xref: /linux/arch/alpha/kernel/time.c (revision a5c4300389bb33ade2515c082709217f0614cf15)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/hwrpb.h>
48 #include <asm/8253pit.h>
49 #include <asm/rtc.h>
50 
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 
55 #include "proto.h"
56 #include "irq_impl.h"
57 
58 static int set_rtc_mmss(unsigned long);
59 
60 DEFINE_SPINLOCK(rtc_lock);
61 EXPORT_SYMBOL(rtc_lock);
62 
63 #define TICK_SIZE (tick_nsec / 1000)
64 
65 /*
66  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
67  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
68  * for large CPU clock rates.
69  */
70 #define FIX_SHIFT	48
71 
72 /* lump static variables together for more efficient access: */
73 static struct {
74 	/* cycle counter last time it got invoked */
75 	__u32 last_time;
76 	/* ticks/cycle * 2^48 */
77 	unsigned long scaled_ticks_per_cycle;
78 	/* partial unused tick */
79 	unsigned long partial_tick;
80 } state;
81 
82 unsigned long est_cycle_freq;
83 
84 
85 static inline __u32 rpcc(void)
86 {
87     __u32 result;
88     asm volatile ("rpcc %0" : "=r"(result));
89     return result;
90 }
91 
92 int update_persistent_clock(struct timespec now)
93 {
94 	return set_rtc_mmss(now.tv_sec);
95 }
96 
97 void read_persistent_clock(struct timespec *ts)
98 {
99 	unsigned int year, mon, day, hour, min, sec, epoch;
100 
101 	sec = CMOS_READ(RTC_SECONDS);
102 	min = CMOS_READ(RTC_MINUTES);
103 	hour = CMOS_READ(RTC_HOURS);
104 	day = CMOS_READ(RTC_DAY_OF_MONTH);
105 	mon = CMOS_READ(RTC_MONTH);
106 	year = CMOS_READ(RTC_YEAR);
107 
108 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
109 		sec = bcd2bin(sec);
110 		min = bcd2bin(min);
111 		hour = bcd2bin(hour);
112 		day = bcd2bin(day);
113 		mon = bcd2bin(mon);
114 		year = bcd2bin(year);
115 	}
116 
117 	/* PC-like is standard; used for year >= 70 */
118 	epoch = 1900;
119 	if (year < 20)
120 		epoch = 2000;
121 	else if (year >= 20 && year < 48)
122 		/* NT epoch */
123 		epoch = 1980;
124 	else if (year >= 48 && year < 70)
125 		/* Digital UNIX epoch */
126 		epoch = 1952;
127 
128 	printk(KERN_INFO "Using epoch = %d\n", epoch);
129 
130 	if ((year += epoch) < 1970)
131 		year += 100;
132 
133 	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
134 }
135 
136 
137 
138 /*
139  * timer_interrupt() needs to keep up the real-time clock,
140  * as well as call the "do_timer()" routine every clocktick
141  */
142 irqreturn_t timer_interrupt(int irq, void *dev)
143 {
144 	unsigned long delta;
145 	__u32 now;
146 	long nticks;
147 
148 #ifndef CONFIG_SMP
149 	/* Not SMP, do kernel PC profiling here.  */
150 	profile_tick(CPU_PROFILING);
151 #endif
152 
153 	write_seqlock(&xtime_lock);
154 
155 	/*
156 	 * Calculate how many ticks have passed since the last update,
157 	 * including any previous partial leftover.  Save any resulting
158 	 * fraction for the next pass.
159 	 */
160 	now = rpcc();
161 	delta = now - state.last_time;
162 	state.last_time = now;
163 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
164 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
165 	nticks = delta >> FIX_SHIFT;
166 
167 	if (nticks)
168 		do_timer(nticks);
169 
170 	write_sequnlock(&xtime_lock);
171 
172 #ifndef CONFIG_SMP
173 	while (nticks--)
174 		update_process_times(user_mode(get_irq_regs()));
175 #endif
176 
177 	return IRQ_HANDLED;
178 }
179 
180 void __init
181 common_init_rtc(void)
182 {
183 	unsigned char x;
184 
185 	/* Reset periodic interrupt frequency.  */
186 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
187         /* Test includes known working values on various platforms
188            where 0x26 is wrong; we refuse to change those. */
189 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
190 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
191 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
192 	}
193 
194 	/* Turn on periodic interrupts.  */
195 	x = CMOS_READ(RTC_CONTROL);
196 	if (!(x & RTC_PIE)) {
197 		printk("Turning on RTC interrupts.\n");
198 		x |= RTC_PIE;
199 		x &= ~(RTC_AIE | RTC_UIE);
200 		CMOS_WRITE(x, RTC_CONTROL);
201 	}
202 	(void) CMOS_READ(RTC_INTR_FLAGS);
203 
204 	outb(0x36, 0x43);	/* pit counter 0: system timer */
205 	outb(0x00, 0x40);
206 	outb(0x00, 0x40);
207 
208 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
209 	outb(0x31, 0x42);
210 	outb(0x13, 0x42);
211 
212 	init_rtc_irq();
213 }
214 
215 unsigned int common_get_rtc_time(struct rtc_time *time)
216 {
217 	return __get_rtc_time(time);
218 }
219 
220 int common_set_rtc_time(struct rtc_time *time)
221 {
222 	return __set_rtc_time(time);
223 }
224 
225 /* Validate a computed cycle counter result against the known bounds for
226    the given processor core.  There's too much brokenness in the way of
227    timing hardware for any one method to work everywhere.  :-(
228 
229    Return 0 if the result cannot be trusted, otherwise return the argument.  */
230 
231 static unsigned long __init
232 validate_cc_value(unsigned long cc)
233 {
234 	static struct bounds {
235 		unsigned int min, max;
236 	} cpu_hz[] __initdata = {
237 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
238 		[EV4_CPU]    = {  100000000,  300000000 },
239 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
240 		[EV45_CPU]   = {  200000000,  300000000 },
241 		[EV5_CPU]    = {  250000000,  433000000 },
242 		[EV56_CPU]   = {  333000000,  667000000 },
243 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
244 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
245 		[EV6_CPU]    = {  466000000,  600000000 },
246 		[EV67_CPU]   = {  600000000,  750000000 },
247 		[EV68AL_CPU] = {  750000000,  940000000 },
248 		[EV68CB_CPU] = { 1000000000, 1333333333 },
249 		/* None of the following are shipping as of 2001-11-01.  */
250 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
251 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
252 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
253 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
254 	};
255 
256 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
257 	const unsigned int deviation = 10000000;
258 
259 	struct percpu_struct *cpu;
260 	unsigned int index;
261 
262 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
263 	index = cpu->type & 0xffffffff;
264 
265 	/* If index out of bounds, no way to validate.  */
266 	if (index >= ARRAY_SIZE(cpu_hz))
267 		return cc;
268 
269 	/* If index contains no data, no way to validate.  */
270 	if (cpu_hz[index].max == 0)
271 		return cc;
272 
273 	if (cc < cpu_hz[index].min - deviation
274 	    || cc > cpu_hz[index].max + deviation)
275 		return 0;
276 
277 	return cc;
278 }
279 
280 
281 /*
282  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
283  * arch/i386/time.c.
284  */
285 
286 #define CALIBRATE_LATCH	0xffff
287 #define TIMEOUT_COUNT	0x100000
288 
289 static unsigned long __init
290 calibrate_cc_with_pit(void)
291 {
292 	int cc, count = 0;
293 
294 	/* Set the Gate high, disable speaker */
295 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
296 
297 	/*
298 	 * Now let's take care of CTC channel 2
299 	 *
300 	 * Set the Gate high, program CTC channel 2 for mode 0,
301 	 * (interrupt on terminal count mode), binary count,
302 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
303 	 */
304 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
305 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
306 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
307 
308 	cc = rpcc();
309 	do {
310 		count++;
311 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
312 	cc = rpcc() - cc;
313 
314 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
315 	if (count <= 1 || count == TIMEOUT_COUNT)
316 		return 0;
317 
318 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
319 }
320 
321 /* The Linux interpretation of the CMOS clock register contents:
322    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
323    RTC registers show the second which has precisely just started.
324    Let's hope other operating systems interpret the RTC the same way.  */
325 
326 static unsigned long __init
327 rpcc_after_update_in_progress(void)
328 {
329 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
330 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
331 
332 	return rpcc();
333 }
334 
335 void __init
336 time_init(void)
337 {
338 	unsigned int cc1, cc2;
339 	unsigned long cycle_freq, tolerance;
340 	long diff;
341 
342 	/* Calibrate CPU clock -- attempt #1.  */
343 	if (!est_cycle_freq)
344 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
345 
346 	cc1 = rpcc();
347 
348 	/* Calibrate CPU clock -- attempt #2.  */
349 	if (!est_cycle_freq) {
350 		cc1 = rpcc_after_update_in_progress();
351 		cc2 = rpcc_after_update_in_progress();
352 		est_cycle_freq = validate_cc_value(cc2 - cc1);
353 		cc1 = cc2;
354 	}
355 
356 	cycle_freq = hwrpb->cycle_freq;
357 	if (est_cycle_freq) {
358 		/* If the given value is within 250 PPM of what we calculated,
359 		   accept it.  Otherwise, use what we found.  */
360 		tolerance = cycle_freq / 4000;
361 		diff = cycle_freq - est_cycle_freq;
362 		if (diff < 0)
363 			diff = -diff;
364 		if ((unsigned long)diff > tolerance) {
365 			cycle_freq = est_cycle_freq;
366 			printk("HWRPB cycle frequency bogus.  "
367 			       "Estimated %lu Hz\n", cycle_freq);
368 		} else {
369 			est_cycle_freq = 0;
370 		}
371 	} else if (! validate_cc_value (cycle_freq)) {
372 		printk("HWRPB cycle frequency bogus, "
373 		       "and unable to estimate a proper value!\n");
374 	}
375 
376 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
377 	   to settle, as the Update-In-Progress bit going low isn't good
378 	   enough on some hardware.  2ms is our guess; we haven't found
379 	   bogomips yet, but this is close on a 500Mhz box.  */
380 	__delay(1000000);
381 
382 
383 	if (HZ > (1<<16)) {
384 		extern void __you_loose (void);
385 		__you_loose();
386 	}
387 
388 	state.last_time = cc1;
389 	state.scaled_ticks_per_cycle
390 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
391 	state.partial_tick = 0L;
392 
393 	/* Startup the timer source. */
394 	alpha_mv.init_rtc();
395 }
396 
397 /*
398  * Use the cycle counter to estimate an displacement from the last time
399  * tick.  Unfortunately the Alpha designers made only the low 32-bits of
400  * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
401  * part.  So we can't do the "find absolute time in terms of cycles" thing
402  * that the other ports do.
403  */
404 u32 arch_gettimeoffset(void)
405 {
406 #ifdef CONFIG_SMP
407 	/* Until and unless we figure out how to get cpu cycle counters
408 	   in sync and keep them there, we can't use the rpcc tricks.  */
409 	return 0;
410 #else
411 	unsigned long delta_cycles, delta_usec, partial_tick;
412 
413 	delta_cycles = rpcc() - state.last_time;
414 	partial_tick = state.partial_tick;
415 	/*
416 	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
417 	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
418 	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
419 	 *
420 	 * which, given a 600MHz cycle and a 1024Hz tick, has a
421 	 * dynamic range of about 1.7e17, which is less than the
422 	 * 1.8e19 in an unsigned long, so we are safe from overflow.
423 	 *
424 	 * Round, but with .5 up always, since .5 to even is harder
425 	 * with no clear gain.
426 	 */
427 
428 	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
429 		      + partial_tick) * 15625;
430 	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
431 	return delta_usec * 1000;
432 #endif
433 }
434 
435 /*
436  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
437  * called 500 ms after the second nowtime has started, because when
438  * nowtime is written into the registers of the CMOS clock, it will
439  * jump to the next second precisely 500 ms later. Check the Motorola
440  * MC146818A or Dallas DS12887 data sheet for details.
441  *
442  * BUG: This routine does not handle hour overflow properly; it just
443  *      sets the minutes. Usually you won't notice until after reboot!
444  */
445 
446 
447 static int
448 set_rtc_mmss(unsigned long nowtime)
449 {
450 	int retval = 0;
451 	int real_seconds, real_minutes, cmos_minutes;
452 	unsigned char save_control, save_freq_select;
453 
454 	/* irq are locally disabled here */
455 	spin_lock(&rtc_lock);
456 	/* Tell the clock it's being set */
457 	save_control = CMOS_READ(RTC_CONTROL);
458 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
459 
460 	/* Stop and reset prescaler */
461 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
462 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
463 
464 	cmos_minutes = CMOS_READ(RTC_MINUTES);
465 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
466 		cmos_minutes = bcd2bin(cmos_minutes);
467 
468 	/*
469 	 * since we're only adjusting minutes and seconds,
470 	 * don't interfere with hour overflow. This avoids
471 	 * messing with unknown time zones but requires your
472 	 * RTC not to be off by more than 15 minutes
473 	 */
474 	real_seconds = nowtime % 60;
475 	real_minutes = nowtime / 60;
476 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
477 		/* correct for half hour time zone */
478 		real_minutes += 30;
479 	}
480 	real_minutes %= 60;
481 
482 	if (abs(real_minutes - cmos_minutes) < 30) {
483 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
484 			real_seconds = bin2bcd(real_seconds);
485 			real_minutes = bin2bcd(real_minutes);
486 		}
487 		CMOS_WRITE(real_seconds,RTC_SECONDS);
488 		CMOS_WRITE(real_minutes,RTC_MINUTES);
489 	} else {
490 		printk(KERN_WARNING
491 		       "set_rtc_mmss: can't update from %d to %d\n",
492 		       cmos_minutes, real_minutes);
493  		retval = -1;
494 	}
495 
496 	/* The following flags have to be released exactly in this order,
497 	 * otherwise the DS12887 (popular MC146818A clone with integrated
498 	 * battery and quartz) will not reset the oscillator and will not
499 	 * update precisely 500 ms later. You won't find this mentioned in
500 	 * the Dallas Semiconductor data sheets, but who believes data
501 	 * sheets anyway ...                           -- Markus Kuhn
502 	 */
503 	CMOS_WRITE(save_control, RTC_CONTROL);
504 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
505 	spin_unlock(&rtc_lock);
506 
507 	return retval;
508 }
509