xref: /linux/arch/alpha/kernel/time.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/config.h>
31 #include <linux/errno.h>
32 #include <linux/module.h>
33 #include <linux/sched.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/irq.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/bcd.h>
44 #include <linux/profile.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
50 
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 
55 #include "proto.h"
56 #include "irq_impl.h"
57 
58 extern unsigned long wall_jiffies;	/* kernel/timer.c */
59 
60 static int set_rtc_mmss(unsigned long);
61 
62 DEFINE_SPINLOCK(rtc_lock);
63 
64 #define TICK_SIZE (tick_nsec / 1000)
65 
66 /*
67  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
68  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69  * for large CPU clock rates.
70  */
71 #define FIX_SHIFT	48
72 
73 /* lump static variables together for more efficient access: */
74 static struct {
75 	/* cycle counter last time it got invoked */
76 	__u32 last_time;
77 	/* ticks/cycle * 2^48 */
78 	unsigned long scaled_ticks_per_cycle;
79 	/* last time the CMOS clock got updated */
80 	time_t last_rtc_update;
81 	/* partial unused tick */
82 	unsigned long partial_tick;
83 } state;
84 
85 unsigned long est_cycle_freq;
86 
87 
88 static inline __u32 rpcc(void)
89 {
90     __u32 result;
91     asm volatile ("rpcc %0" : "=r"(result));
92     return result;
93 }
94 
95 /*
96  * Scheduler clock - returns current time in nanosec units.
97  *
98  * Copied from ARM code for expediency... ;-}
99  */
100 unsigned long long sched_clock(void)
101 {
102         return (unsigned long long)jiffies * (1000000000 / HZ);
103 }
104 
105 
106 /*
107  * timer_interrupt() needs to keep up the real-time clock,
108  * as well as call the "do_timer()" routine every clocktick
109  */
110 irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs)
111 {
112 	unsigned long delta;
113 	__u32 now;
114 	long nticks;
115 
116 #ifndef CONFIG_SMP
117 	/* Not SMP, do kernel PC profiling here.  */
118 	profile_tick(CPU_PROFILING, regs);
119 #endif
120 
121 	write_seqlock(&xtime_lock);
122 
123 	/*
124 	 * Calculate how many ticks have passed since the last update,
125 	 * including any previous partial leftover.  Save any resulting
126 	 * fraction for the next pass.
127 	 */
128 	now = rpcc();
129 	delta = now - state.last_time;
130 	state.last_time = now;
131 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
132 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
133 	nticks = delta >> FIX_SHIFT;
134 
135 	while (nticks > 0) {
136 		do_timer(regs);
137 #ifndef CONFIG_SMP
138 		update_process_times(user_mode(regs));
139 #endif
140 		nticks--;
141 	}
142 
143 	/*
144 	 * If we have an externally synchronized Linux clock, then update
145 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
146 	 * called as close as possible to 500 ms before the new second starts.
147 	 */
148 	if (ntp_synced()
149 	    && xtime.tv_sec > state.last_rtc_update + 660
150 	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
151 	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
152 		int tmp = set_rtc_mmss(xtime.tv_sec);
153 		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
154 	}
155 
156 	write_sequnlock(&xtime_lock);
157 	return IRQ_HANDLED;
158 }
159 
160 void
161 common_init_rtc(void)
162 {
163 	unsigned char x;
164 
165 	/* Reset periodic interrupt frequency.  */
166 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
167         /* Test includes known working values on various platforms
168            where 0x26 is wrong; we refuse to change those. */
169 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
170 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
171 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
172 	}
173 
174 	/* Turn on periodic interrupts.  */
175 	x = CMOS_READ(RTC_CONTROL);
176 	if (!(x & RTC_PIE)) {
177 		printk("Turning on RTC interrupts.\n");
178 		x |= RTC_PIE;
179 		x &= ~(RTC_AIE | RTC_UIE);
180 		CMOS_WRITE(x, RTC_CONTROL);
181 	}
182 	(void) CMOS_READ(RTC_INTR_FLAGS);
183 
184 	outb(0x36, 0x43);	/* pit counter 0: system timer */
185 	outb(0x00, 0x40);
186 	outb(0x00, 0x40);
187 
188 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
189 	outb(0x31, 0x42);
190 	outb(0x13, 0x42);
191 
192 	init_rtc_irq();
193 }
194 
195 
196 /* Validate a computed cycle counter result against the known bounds for
197    the given processor core.  There's too much brokenness in the way of
198    timing hardware for any one method to work everywhere.  :-(
199 
200    Return 0 if the result cannot be trusted, otherwise return the argument.  */
201 
202 static unsigned long __init
203 validate_cc_value(unsigned long cc)
204 {
205 	static struct bounds {
206 		unsigned int min, max;
207 	} cpu_hz[] __initdata = {
208 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
209 		[EV4_CPU]    = {  100000000,  300000000 },
210 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
211 		[EV45_CPU]   = {  200000000,  300000000 },
212 		[EV5_CPU]    = {  250000000,  433000000 },
213 		[EV56_CPU]   = {  333000000,  667000000 },
214 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
215 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
216 		[EV6_CPU]    = {  466000000,  600000000 },
217 		[EV67_CPU]   = {  600000000,  750000000 },
218 		[EV68AL_CPU] = {  750000000,  940000000 },
219 		[EV68CB_CPU] = { 1000000000, 1333333333 },
220 		/* None of the following are shipping as of 2001-11-01.  */
221 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
222 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
223 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
224 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
225 	};
226 
227 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
228 	const unsigned int deviation = 10000000;
229 
230 	struct percpu_struct *cpu;
231 	unsigned int index;
232 
233 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
234 	index = cpu->type & 0xffffffff;
235 
236 	/* If index out of bounds, no way to validate.  */
237 	if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0]))
238 		return cc;
239 
240 	/* If index contains no data, no way to validate.  */
241 	if (cpu_hz[index].max == 0)
242 		return cc;
243 
244 	if (cc < cpu_hz[index].min - deviation
245 	    || cc > cpu_hz[index].max + deviation)
246 		return 0;
247 
248 	return cc;
249 }
250 
251 
252 /*
253  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
254  * arch/i386/time.c.
255  */
256 
257 #define CALIBRATE_LATCH	0xffff
258 #define TIMEOUT_COUNT	0x100000
259 
260 static unsigned long __init
261 calibrate_cc_with_pit(void)
262 {
263 	int cc, count = 0;
264 
265 	/* Set the Gate high, disable speaker */
266 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
267 
268 	/*
269 	 * Now let's take care of CTC channel 2
270 	 *
271 	 * Set the Gate high, program CTC channel 2 for mode 0,
272 	 * (interrupt on terminal count mode), binary count,
273 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
274 	 */
275 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
276 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
277 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
278 
279 	cc = rpcc();
280 	do {
281 		count++;
282 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
283 	cc = rpcc() - cc;
284 
285 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
286 	if (count <= 1 || count == TIMEOUT_COUNT)
287 		return 0;
288 
289 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
290 }
291 
292 /* The Linux interpretation of the CMOS clock register contents:
293    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
294    RTC registers show the second which has precisely just started.
295    Let's hope other operating systems interpret the RTC the same way.  */
296 
297 static unsigned long __init
298 rpcc_after_update_in_progress(void)
299 {
300 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
301 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
302 
303 	return rpcc();
304 }
305 
306 void __init
307 time_init(void)
308 {
309 	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
310 	unsigned long cycle_freq, tolerance;
311 	long diff;
312 
313 	/* Calibrate CPU clock -- attempt #1.  */
314 	if (!est_cycle_freq)
315 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
316 
317 	cc1 = rpcc();
318 
319 	/* Calibrate CPU clock -- attempt #2.  */
320 	if (!est_cycle_freq) {
321 		cc1 = rpcc_after_update_in_progress();
322 		cc2 = rpcc_after_update_in_progress();
323 		est_cycle_freq = validate_cc_value(cc2 - cc1);
324 		cc1 = cc2;
325 	}
326 
327 	cycle_freq = hwrpb->cycle_freq;
328 	if (est_cycle_freq) {
329 		/* If the given value is within 250 PPM of what we calculated,
330 		   accept it.  Otherwise, use what we found.  */
331 		tolerance = cycle_freq / 4000;
332 		diff = cycle_freq - est_cycle_freq;
333 		if (diff < 0)
334 			diff = -diff;
335 		if ((unsigned long)diff > tolerance) {
336 			cycle_freq = est_cycle_freq;
337 			printk("HWRPB cycle frequency bogus.  "
338 			       "Estimated %lu Hz\n", cycle_freq);
339 		} else {
340 			est_cycle_freq = 0;
341 		}
342 	} else if (! validate_cc_value (cycle_freq)) {
343 		printk("HWRPB cycle frequency bogus, "
344 		       "and unable to estimate a proper value!\n");
345 	}
346 
347 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
348 	   to settle, as the Update-In-Progress bit going low isn't good
349 	   enough on some hardware.  2ms is our guess; we haven't found
350 	   bogomips yet, but this is close on a 500Mhz box.  */
351 	__delay(1000000);
352 
353 	sec = CMOS_READ(RTC_SECONDS);
354 	min = CMOS_READ(RTC_MINUTES);
355 	hour = CMOS_READ(RTC_HOURS);
356 	day = CMOS_READ(RTC_DAY_OF_MONTH);
357 	mon = CMOS_READ(RTC_MONTH);
358 	year = CMOS_READ(RTC_YEAR);
359 
360 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
361 		BCD_TO_BIN(sec);
362 		BCD_TO_BIN(min);
363 		BCD_TO_BIN(hour);
364 		BCD_TO_BIN(day);
365 		BCD_TO_BIN(mon);
366 		BCD_TO_BIN(year);
367 	}
368 
369 	/* PC-like is standard; used for year >= 70 */
370 	epoch = 1900;
371 	if (year < 20)
372 		epoch = 2000;
373 	else if (year >= 20 && year < 48)
374 		/* NT epoch */
375 		epoch = 1980;
376 	else if (year >= 48 && year < 70)
377 		/* Digital UNIX epoch */
378 		epoch = 1952;
379 
380 	printk(KERN_INFO "Using epoch = %d\n", epoch);
381 
382 	if ((year += epoch) < 1970)
383 		year += 100;
384 
385 	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
386 	xtime.tv_nsec = 0;
387 
388         wall_to_monotonic.tv_sec -= xtime.tv_sec;
389         wall_to_monotonic.tv_nsec = 0;
390 
391 	if (HZ > (1<<16)) {
392 		extern void __you_loose (void);
393 		__you_loose();
394 	}
395 
396 	state.last_time = cc1;
397 	state.scaled_ticks_per_cycle
398 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
399 	state.last_rtc_update = 0;
400 	state.partial_tick = 0L;
401 
402 	/* Startup the timer source. */
403 	alpha_mv.init_rtc();
404 }
405 
406 /*
407  * Use the cycle counter to estimate an displacement from the last time
408  * tick.  Unfortunately the Alpha designers made only the low 32-bits of
409  * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
410  * part.  So we can't do the "find absolute time in terms of cycles" thing
411  * that the other ports do.
412  */
413 void
414 do_gettimeofday(struct timeval *tv)
415 {
416 	unsigned long flags;
417 	unsigned long sec, usec, lost, seq;
418 	unsigned long delta_cycles, delta_usec, partial_tick;
419 
420 	do {
421 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
422 
423 		delta_cycles = rpcc() - state.last_time;
424 		sec = xtime.tv_sec;
425 		usec = (xtime.tv_nsec / 1000);
426 		partial_tick = state.partial_tick;
427 		lost = jiffies - wall_jiffies;
428 
429 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
430 
431 #ifdef CONFIG_SMP
432 	/* Until and unless we figure out how to get cpu cycle counters
433 	   in sync and keep them there, we can't use the rpcc tricks.  */
434 	delta_usec = lost * (1000000 / HZ);
435 #else
436 	/*
437 	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
438 	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
439 	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
440 	 *
441 	 * which, given a 600MHz cycle and a 1024Hz tick, has a
442 	 * dynamic range of about 1.7e17, which is less than the
443 	 * 1.8e19 in an unsigned long, so we are safe from overflow.
444 	 *
445 	 * Round, but with .5 up always, since .5 to even is harder
446 	 * with no clear gain.
447 	 */
448 
449 	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
450 		      + partial_tick
451 		      + (lost << FIX_SHIFT)) * 15625;
452 	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
453 #endif
454 
455 	usec += delta_usec;
456 	if (usec >= 1000000) {
457 		sec += 1;
458 		usec -= 1000000;
459 	}
460 
461 	tv->tv_sec = sec;
462 	tv->tv_usec = usec;
463 }
464 
465 EXPORT_SYMBOL(do_gettimeofday);
466 
467 int
468 do_settimeofday(struct timespec *tv)
469 {
470 	time_t wtm_sec, sec = tv->tv_sec;
471 	long wtm_nsec, nsec = tv->tv_nsec;
472 	unsigned long delta_nsec;
473 
474 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
475 		return -EINVAL;
476 
477 	write_seqlock_irq(&xtime_lock);
478 
479 	/* The offset that is added into time in do_gettimeofday above
480 	   must be subtracted out here to keep a coherent view of the
481 	   time.  Without this, a full-tick error is possible.  */
482 
483 #ifdef CONFIG_SMP
484 	delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ);
485 #else
486 	delta_nsec = rpcc() - state.last_time;
487 	delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
488 		      + state.partial_tick
489 		      + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625;
490 	delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
491 	delta_nsec *= 1000;
492 #endif
493 
494 	nsec -= delta_nsec;
495 
496 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
497 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
498 
499 	set_normalized_timespec(&xtime, sec, nsec);
500 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
501 
502 	ntp_clear();
503 
504 	write_sequnlock_irq(&xtime_lock);
505 	clock_was_set();
506 	return 0;
507 }
508 
509 EXPORT_SYMBOL(do_settimeofday);
510 
511 
512 /*
513  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
514  * called 500 ms after the second nowtime has started, because when
515  * nowtime is written into the registers of the CMOS clock, it will
516  * jump to the next second precisely 500 ms later. Check the Motorola
517  * MC146818A or Dallas DS12887 data sheet for details.
518  *
519  * BUG: This routine does not handle hour overflow properly; it just
520  *      sets the minutes. Usually you won't notice until after reboot!
521  */
522 
523 
524 static int
525 set_rtc_mmss(unsigned long nowtime)
526 {
527 	int retval = 0;
528 	int real_seconds, real_minutes, cmos_minutes;
529 	unsigned char save_control, save_freq_select;
530 
531 	/* irq are locally disabled here */
532 	spin_lock(&rtc_lock);
533 	/* Tell the clock it's being set */
534 	save_control = CMOS_READ(RTC_CONTROL);
535 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
536 
537 	/* Stop and reset prescaler */
538 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
539 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
540 
541 	cmos_minutes = CMOS_READ(RTC_MINUTES);
542 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
543 		BCD_TO_BIN(cmos_minutes);
544 
545 	/*
546 	 * since we're only adjusting minutes and seconds,
547 	 * don't interfere with hour overflow. This avoids
548 	 * messing with unknown time zones but requires your
549 	 * RTC not to be off by more than 15 minutes
550 	 */
551 	real_seconds = nowtime % 60;
552 	real_minutes = nowtime / 60;
553 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
554 		/* correct for half hour time zone */
555 		real_minutes += 30;
556 	}
557 	real_minutes %= 60;
558 
559 	if (abs(real_minutes - cmos_minutes) < 30) {
560 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
561 			BIN_TO_BCD(real_seconds);
562 			BIN_TO_BCD(real_minutes);
563 		}
564 		CMOS_WRITE(real_seconds,RTC_SECONDS);
565 		CMOS_WRITE(real_minutes,RTC_MINUTES);
566 	} else {
567 		printk(KERN_WARNING
568 		       "set_rtc_mmss: can't update from %d to %d\n",
569 		       cmos_minutes, real_minutes);
570  		retval = -1;
571 	}
572 
573 	/* The following flags have to be released exactly in this order,
574 	 * otherwise the DS12887 (popular MC146818A clone with integrated
575 	 * battery and quartz) will not reset the oscillator and will not
576 	 * update precisely 500 ms later. You won't find this mentioned in
577 	 * the Dallas Semiconductor data sheets, but who believes data
578 	 * sheets anyway ...                           -- Markus Kuhn
579 	 */
580 	CMOS_WRITE(save_control, RTC_CONTROL);
581 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
582 	spin_unlock(&rtc_lock);
583 
584 	return retval;
585 }
586