 init_rtc_irq(); 244 } 245 246 unsigned int common_get_rtc_time(struct rtc_time *time) 247 { 248 return __get_rtc_time(time); 249 } 250 251 int common_set_rtc_time(struct rtc_time *time) 252 { 253 return __set_rtc_time(time); 254 } 255 256 /* Validate a computed cycle counter result against the known bounds for 257 the given processor core. There's too much brokenness in the way of 258 timing hardware for any one method to work everywhere. :-( 259 260 Return 0 if the result cannot be trusted, otherwise return the argument. */ 261 262 static unsigned long __init 263 validate_cc_value(unsigned long cc) 264 { 265 static struct bounds { 266 unsigned int min, max; 267 } cpu_hz[] __initdata = { 268 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 269 [EV4_CPU] = { 100000000, 300000000 }, 270 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 271 [EV45_CPU] = { 200000000, 300000000 }, 272 [EV5_CPU] = { 250000000, 433000000 }, 273 [EV56_CPU] = { 333000000, 667000000 }, 274 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 275 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 276 [EV6_CPU] = { 466000000, 600000000 }, 277 [EV67_CPU] = { 600000000, 750000000 }, 278 [EV68AL_CPU] = { 750000000, 940000000 }, 279 [EV68CB_CPU] = { 1000000000, 1333333333 }, 280 /* None of the following are shipping as of 2001-11-01. */ 281 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 282 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 283 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 284 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 285 }; 286 287 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 288 const unsigned int deviation = 10000000; 289 290 struct percpu_struct *cpu; 291 unsigned int index; 292 293 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 294 index = cpu->type & 0xffffffff; 295 296 /* If index out of bounds, no way to validate. */ 297 if (index >= ARRAY_SIZE(cpu_hz)) 298 return cc; 299 300 /* If index contains no data, no way to validate. */ 301 if (cpu_hz[index].max == 0) 302 return cc; 303 304 if (cc < cpu_hz[index].min - deviation 305 || cc > cpu_hz[index].max + deviation) 306 return 0; 307 308 return cc; 309 } 310 311 312 /* 313 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 314 * arch/i386/time.c. 315 */ 316 317 #define CALIBRATE_LATCH 0xffff 318 #define TIMEOUT_COUNT 0x100000 319 320 static unsigned long __init 321 calibrate_cc_with_pit(void) 322 { 323 int cc, count = 0; 324 325 /* Set the Gate high, disable speaker */ 326 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 327 328 /* 329 * Now let's take care of CTC channel 2 330 * 331 * Set the Gate high, program CTC channel 2 for mode 0, 332 * (interrupt on terminal count mode), binary count, 333 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 334 */ 335 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 336 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 337 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 338 339 cc = rpcc(); 340 do { 341 count++; 342 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 343 cc = rpcc() - cc; 344 345 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 346 if (count <= 1 || count == TIMEOUT_COUNT) 347 return 0; 348 349 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 350 } 351 352 /* The Linux interpretation of the CMOS clock register contents: 353 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 354 RTC registers show the second which has precisely just started. 355 Let's hope other operating systems interpret the RTC the same way. */ 356 357 static unsigned long __init 358 rpcc_after_update_in_progress(void) 359 { 360 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 361 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 362 363 return rpcc(); 364 } 365 366 #ifndef CONFIG_SMP 367 /* Until and unless we figure out how to get cpu cycle counters 368 in sync and keep them there, we can't use the rpcc. */ 369 static cycle_t read_rpcc(struct clocksource *cs) 370 { 371 cycle_t ret = (cycle_t)rpcc(); 372 return ret; 373 } 374 375 static struct clocksource clocksource_rpcc = { 376 .name = "rpcc", 377 .rating = 300, 378 .read = read_rpcc, 379 .mask = CLOCKSOURCE_MASK(32), 380 .flags = CLOCK_SOURCE_IS_CONTINUOUS 381 }; 382 383 static inline void register_rpcc_clocksource(long cycle_freq) 384 { 385 clocksource_register_hz(&clocksource_rpcc, cycle_freq); 386 } 387 #else /* !CONFIG_SMP */ 388 static inline void register_rpcc_clocksource(long cycle_freq) 389 { 390 } 391 #endif /* !CONFIG_SMP */ 392 393 void __init 394 time_init(void) 395 { 396 unsigned int cc1, cc2; 397 unsigned long cycle_freq, tolerance; 398 long diff; 399 400 /* Calibrate CPU clock -- attempt #1. */ 401 if (!est_cycle_freq) 402 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 403 404 cc1 = rpcc(); 405 406 /* Calibrate CPU clock -- attempt #2. */ 407 if (!est_cycle_freq) { 408 cc1 = rpcc_after_update_in_progress(); 409 cc2 = rpcc_after_update_in_progress(); 410 est_cycle_freq = validate_cc_value(cc2 - cc1); 411 cc1 = cc2; 412 } 413 414 cycle_freq = hwrpb->cycle_freq; 415 if (est_cycle_freq) { 416 /* If the given value is within 250 PPM of what we calculated, 417 accept it. Otherwise, use what we found. */ 418 tolerance = cycle_freq / 4000; 419 diff = cycle_freq - est_cycle_freq; 420 if (diff < 0) 421 diff = -diff; 422 if ((unsigned long)diff > tolerance) { 423 cycle_freq = est_cycle_freq; 424 printk("HWRPB cycle frequency bogus. " 425 "Estimated %lu Hz\n", cycle_freq); 426 } else { 427 est_cycle_freq = 0; 428 } 429 } else if (! validate_cc_value (cycle_freq)) { 430 printk("HWRPB cycle frequency bogus, " 431 "and unable to estimate a proper value!\n"); 432 } 433 434 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 435 to settle, as the Update-In-Progress bit going low isn't good 436 enough on some hardware. 2ms is our guess; we haven't found 437 bogomips yet, but this is close on a 500Mhz box. */ 438 __delay(1000000); 439 440 441 if (HZ > (1<<16)) { 442 extern void __you_loose (void); 443 __you_loose(); 444 } 445 446 register_rpcc_clocksource(cycle_freq); 447 448 state.last_time = cc1; 449 state.scaled_ticks_per_cycle 450 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 451 state.partial_tick = 0L; 452 453 /* Startup the timer source. */ 454 alpha_mv.init_rtc(); 455 } 456 457 /* 458 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 459 * called 500 ms after the second nowtime has started, because when 460 * nowtime is written into the registers of the CMOS clock, it will 461 * jump to the next second precisely 500 ms later. Check the Motorola 462 * MC146818A or Dallas DS12887 data sheet for details. 463 * 464 * BUG: This routine does not handle hour overflow properly; it just 465 * sets the minutes. Usually you won't notice until after reboot! 466 */ 467 468 469 static int 470 set_rtc_mmss(unsigned long nowtime) 471 { 472 int retval = 0; 473 int real_seconds, real_minutes, cmos_minutes; 474 unsigned char save_control, save_freq_select; 475 476 /* irq are locally disabled here */ 477 spin_lock(&rtc_lock); 478 /* Tell the clock it's being set */ 479 save_control = CMOS_READ(RTC_CONTROL); 480 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 481 482 /* Stop and reset prescaler */ 483 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 484 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 485 486 cmos_minutes = CMOS_READ(RTC_MINUTES); 487 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 488 cmos_minutes = bcd2bin(cmos_minutes); 489 490 /* 491 * since we're only adjusting minutes and seconds, 492 * don't interfere with hour overflow. This avoids 493 * messing with unknown time zones but requires your 494 * RTC not to be off by more than 15 minutes 495 */ 496 real_seconds = nowtime % 60; 497 real_minutes = nowtime / 60; 498 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 499 /* correct for half hour time zone */ 500 real_minutes += 30; 501 } 502 real_minutes %= 60; 503 504 if (abs(real_minutes - cmos_minutes) < 30) { 505 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 506 real_seconds = bin2bcd(real_seconds); 507 real_minutes = bin2bcd(real_minutes); 508 } 509 CMOS_WRITE(real_seconds,RTC_SECONDS); 510 CMOS_WRITE(real_minutes,RTC_MINUTES); 511 } else { 512 printk_once(KERN_NOTICE 513 "set_rtc_mmss: can't update from %d to %d\n", 514 cmos_minutes, real_minutes); 515 retval = -1; 516 } 517 518 /* The following flags have to be released exactly in this order, 519 * otherwise the DS12887 (popular MC146818A clone with integrated 520 * battery and quartz) will not reset the oscillator and will not 521 * update precisely 500 ms later. You won't find this mentioned in 522 * the Dallas Semiconductor data sheets, but who believes data 523 * sheets anyway ... -- Markus Kuhn 524 */ 525 CMOS_WRITE(save_control, RTC_CONTROL); 526 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 527 spin_unlock(&rtc_lock); 528 529 return retval; 530 } 531