1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the clocksource time handling. 7 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 8 * "A Kernel Model for Precision Timekeeping" by Dave Mills 9 * 1997-01-09 Adrian Sun 10 * use interval timer if CONFIG_RTC=y 11 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 12 * fixed tick loss calculation in timer_interrupt 13 * (round system clock to nearest tick instead of truncating) 14 * fixed algorithm in time_init for getting time from CMOS clock 15 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 16 * fixed algorithm in do_gettimeofday() for calculating the precise time 17 * from processor cycle counter (now taking lost_ticks into account) 18 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 19 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 20 */ 21 #include <linux/errno.h> 22 #include <linux/module.h> 23 #include <linux/sched.h> 24 #include <linux/kernel.h> 25 #include <linux/param.h> 26 #include <linux/string.h> 27 #include <linux/mm.h> 28 #include <linux/delay.h> 29 #include <linux/ioport.h> 30 #include <linux/irq.h> 31 #include <linux/interrupt.h> 32 #include <linux/init.h> 33 #include <linux/bcd.h> 34 #include <linux/profile.h> 35 #include <linux/irq_work.h> 36 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/hwrpb.h> 40 41 #include <linux/mc146818rtc.h> 42 #include <linux/time.h> 43 #include <linux/timex.h> 44 #include <linux/clocksource.h> 45 #include <linux/clockchips.h> 46 47 #include "proto.h" 48 #include "irq_impl.h" 49 50 DEFINE_SPINLOCK(rtc_lock); 51 EXPORT_SYMBOL(rtc_lock); 52 53 unsigned long est_cycle_freq; 54 55 #ifdef CONFIG_IRQ_WORK 56 57 DEFINE_PER_CPU(u8, irq_work_pending); 58 59 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 60 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 61 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 62 63 void arch_irq_work_raise(void) 64 { 65 set_irq_work_pending_flag(); 66 } 67 68 #else /* CONFIG_IRQ_WORK */ 69 70 #define test_irq_work_pending() 0 71 #define clear_irq_work_pending() 72 73 #endif /* CONFIG_IRQ_WORK */ 74 75 76 static inline __u32 rpcc(void) 77 { 78 return __builtin_alpha_rpcc(); 79 } 80 81 82 83 /* 84 * The RTC as a clock_event_device primitive. 85 */ 86 87 static DEFINE_PER_CPU(struct clock_event_device, cpu_ce); 88 89 irqreturn_t 90 rtc_timer_interrupt(int irq, void *dev) 91 { 92 int cpu = smp_processor_id(); 93 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 94 95 /* Don't run the hook for UNUSED or SHUTDOWN. */ 96 if (likely(clockevent_state_periodic(ce))) 97 ce->event_handler(ce); 98 99 if (test_irq_work_pending()) { 100 clear_irq_work_pending(); 101 irq_work_run(); 102 } 103 104 return IRQ_HANDLED; 105 } 106 107 static int 108 rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce) 109 { 110 /* This hook is for oneshot mode, which we don't support. */ 111 return -EINVAL; 112 } 113 114 static void __init 115 init_rtc_clockevent(void) 116 { 117 int cpu = smp_processor_id(); 118 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 119 120 *ce = (struct clock_event_device){ 121 .name = "rtc", 122 .features = CLOCK_EVT_FEAT_PERIODIC, 123 .rating = 100, 124 .cpumask = cpumask_of(cpu), 125 .set_next_event = rtc_ce_set_next_event, 126 }; 127 128 clockevents_config_and_register(ce, CONFIG_HZ, 0, 0); 129 } 130 131 132 /* 133 * The QEMU clock as a clocksource primitive. 134 */ 135 136 static u64 137 qemu_cs_read(struct clocksource *cs) 138 { 139 return qemu_get_vmtime(); 140 } 141 142 static struct clocksource qemu_cs = { 143 .name = "qemu", 144 .rating = 400, 145 .read = qemu_cs_read, 146 .mask = CLOCKSOURCE_MASK(64), 147 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 148 .max_idle_ns = LONG_MAX 149 }; 150 151 152 /* 153 * The QEMU alarm as a clock_event_device primitive. 154 */ 155 156 static int qemu_ce_shutdown(struct clock_event_device *ce) 157 { 158 /* The mode member of CE is updated for us in generic code. 159 Just make sure that the event is disabled. */ 160 qemu_set_alarm_abs(0); 161 return 0; 162 } 163 164 static int 165 qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce) 166 { 167 qemu_set_alarm_rel(evt); 168 return 0; 169 } 170 171 static irqreturn_t 172 qemu_timer_interrupt(int irq, void *dev) 173 { 174 int cpu = smp_processor_id(); 175 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 176 177 ce->event_handler(ce); 178 return IRQ_HANDLED; 179 } 180 181 static void __init 182 init_qemu_clockevent(void) 183 { 184 int cpu = smp_processor_id(); 185 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 186 187 *ce = (struct clock_event_device){ 188 .name = "qemu", 189 .features = CLOCK_EVT_FEAT_ONESHOT, 190 .rating = 400, 191 .cpumask = cpumask_of(cpu), 192 .set_state_shutdown = qemu_ce_shutdown, 193 .set_state_oneshot = qemu_ce_shutdown, 194 .tick_resume = qemu_ce_shutdown, 195 .set_next_event = qemu_ce_set_next_event, 196 }; 197 198 clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX); 199 } 200 201 202 void __init 203 common_init_rtc(void) 204 { 205 unsigned char x, sel = 0; 206 207 /* Reset periodic interrupt frequency. */ 208 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200 209 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 210 /* Test includes known working values on various platforms 211 where 0x26 is wrong; we refuse to change those. */ 212 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 213 sel = RTC_REF_CLCK_32KHZ + 6; 214 } 215 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32 216 sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ); 217 #else 218 # error "Unknown HZ from arch/alpha/Kconfig" 219 #endif 220 if (sel) { 221 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n", 222 CONFIG_HZ, sel); 223 CMOS_WRITE(sel, RTC_FREQ_SELECT); 224 } 225 226 /* Turn on periodic interrupts. */ 227 x = CMOS_READ(RTC_CONTROL); 228 if (!(x & RTC_PIE)) { 229 printk("Turning on RTC interrupts.\n"); 230 x |= RTC_PIE; 231 x &= ~(RTC_AIE | RTC_UIE); 232 CMOS_WRITE(x, RTC_CONTROL); 233 } 234 (void) CMOS_READ(RTC_INTR_FLAGS); 235 236 outb(0x36, 0x43); /* pit counter 0: system timer */ 237 outb(0x00, 0x40); 238 outb(0x00, 0x40); 239 240 outb(0xb6, 0x43); /* pit counter 2: speaker */ 241 outb(0x31, 0x42); 242 outb(0x13, 0x42); 243 244 init_rtc_irq(); 245 } 246 247 248 #ifndef CONFIG_ALPHA_WTINT 249 /* 250 * The RPCC as a clocksource primitive. 251 * 252 * While we have free-running timecounters running on all CPUs, and we make 253 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter 254 * with the wall clock, that initialization isn't kept up-to-date across 255 * different time counters in SMP mode. Therefore we can only use this 256 * method when there's only one CPU enabled. 257 * 258 * When using the WTINT PALcall, the RPCC may shift to a lower frequency, 259 * or stop altogether, while waiting for the interrupt. Therefore we cannot 260 * use this method when WTINT is in use. 261 */ 262 263 static u64 read_rpcc(struct clocksource *cs) 264 { 265 return rpcc(); 266 } 267 268 static struct clocksource clocksource_rpcc = { 269 .name = "rpcc", 270 .rating = 300, 271 .read = read_rpcc, 272 .mask = CLOCKSOURCE_MASK(32), 273 .flags = CLOCK_SOURCE_IS_CONTINUOUS 274 }; 275 #endif /* ALPHA_WTINT */ 276 277 278 /* Validate a computed cycle counter result against the known bounds for 279 the given processor core. There's too much brokenness in the way of 280 timing hardware for any one method to work everywhere. :-( 281 282 Return 0 if the result cannot be trusted, otherwise return the argument. */ 283 284 static unsigned long __init 285 validate_cc_value(unsigned long cc) 286 { 287 static struct bounds { 288 unsigned int min, max; 289 } cpu_hz[] __initdata = { 290 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 291 [EV4_CPU] = { 100000000, 300000000 }, 292 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 293 [EV45_CPU] = { 200000000, 300000000 }, 294 [EV5_CPU] = { 250000000, 433000000 }, 295 [EV56_CPU] = { 333000000, 667000000 }, 296 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 297 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 298 [EV6_CPU] = { 466000000, 600000000 }, 299 [EV67_CPU] = { 600000000, 750000000 }, 300 [EV68AL_CPU] = { 750000000, 940000000 }, 301 [EV68CB_CPU] = { 1000000000, 1333333333 }, 302 /* None of the following are shipping as of 2001-11-01. */ 303 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 304 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 305 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 306 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 307 }; 308 309 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 310 const unsigned int deviation = 10000000; 311 312 struct percpu_struct *cpu; 313 unsigned int index; 314 315 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 316 index = cpu->type & 0xffffffff; 317 318 /* If index out of bounds, no way to validate. */ 319 if (index >= ARRAY_SIZE(cpu_hz)) 320 return cc; 321 322 /* If index contains no data, no way to validate. */ 323 if (cpu_hz[index].max == 0) 324 return cc; 325 326 if (cc < cpu_hz[index].min - deviation 327 || cc > cpu_hz[index].max + deviation) 328 return 0; 329 330 return cc; 331 } 332 333 334 /* 335 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 336 * arch/i386/time.c. 337 */ 338 339 #define CALIBRATE_LATCH 0xffff 340 #define TIMEOUT_COUNT 0x100000 341 342 static unsigned long __init 343 calibrate_cc_with_pit(void) 344 { 345 int cc, count = 0; 346 347 /* Set the Gate high, disable speaker */ 348 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 349 350 /* 351 * Now let's take care of CTC channel 2 352 * 353 * Set the Gate high, program CTC channel 2 for mode 0, 354 * (interrupt on terminal count mode), binary count, 355 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 356 */ 357 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 358 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 359 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 360 361 cc = rpcc(); 362 do { 363 count++; 364 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 365 cc = rpcc() - cc; 366 367 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 368 if (count <= 1 || count == TIMEOUT_COUNT) 369 return 0; 370 371 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 372 } 373 374 /* The Linux interpretation of the CMOS clock register contents: 375 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 376 RTC registers show the second which has precisely just started. 377 Let's hope other operating systems interpret the RTC the same way. */ 378 379 static unsigned long __init 380 rpcc_after_update_in_progress(void) 381 { 382 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 383 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 384 385 return rpcc(); 386 } 387 388 void __init 389 time_init(void) 390 { 391 unsigned int cc1, cc2; 392 unsigned long cycle_freq, tolerance; 393 long diff; 394 395 if (alpha_using_qemu) { 396 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC); 397 init_qemu_clockevent(); 398 399 timer_irqaction.handler = qemu_timer_interrupt; 400 init_rtc_irq(); 401 return; 402 } 403 404 /* Calibrate CPU clock -- attempt #1. */ 405 if (!est_cycle_freq) 406 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 407 408 cc1 = rpcc(); 409 410 /* Calibrate CPU clock -- attempt #2. */ 411 if (!est_cycle_freq) { 412 cc1 = rpcc_after_update_in_progress(); 413 cc2 = rpcc_after_update_in_progress(); 414 est_cycle_freq = validate_cc_value(cc2 - cc1); 415 cc1 = cc2; 416 } 417 418 cycle_freq = hwrpb->cycle_freq; 419 if (est_cycle_freq) { 420 /* If the given value is within 250 PPM of what we calculated, 421 accept it. Otherwise, use what we found. */ 422 tolerance = cycle_freq / 4000; 423 diff = cycle_freq - est_cycle_freq; 424 if (diff < 0) 425 diff = -diff; 426 if ((unsigned long)diff > tolerance) { 427 cycle_freq = est_cycle_freq; 428 printk("HWRPB cycle frequency bogus. " 429 "Estimated %lu Hz\n", cycle_freq); 430 } else { 431 est_cycle_freq = 0; 432 } 433 } else if (! validate_cc_value (cycle_freq)) { 434 printk("HWRPB cycle frequency bogus, " 435 "and unable to estimate a proper value!\n"); 436 } 437 438 /* See above for restrictions on using clocksource_rpcc. */ 439 #ifndef CONFIG_ALPHA_WTINT 440 if (hwrpb->nr_processors == 1) 441 clocksource_register_hz(&clocksource_rpcc, cycle_freq); 442 #endif 443 444 /* Startup the timer source. */ 445 alpha_mv.init_rtc(); 446 init_rtc_clockevent(); 447 } 448 449 /* Initialize the clock_event_device for secondary cpus. */ 450 #ifdef CONFIG_SMP 451 void __init 452 init_clockevent(void) 453 { 454 if (alpha_using_qemu) 455 init_qemu_clockevent(); 456 else 457 init_rtc_clockevent(); 458 } 459 #endif 460