1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 #include <linux/irq_work.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/io.h> 48 #include <asm/hwrpb.h> 49 #include <asm/8253pit.h> 50 #include <asm/rtc.h> 51 52 #include <linux/mc146818rtc.h> 53 #include <linux/time.h> 54 #include <linux/timex.h> 55 #include <linux/clocksource.h> 56 57 #include "proto.h" 58 #include "irq_impl.h" 59 60 static int set_rtc_mmss(unsigned long); 61 62 DEFINE_SPINLOCK(rtc_lock); 63 EXPORT_SYMBOL(rtc_lock); 64 65 #define TICK_SIZE (tick_nsec / 1000) 66 67 /* 68 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 69 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 70 * for large CPU clock rates. 71 */ 72 #define FIX_SHIFT 48 73 74 /* lump static variables together for more efficient access: */ 75 static struct { 76 /* cycle counter last time it got invoked */ 77 __u32 last_time; 78 /* ticks/cycle * 2^48 */ 79 unsigned long scaled_ticks_per_cycle; 80 /* partial unused tick */ 81 unsigned long partial_tick; 82 } state; 83 84 unsigned long est_cycle_freq; 85 86 #ifdef CONFIG_IRQ_WORK 87 88 DEFINE_PER_CPU(u8, irq_work_pending); 89 90 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 91 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) 92 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 93 94 void set_irq_work_pending(void) 95 { 96 set_irq_work_pending_flag(); 97 } 98 99 #else /* CONFIG_IRQ_WORK */ 100 101 #define test_irq_work_pending() 0 102 #define clear_irq_work_pending() 103 104 #endif /* CONFIG_IRQ_WORK */ 105 106 107 static inline __u32 rpcc(void) 108 { 109 __u32 result; 110 asm volatile ("rpcc %0" : "=r"(result)); 111 return result; 112 } 113 114 int update_persistent_clock(struct timespec now) 115 { 116 return set_rtc_mmss(now.tv_sec); 117 } 118 119 void read_persistent_clock(struct timespec *ts) 120 { 121 unsigned int year, mon, day, hour, min, sec, epoch; 122 123 sec = CMOS_READ(RTC_SECONDS); 124 min = CMOS_READ(RTC_MINUTES); 125 hour = CMOS_READ(RTC_HOURS); 126 day = CMOS_READ(RTC_DAY_OF_MONTH); 127 mon = CMOS_READ(RTC_MONTH); 128 year = CMOS_READ(RTC_YEAR); 129 130 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 131 sec = bcd2bin(sec); 132 min = bcd2bin(min); 133 hour = bcd2bin(hour); 134 day = bcd2bin(day); 135 mon = bcd2bin(mon); 136 year = bcd2bin(year); 137 } 138 139 /* PC-like is standard; used for year >= 70 */ 140 epoch = 1900; 141 if (year < 20) 142 epoch = 2000; 143 else if (year >= 20 && year < 48) 144 /* NT epoch */ 145 epoch = 1980; 146 else if (year >= 48 && year < 70) 147 /* Digital UNIX epoch */ 148 epoch = 1952; 149 150 printk(KERN_INFO "Using epoch = %d\n", epoch); 151 152 if ((year += epoch) < 1970) 153 year += 100; 154 155 ts->tv_sec = mktime(year, mon, day, hour, min, sec); 156 } 157 158 159 160 /* 161 * timer_interrupt() needs to keep up the real-time clock, 162 * as well as call the "xtime_update()" routine every clocktick 163 */ 164 irqreturn_t timer_interrupt(int irq, void *dev) 165 { 166 unsigned long delta; 167 __u32 now; 168 long nticks; 169 170 #ifndef CONFIG_SMP 171 /* Not SMP, do kernel PC profiling here. */ 172 profile_tick(CPU_PROFILING); 173 #endif 174 175 /* 176 * Calculate how many ticks have passed since the last update, 177 * including any previous partial leftover. Save any resulting 178 * fraction for the next pass. 179 */ 180 now = rpcc(); 181 delta = now - state.last_time; 182 state.last_time = now; 183 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 184 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 185 nticks = delta >> FIX_SHIFT; 186 187 if (nticks) 188 xtime_update(nticks); 189 190 if (test_irq_work_pending()) { 191 clear_irq_work_pending(); 192 irq_work_run(); 193 } 194 195 #ifndef CONFIG_SMP 196 while (nticks--) 197 update_process_times(user_mode(get_irq_regs())); 198 #endif 199 200 return IRQ_HANDLED; 201 } 202 203 void __init 204 common_init_rtc(void) 205 { 206 unsigned char x; 207 208 /* Reset periodic interrupt frequency. */ 209 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 210 /* Test includes known working values on various platforms 211 where 0x26 is wrong; we refuse to change those. */ 212 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 213 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 214 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 215 } 216 217 /* Turn on periodic interrupts. */ 218 x = CMOS_READ(RTC_CONTROL); 219 if (!(x & RTC_PIE)) { 220 printk("Turning on RTC interrupts.\n"); 221 x |= RTC_PIE; 222 x &= ~(RTC_AIE | RTC_UIE); 223 CMOS_WRITE(x, RTC_CONTROL); 224 } 225 (void) CMOS_READ(RTC_INTR_FLAGS); 226 227 outb(0x36, 0x43); /* pit counter 0: system timer */ 228 outb(0x00, 0x40); 229 outb(0x00, 0x40); 230 231 outb(0xb6, 0x43); /* pit counter 2: speaker */ 232 outb(0x31, 0x42); 233 outb(0x13, 0x42); 234 235 init_rtc_irq(); 236 } 237 238 unsigned int common_get_rtc_time(struct rtc_time *time) 239 { 240 return __get_rtc_time(time); 241 } 242 243 int common_set_rtc_time(struct rtc_time *time) 244 { 245 return __set_rtc_time(time); 246 } 247 248 /* Validate a computed cycle counter result against the known bounds for 249 the given processor core. There's too much brokenness in the way of 250 timing hardware for any one method to work everywhere. :-( 251 252 Return 0 if the result cannot be trusted, otherwise return the argument. */ 253 254 static unsigned long __init 255 validate_cc_value(unsigned long cc) 256 { 257 static struct bounds { 258 unsigned int min, max; 259 } cpu_hz[] __initdata = { 260 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 261 [EV4_CPU] = { 100000000, 300000000 }, 262 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 263 [EV45_CPU] = { 200000000, 300000000 }, 264 [EV5_CPU] = { 250000000, 433000000 }, 265 [EV56_CPU] = { 333000000, 667000000 }, 266 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 267 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 268 [EV6_CPU] = { 466000000, 600000000 }, 269 [EV67_CPU] = { 600000000, 750000000 }, 270 [EV68AL_CPU] = { 750000000, 940000000 }, 271 [EV68CB_CPU] = { 1000000000, 1333333333 }, 272 /* None of the following are shipping as of 2001-11-01. */ 273 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 274 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 275 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 276 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 277 }; 278 279 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 280 const unsigned int deviation = 10000000; 281 282 struct percpu_struct *cpu; 283 unsigned int index; 284 285 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 286 index = cpu->type & 0xffffffff; 287 288 /* If index out of bounds, no way to validate. */ 289 if (index >= ARRAY_SIZE(cpu_hz)) 290 return cc; 291 292 /* If index contains no data, no way to validate. */ 293 if (cpu_hz[index].max == 0) 294 return cc; 295 296 if (cc < cpu_hz[index].min - deviation 297 || cc > cpu_hz[index].max + deviation) 298 return 0; 299 300 return cc; 301 } 302 303 304 /* 305 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 306 * arch/i386/time.c. 307 */ 308 309 #define CALIBRATE_LATCH 0xffff 310 #define TIMEOUT_COUNT 0x100000 311 312 static unsigned long __init 313 calibrate_cc_with_pit(void) 314 { 315 int cc, count = 0; 316 317 /* Set the Gate high, disable speaker */ 318 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 319 320 /* 321 * Now let's take care of CTC channel 2 322 * 323 * Set the Gate high, program CTC channel 2 for mode 0, 324 * (interrupt on terminal count mode), binary count, 325 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 326 */ 327 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 328 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 329 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 330 331 cc = rpcc(); 332 do { 333 count++; 334 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 335 cc = rpcc() - cc; 336 337 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 338 if (count <= 1 || count == TIMEOUT_COUNT) 339 return 0; 340 341 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 342 } 343 344 /* The Linux interpretation of the CMOS clock register contents: 345 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 346 RTC registers show the second which has precisely just started. 347 Let's hope other operating systems interpret the RTC the same way. */ 348 349 static unsigned long __init 350 rpcc_after_update_in_progress(void) 351 { 352 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 353 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 354 355 return rpcc(); 356 } 357 358 #ifndef CONFIG_SMP 359 /* Until and unless we figure out how to get cpu cycle counters 360 in sync and keep them there, we can't use the rpcc. */ 361 static cycle_t read_rpcc(struct clocksource *cs) 362 { 363 cycle_t ret = (cycle_t)rpcc(); 364 return ret; 365 } 366 367 static struct clocksource clocksource_rpcc = { 368 .name = "rpcc", 369 .rating = 300, 370 .read = read_rpcc, 371 .mask = CLOCKSOURCE_MASK(32), 372 .flags = CLOCK_SOURCE_IS_CONTINUOUS 373 }; 374 375 static inline void register_rpcc_clocksource(long cycle_freq) 376 { 377 clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4); 378 clocksource_register(&clocksource_rpcc); 379 } 380 #else /* !CONFIG_SMP */ 381 static inline void register_rpcc_clocksource(long cycle_freq) 382 { 383 } 384 #endif /* !CONFIG_SMP */ 385 386 void __init 387 time_init(void) 388 { 389 unsigned int cc1, cc2; 390 unsigned long cycle_freq, tolerance; 391 long diff; 392 393 /* Calibrate CPU clock -- attempt #1. */ 394 if (!est_cycle_freq) 395 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 396 397 cc1 = rpcc(); 398 399 /* Calibrate CPU clock -- attempt #2. */ 400 if (!est_cycle_freq) { 401 cc1 = rpcc_after_update_in_progress(); 402 cc2 = rpcc_after_update_in_progress(); 403 est_cycle_freq = validate_cc_value(cc2 - cc1); 404 cc1 = cc2; 405 } 406 407 cycle_freq = hwrpb->cycle_freq; 408 if (est_cycle_freq) { 409 /* If the given value is within 250 PPM of what we calculated, 410 accept it. Otherwise, use what we found. */ 411 tolerance = cycle_freq / 4000; 412 diff = cycle_freq - est_cycle_freq; 413 if (diff < 0) 414 diff = -diff; 415 if ((unsigned long)diff > tolerance) { 416 cycle_freq = est_cycle_freq; 417 printk("HWRPB cycle frequency bogus. " 418 "Estimated %lu Hz\n", cycle_freq); 419 } else { 420 est_cycle_freq = 0; 421 } 422 } else if (! validate_cc_value (cycle_freq)) { 423 printk("HWRPB cycle frequency bogus, " 424 "and unable to estimate a proper value!\n"); 425 } 426 427 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 428 to settle, as the Update-In-Progress bit going low isn't good 429 enough on some hardware. 2ms is our guess; we haven't found 430 bogomips yet, but this is close on a 500Mhz box. */ 431 __delay(1000000); 432 433 434 if (HZ > (1<<16)) { 435 extern void __you_loose (void); 436 __you_loose(); 437 } 438 439 register_rpcc_clocksource(cycle_freq); 440 441 state.last_time = cc1; 442 state.scaled_ticks_per_cycle 443 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 444 state.partial_tick = 0L; 445 446 /* Startup the timer source. */ 447 alpha_mv.init_rtc(); 448 } 449 450 /* 451 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 452 * called 500 ms after the second nowtime has started, because when 453 * nowtime is written into the registers of the CMOS clock, it will 454 * jump to the next second precisely 500 ms later. Check the Motorola 455 * MC146818A or Dallas DS12887 data sheet for details. 456 * 457 * BUG: This routine does not handle hour overflow properly; it just 458 * sets the minutes. Usually you won't notice until after reboot! 459 */ 460 461 462 static int 463 set_rtc_mmss(unsigned long nowtime) 464 { 465 int retval = 0; 466 int real_seconds, real_minutes, cmos_minutes; 467 unsigned char save_control, save_freq_select; 468 469 /* irq are locally disabled here */ 470 spin_lock(&rtc_lock); 471 /* Tell the clock it's being set */ 472 save_control = CMOS_READ(RTC_CONTROL); 473 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 474 475 /* Stop and reset prescaler */ 476 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 477 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 478 479 cmos_minutes = CMOS_READ(RTC_MINUTES); 480 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 481 cmos_minutes = bcd2bin(cmos_minutes); 482 483 /* 484 * since we're only adjusting minutes and seconds, 485 * don't interfere with hour overflow. This avoids 486 * messing with unknown time zones but requires your 487 * RTC not to be off by more than 15 minutes 488 */ 489 real_seconds = nowtime % 60; 490 real_minutes = nowtime / 60; 491 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 492 /* correct for half hour time zone */ 493 real_minutes += 30; 494 } 495 real_minutes %= 60; 496 497 if (abs(real_minutes - cmos_minutes) < 30) { 498 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 499 real_seconds = bin2bcd(real_seconds); 500 real_minutes = bin2bcd(real_minutes); 501 } 502 CMOS_WRITE(real_seconds,RTC_SECONDS); 503 CMOS_WRITE(real_minutes,RTC_MINUTES); 504 } else { 505 printk_once(KERN_NOTICE 506 "set_rtc_mmss: can't update from %d to %d\n", 507 cmos_minutes, real_minutes); 508 retval = -1; 509 } 510 511 /* The following flags have to be released exactly in this order, 512 * otherwise the DS12887 (popular MC146818A clone with integrated 513 * battery and quartz) will not reset the oscillator and will not 514 * update precisely 500 ms later. You won't find this mentioned in 515 * the Dallas Semiconductor data sheets, but who believes data 516 * sheets anyway ... -- Markus Kuhn 517 */ 518 CMOS_WRITE(save_control, RTC_CONTROL); 519 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 520 spin_unlock(&rtc_lock); 521 522 return retval; 523 } 524