xref: /linux/arch/alpha/kernel/time.c (revision c54ea4918c2b7722d7242ea53271356501988a9b)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
50 #include <asm/rtc.h>
51 
52 #include <linux/mc146818rtc.h>
53 #include <linux/time.h>
54 #include <linux/timex.h>
55 #include <linux/clocksource.h>
56 
57 #include "proto.h"
58 #include "irq_impl.h"
59 
60 static int set_rtc_mmss(unsigned long);
61 
62 DEFINE_SPINLOCK(rtc_lock);
63 EXPORT_SYMBOL(rtc_lock);
64 
65 #define TICK_SIZE (tick_nsec / 1000)
66 
67 /*
68  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
69  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
70  * for large CPU clock rates.
71  */
72 #define FIX_SHIFT	48
73 
74 /* lump static variables together for more efficient access: */
75 static struct {
76 	/* cycle counter last time it got invoked */
77 	__u32 last_time;
78 	/* ticks/cycle * 2^48 */
79 	unsigned long scaled_ticks_per_cycle;
80 	/* partial unused tick */
81 	unsigned long partial_tick;
82 } state;
83 
84 unsigned long est_cycle_freq;
85 
86 #ifdef CONFIG_IRQ_WORK
87 
88 DEFINE_PER_CPU(u8, irq_work_pending);
89 
90 #define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
91 #define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
92 #define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
93 
94 void set_irq_work_pending(void)
95 {
96 	set_irq_work_pending_flag();
97 }
98 
99 #else  /* CONFIG_IRQ_WORK */
100 
101 #define test_irq_work_pending()      0
102 #define clear_irq_work_pending()
103 
104 #endif /* CONFIG_IRQ_WORK */
105 
106 
107 static inline __u32 rpcc(void)
108 {
109     __u32 result;
110     asm volatile ("rpcc %0" : "=r"(result));
111     return result;
112 }
113 
114 int update_persistent_clock(struct timespec now)
115 {
116 	return set_rtc_mmss(now.tv_sec);
117 }
118 
119 void read_persistent_clock(struct timespec *ts)
120 {
121 	unsigned int year, mon, day, hour, min, sec, epoch;
122 
123 	sec = CMOS_READ(RTC_SECONDS);
124 	min = CMOS_READ(RTC_MINUTES);
125 	hour = CMOS_READ(RTC_HOURS);
126 	day = CMOS_READ(RTC_DAY_OF_MONTH);
127 	mon = CMOS_READ(RTC_MONTH);
128 	year = CMOS_READ(RTC_YEAR);
129 
130 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
131 		sec = bcd2bin(sec);
132 		min = bcd2bin(min);
133 		hour = bcd2bin(hour);
134 		day = bcd2bin(day);
135 		mon = bcd2bin(mon);
136 		year = bcd2bin(year);
137 	}
138 
139 	/* PC-like is standard; used for year >= 70 */
140 	epoch = 1900;
141 	if (year < 20)
142 		epoch = 2000;
143 	else if (year >= 20 && year < 48)
144 		/* NT epoch */
145 		epoch = 1980;
146 	else if (year >= 48 && year < 70)
147 		/* Digital UNIX epoch */
148 		epoch = 1952;
149 
150 	printk(KERN_INFO "Using epoch = %d\n", epoch);
151 
152 	if ((year += epoch) < 1970)
153 		year += 100;
154 
155 	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
156 }
157 
158 
159 
160 /*
161  * timer_interrupt() needs to keep up the real-time clock,
162  * as well as call the "xtime_update()" routine every clocktick
163  */
164 irqreturn_t timer_interrupt(int irq, void *dev)
165 {
166 	unsigned long delta;
167 	__u32 now;
168 	long nticks;
169 
170 #ifndef CONFIG_SMP
171 	/* Not SMP, do kernel PC profiling here.  */
172 	profile_tick(CPU_PROFILING);
173 #endif
174 
175 	/*
176 	 * Calculate how many ticks have passed since the last update,
177 	 * including any previous partial leftover.  Save any resulting
178 	 * fraction for the next pass.
179 	 */
180 	now = rpcc();
181 	delta = now - state.last_time;
182 	state.last_time = now;
183 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
184 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
185 	nticks = delta >> FIX_SHIFT;
186 
187 	if (nticks)
188 		xtime_update(nticks);
189 
190 	if (test_irq_work_pending()) {
191 		clear_irq_work_pending();
192 		irq_work_run();
193 	}
194 
195 #ifndef CONFIG_SMP
196 	while (nticks--)
197 		update_process_times(user_mode(get_irq_regs()));
198 #endif
199 
200 	return IRQ_HANDLED;
201 }
202 
203 void __init
204 common_init_rtc(void)
205 {
206 	unsigned char x;
207 
208 	/* Reset periodic interrupt frequency.  */
209 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210         /* Test includes known working values on various platforms
211            where 0x26 is wrong; we refuse to change those. */
212 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
214 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
215 	}
216 
217 	/* Turn on periodic interrupts.  */
218 	x = CMOS_READ(RTC_CONTROL);
219 	if (!(x & RTC_PIE)) {
220 		printk("Turning on RTC interrupts.\n");
221 		x |= RTC_PIE;
222 		x &= ~(RTC_AIE | RTC_UIE);
223 		CMOS_WRITE(x, RTC_CONTROL);
224 	}
225 	(void) CMOS_READ(RTC_INTR_FLAGS);
226 
227 	outb(0x36, 0x43);	/* pit counter 0: system timer */
228 	outb(0x00, 0x40);
229 	outb(0x00, 0x40);
230 
231 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
232 	outb(0x31, 0x42);
233 	outb(0x13, 0x42);
234 
235 	init_rtc_irq();
236 }
237 
238 unsigned int common_get_rtc_time(struct rtc_time *time)
239 {
240 	return __get_rtc_time(time);
241 }
242 
243 int common_set_rtc_time(struct rtc_time *time)
244 {
245 	return __set_rtc_time(time);
246 }
247 
248 /* Validate a computed cycle counter result against the known bounds for
249    the given processor core.  There's too much brokenness in the way of
250    timing hardware for any one method to work everywhere.  :-(
251 
252    Return 0 if the result cannot be trusted, otherwise return the argument.  */
253 
254 static unsigned long __init
255 validate_cc_value(unsigned long cc)
256 {
257 	static struct bounds {
258 		unsigned int min, max;
259 	} cpu_hz[] __initdata = {
260 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
261 		[EV4_CPU]    = {  100000000,  300000000 },
262 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
263 		[EV45_CPU]   = {  200000000,  300000000 },
264 		[EV5_CPU]    = {  250000000,  433000000 },
265 		[EV56_CPU]   = {  333000000,  667000000 },
266 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
267 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
268 		[EV6_CPU]    = {  466000000,  600000000 },
269 		[EV67_CPU]   = {  600000000,  750000000 },
270 		[EV68AL_CPU] = {  750000000,  940000000 },
271 		[EV68CB_CPU] = { 1000000000, 1333333333 },
272 		/* None of the following are shipping as of 2001-11-01.  */
273 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
274 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
275 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
276 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
277 	};
278 
279 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
280 	const unsigned int deviation = 10000000;
281 
282 	struct percpu_struct *cpu;
283 	unsigned int index;
284 
285 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
286 	index = cpu->type & 0xffffffff;
287 
288 	/* If index out of bounds, no way to validate.  */
289 	if (index >= ARRAY_SIZE(cpu_hz))
290 		return cc;
291 
292 	/* If index contains no data, no way to validate.  */
293 	if (cpu_hz[index].max == 0)
294 		return cc;
295 
296 	if (cc < cpu_hz[index].min - deviation
297 	    || cc > cpu_hz[index].max + deviation)
298 		return 0;
299 
300 	return cc;
301 }
302 
303 
304 /*
305  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
306  * arch/i386/time.c.
307  */
308 
309 #define CALIBRATE_LATCH	0xffff
310 #define TIMEOUT_COUNT	0x100000
311 
312 static unsigned long __init
313 calibrate_cc_with_pit(void)
314 {
315 	int cc, count = 0;
316 
317 	/* Set the Gate high, disable speaker */
318 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
319 
320 	/*
321 	 * Now let's take care of CTC channel 2
322 	 *
323 	 * Set the Gate high, program CTC channel 2 for mode 0,
324 	 * (interrupt on terminal count mode), binary count,
325 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
326 	 */
327 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
328 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
329 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
330 
331 	cc = rpcc();
332 	do {
333 		count++;
334 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
335 	cc = rpcc() - cc;
336 
337 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
338 	if (count <= 1 || count == TIMEOUT_COUNT)
339 		return 0;
340 
341 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
342 }
343 
344 /* The Linux interpretation of the CMOS clock register contents:
345    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
346    RTC registers show the second which has precisely just started.
347    Let's hope other operating systems interpret the RTC the same way.  */
348 
349 static unsigned long __init
350 rpcc_after_update_in_progress(void)
351 {
352 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
353 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
354 
355 	return rpcc();
356 }
357 
358 #ifndef CONFIG_SMP
359 /* Until and unless we figure out how to get cpu cycle counters
360    in sync and keep them there, we can't use the rpcc.  */
361 static cycle_t read_rpcc(struct clocksource *cs)
362 {
363 	cycle_t ret = (cycle_t)rpcc();
364 	return ret;
365 }
366 
367 static struct clocksource clocksource_rpcc = {
368 	.name                   = "rpcc",
369 	.rating                 = 300,
370 	.read                   = read_rpcc,
371 	.mask                   = CLOCKSOURCE_MASK(32),
372 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
373 };
374 
375 static inline void register_rpcc_clocksource(long cycle_freq)
376 {
377 	clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4);
378 	clocksource_register(&clocksource_rpcc);
379 }
380 #else /* !CONFIG_SMP */
381 static inline void register_rpcc_clocksource(long cycle_freq)
382 {
383 }
384 #endif /* !CONFIG_SMP */
385 
386 void __init
387 time_init(void)
388 {
389 	unsigned int cc1, cc2;
390 	unsigned long cycle_freq, tolerance;
391 	long diff;
392 
393 	/* Calibrate CPU clock -- attempt #1.  */
394 	if (!est_cycle_freq)
395 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
396 
397 	cc1 = rpcc();
398 
399 	/* Calibrate CPU clock -- attempt #2.  */
400 	if (!est_cycle_freq) {
401 		cc1 = rpcc_after_update_in_progress();
402 		cc2 = rpcc_after_update_in_progress();
403 		est_cycle_freq = validate_cc_value(cc2 - cc1);
404 		cc1 = cc2;
405 	}
406 
407 	cycle_freq = hwrpb->cycle_freq;
408 	if (est_cycle_freq) {
409 		/* If the given value is within 250 PPM of what we calculated,
410 		   accept it.  Otherwise, use what we found.  */
411 		tolerance = cycle_freq / 4000;
412 		diff = cycle_freq - est_cycle_freq;
413 		if (diff < 0)
414 			diff = -diff;
415 		if ((unsigned long)diff > tolerance) {
416 			cycle_freq = est_cycle_freq;
417 			printk("HWRPB cycle frequency bogus.  "
418 			       "Estimated %lu Hz\n", cycle_freq);
419 		} else {
420 			est_cycle_freq = 0;
421 		}
422 	} else if (! validate_cc_value (cycle_freq)) {
423 		printk("HWRPB cycle frequency bogus, "
424 		       "and unable to estimate a proper value!\n");
425 	}
426 
427 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
428 	   to settle, as the Update-In-Progress bit going low isn't good
429 	   enough on some hardware.  2ms is our guess; we haven't found
430 	   bogomips yet, but this is close on a 500Mhz box.  */
431 	__delay(1000000);
432 
433 
434 	if (HZ > (1<<16)) {
435 		extern void __you_loose (void);
436 		__you_loose();
437 	}
438 
439 	register_rpcc_clocksource(cycle_freq);
440 
441 	state.last_time = cc1;
442 	state.scaled_ticks_per_cycle
443 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
444 	state.partial_tick = 0L;
445 
446 	/* Startup the timer source. */
447 	alpha_mv.init_rtc();
448 }
449 
450 /*
451  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
452  * called 500 ms after the second nowtime has started, because when
453  * nowtime is written into the registers of the CMOS clock, it will
454  * jump to the next second precisely 500 ms later. Check the Motorola
455  * MC146818A or Dallas DS12887 data sheet for details.
456  *
457  * BUG: This routine does not handle hour overflow properly; it just
458  *      sets the minutes. Usually you won't notice until after reboot!
459  */
460 
461 
462 static int
463 set_rtc_mmss(unsigned long nowtime)
464 {
465 	int retval = 0;
466 	int real_seconds, real_minutes, cmos_minutes;
467 	unsigned char save_control, save_freq_select;
468 
469 	/* irq are locally disabled here */
470 	spin_lock(&rtc_lock);
471 	/* Tell the clock it's being set */
472 	save_control = CMOS_READ(RTC_CONTROL);
473 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
474 
475 	/* Stop and reset prescaler */
476 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
477 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
478 
479 	cmos_minutes = CMOS_READ(RTC_MINUTES);
480 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
481 		cmos_minutes = bcd2bin(cmos_minutes);
482 
483 	/*
484 	 * since we're only adjusting minutes and seconds,
485 	 * don't interfere with hour overflow. This avoids
486 	 * messing with unknown time zones but requires your
487 	 * RTC not to be off by more than 15 minutes
488 	 */
489 	real_seconds = nowtime % 60;
490 	real_minutes = nowtime / 60;
491 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
492 		/* correct for half hour time zone */
493 		real_minutes += 30;
494 	}
495 	real_minutes %= 60;
496 
497 	if (abs(real_minutes - cmos_minutes) < 30) {
498 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
499 			real_seconds = bin2bcd(real_seconds);
500 			real_minutes = bin2bcd(real_minutes);
501 		}
502 		CMOS_WRITE(real_seconds,RTC_SECONDS);
503 		CMOS_WRITE(real_minutes,RTC_MINUTES);
504 	} else {
505 		printk_once(KERN_NOTICE
506 		       "set_rtc_mmss: can't update from %d to %d\n",
507 		       cmos_minutes, real_minutes);
508  		retval = -1;
509 	}
510 
511 	/* The following flags have to be released exactly in this order,
512 	 * otherwise the DS12887 (popular MC146818A clone with integrated
513 	 * battery and quartz) will not reset the oscillator and will not
514 	 * update precisely 500 ms later. You won't find this mentioned in
515 	 * the Dallas Semiconductor data sheets, but who believes data
516 	 * sheets anyway ...                           -- Markus Kuhn
517 	 */
518 	CMOS_WRITE(save_control, RTC_CONTROL);
519 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
520 	spin_unlock(&rtc_lock);
521 
522 	return retval;
523 }
524