1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the clocksource time handling. 7 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 8 * "A Kernel Model for Precision Timekeeping" by Dave Mills 9 * 1997-01-09 Adrian Sun 10 * use interval timer if CONFIG_RTC=y 11 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 12 * fixed tick loss calculation in timer_interrupt 13 * (round system clock to nearest tick instead of truncating) 14 * fixed algorithm in time_init for getting time from CMOS clock 15 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 16 * fixed algorithm in do_gettimeofday() for calculating the precise time 17 * from processor cycle counter (now taking lost_ticks into account) 18 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 19 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 20 */ 21 #include <linux/errno.h> 22 #include <linux/module.h> 23 #include <linux/sched.h> 24 #include <linux/kernel.h> 25 #include <linux/param.h> 26 #include <linux/string.h> 27 #include <linux/mm.h> 28 #include <linux/delay.h> 29 #include <linux/ioport.h> 30 #include <linux/irq.h> 31 #include <linux/interrupt.h> 32 #include <linux/init.h> 33 #include <linux/bcd.h> 34 #include <linux/profile.h> 35 #include <linux/irq_work.h> 36 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/hwrpb.h> 40 41 #include <linux/mc146818rtc.h> 42 #include <linux/time.h> 43 #include <linux/timex.h> 44 #include <linux/clocksource.h> 45 #include <linux/clockchips.h> 46 47 #include "proto.h" 48 #include "irq_impl.h" 49 50 DEFINE_SPINLOCK(rtc_lock); 51 EXPORT_SYMBOL(rtc_lock); 52 53 unsigned long est_cycle_freq; 54 55 #ifdef CONFIG_IRQ_WORK 56 57 DEFINE_PER_CPU(u8, irq_work_pending); 58 59 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 60 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 61 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 62 63 void arch_irq_work_raise(void) 64 { 65 set_irq_work_pending_flag(); 66 } 67 68 #else /* CONFIG_IRQ_WORK */ 69 70 #define test_irq_work_pending() 0 71 #define clear_irq_work_pending() 72 73 #endif /* CONFIG_IRQ_WORK */ 74 75 76 static inline __u32 rpcc(void) 77 { 78 return __builtin_alpha_rpcc(); 79 } 80 81 82 83 /* 84 * The RTC as a clock_event_device primitive. 85 */ 86 87 static DEFINE_PER_CPU(struct clock_event_device, cpu_ce); 88 89 irqreturn_t 90 rtc_timer_interrupt(int irq, void *dev) 91 { 92 int cpu = smp_processor_id(); 93 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 94 95 /* Don't run the hook for UNUSED or SHUTDOWN. */ 96 if (likely(ce->mode == CLOCK_EVT_MODE_PERIODIC)) 97 ce->event_handler(ce); 98 99 if (test_irq_work_pending()) { 100 clear_irq_work_pending(); 101 irq_work_run(); 102 } 103 104 return IRQ_HANDLED; 105 } 106 107 static void 108 rtc_ce_set_mode(enum clock_event_mode mode, struct clock_event_device *ce) 109 { 110 /* The mode member of CE is updated in generic code. 111 Since we only support periodic events, nothing to do. */ 112 } 113 114 static int 115 rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce) 116 { 117 /* This hook is for oneshot mode, which we don't support. */ 118 return -EINVAL; 119 } 120 121 static void __init 122 init_rtc_clockevent(void) 123 { 124 int cpu = smp_processor_id(); 125 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 126 127 *ce = (struct clock_event_device){ 128 .name = "rtc", 129 .features = CLOCK_EVT_FEAT_PERIODIC, 130 .rating = 100, 131 .cpumask = cpumask_of(cpu), 132 .set_mode = rtc_ce_set_mode, 133 .set_next_event = rtc_ce_set_next_event, 134 }; 135 136 clockevents_config_and_register(ce, CONFIG_HZ, 0, 0); 137 } 138 139 140 /* 141 * The QEMU clock as a clocksource primitive. 142 */ 143 144 static cycle_t 145 qemu_cs_read(struct clocksource *cs) 146 { 147 return qemu_get_vmtime(); 148 } 149 150 static struct clocksource qemu_cs = { 151 .name = "qemu", 152 .rating = 400, 153 .read = qemu_cs_read, 154 .mask = CLOCKSOURCE_MASK(64), 155 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 156 .max_idle_ns = LONG_MAX 157 }; 158 159 160 /* 161 * The QEMU alarm as a clock_event_device primitive. 162 */ 163 164 static void 165 qemu_ce_set_mode(enum clock_event_mode mode, struct clock_event_device *ce) 166 { 167 /* The mode member of CE is updated for us in generic code. 168 Just make sure that the event is disabled. */ 169 qemu_set_alarm_abs(0); 170 } 171 172 static int 173 qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce) 174 { 175 qemu_set_alarm_rel(evt); 176 return 0; 177 } 178 179 static irqreturn_t 180 qemu_timer_interrupt(int irq, void *dev) 181 { 182 int cpu = smp_processor_id(); 183 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 184 185 ce->event_handler(ce); 186 return IRQ_HANDLED; 187 } 188 189 static void __init 190 init_qemu_clockevent(void) 191 { 192 int cpu = smp_processor_id(); 193 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); 194 195 *ce = (struct clock_event_device){ 196 .name = "qemu", 197 .features = CLOCK_EVT_FEAT_ONESHOT, 198 .rating = 400, 199 .cpumask = cpumask_of(cpu), 200 .set_mode = qemu_ce_set_mode, 201 .set_next_event = qemu_ce_set_next_event, 202 }; 203 204 clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX); 205 } 206 207 208 void __init 209 common_init_rtc(void) 210 { 211 unsigned char x, sel = 0; 212 213 /* Reset periodic interrupt frequency. */ 214 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200 215 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 216 /* Test includes known working values on various platforms 217 where 0x26 is wrong; we refuse to change those. */ 218 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 219 sel = RTC_REF_CLCK_32KHZ + 6; 220 } 221 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32 222 sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ); 223 #else 224 # error "Unknown HZ from arch/alpha/Kconfig" 225 #endif 226 if (sel) { 227 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n", 228 CONFIG_HZ, sel); 229 CMOS_WRITE(sel, RTC_FREQ_SELECT); 230 } 231 232 /* Turn on periodic interrupts. */ 233 x = CMOS_READ(RTC_CONTROL); 234 if (!(x & RTC_PIE)) { 235 printk("Turning on RTC interrupts.\n"); 236 x |= RTC_PIE; 237 x &= ~(RTC_AIE | RTC_UIE); 238 CMOS_WRITE(x, RTC_CONTROL); 239 } 240 (void) CMOS_READ(RTC_INTR_FLAGS); 241 242 outb(0x36, 0x43); /* pit counter 0: system timer */ 243 outb(0x00, 0x40); 244 outb(0x00, 0x40); 245 246 outb(0xb6, 0x43); /* pit counter 2: speaker */ 247 outb(0x31, 0x42); 248 outb(0x13, 0x42); 249 250 init_rtc_irq(); 251 } 252 253 254 #ifndef CONFIG_ALPHA_WTINT 255 /* 256 * The RPCC as a clocksource primitive. 257 * 258 * While we have free-running timecounters running on all CPUs, and we make 259 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter 260 * with the wall clock, that initialization isn't kept up-to-date across 261 * different time counters in SMP mode. Therefore we can only use this 262 * method when there's only one CPU enabled. 263 * 264 * When using the WTINT PALcall, the RPCC may shift to a lower frequency, 265 * or stop altogether, while waiting for the interrupt. Therefore we cannot 266 * use this method when WTINT is in use. 267 */ 268 269 static cycle_t read_rpcc(struct clocksource *cs) 270 { 271 return rpcc(); 272 } 273 274 static struct clocksource clocksource_rpcc = { 275 .name = "rpcc", 276 .rating = 300, 277 .read = read_rpcc, 278 .mask = CLOCKSOURCE_MASK(32), 279 .flags = CLOCK_SOURCE_IS_CONTINUOUS 280 }; 281 #endif /* ALPHA_WTINT */ 282 283 284 /* Validate a computed cycle counter result against the known bounds for 285 the given processor core. There's too much brokenness in the way of 286 timing hardware for any one method to work everywhere. :-( 287 288 Return 0 if the result cannot be trusted, otherwise return the argument. */ 289 290 static unsigned long __init 291 validate_cc_value(unsigned long cc) 292 { 293 static struct bounds { 294 unsigned int min, max; 295 } cpu_hz[] __initdata = { 296 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 297 [EV4_CPU] = { 100000000, 300000000 }, 298 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 299 [EV45_CPU] = { 200000000, 300000000 }, 300 [EV5_CPU] = { 250000000, 433000000 }, 301 [EV56_CPU] = { 333000000, 667000000 }, 302 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 303 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 304 [EV6_CPU] = { 466000000, 600000000 }, 305 [EV67_CPU] = { 600000000, 750000000 }, 306 [EV68AL_CPU] = { 750000000, 940000000 }, 307 [EV68CB_CPU] = { 1000000000, 1333333333 }, 308 /* None of the following are shipping as of 2001-11-01. */ 309 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 310 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 311 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 312 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 313 }; 314 315 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 316 const unsigned int deviation = 10000000; 317 318 struct percpu_struct *cpu; 319 unsigned int index; 320 321 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 322 index = cpu->type & 0xffffffff; 323 324 /* If index out of bounds, no way to validate. */ 325 if (index >= ARRAY_SIZE(cpu_hz)) 326 return cc; 327 328 /* If index contains no data, no way to validate. */ 329 if (cpu_hz[index].max == 0) 330 return cc; 331 332 if (cc < cpu_hz[index].min - deviation 333 || cc > cpu_hz[index].max + deviation) 334 return 0; 335 336 return cc; 337 } 338 339 340 /* 341 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 342 * arch/i386/time.c. 343 */ 344 345 #define CALIBRATE_LATCH 0xffff 346 #define TIMEOUT_COUNT 0x100000 347 348 static unsigned long __init 349 calibrate_cc_with_pit(void) 350 { 351 int cc, count = 0; 352 353 /* Set the Gate high, disable speaker */ 354 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 355 356 /* 357 * Now let's take care of CTC channel 2 358 * 359 * Set the Gate high, program CTC channel 2 for mode 0, 360 * (interrupt on terminal count mode), binary count, 361 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 362 */ 363 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 364 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 365 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 366 367 cc = rpcc(); 368 do { 369 count++; 370 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 371 cc = rpcc() - cc; 372 373 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 374 if (count <= 1 || count == TIMEOUT_COUNT) 375 return 0; 376 377 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 378 } 379 380 /* The Linux interpretation of the CMOS clock register contents: 381 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 382 RTC registers show the second which has precisely just started. 383 Let's hope other operating systems interpret the RTC the same way. */ 384 385 static unsigned long __init 386 rpcc_after_update_in_progress(void) 387 { 388 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 389 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 390 391 return rpcc(); 392 } 393 394 void __init 395 time_init(void) 396 { 397 unsigned int cc1, cc2; 398 unsigned long cycle_freq, tolerance; 399 long diff; 400 401 if (alpha_using_qemu) { 402 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC); 403 init_qemu_clockevent(); 404 405 timer_irqaction.handler = qemu_timer_interrupt; 406 init_rtc_irq(); 407 return; 408 } 409 410 /* Calibrate CPU clock -- attempt #1. */ 411 if (!est_cycle_freq) 412 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 413 414 cc1 = rpcc(); 415 416 /* Calibrate CPU clock -- attempt #2. */ 417 if (!est_cycle_freq) { 418 cc1 = rpcc_after_update_in_progress(); 419 cc2 = rpcc_after_update_in_progress(); 420 est_cycle_freq = validate_cc_value(cc2 - cc1); 421 cc1 = cc2; 422 } 423 424 cycle_freq = hwrpb->cycle_freq; 425 if (est_cycle_freq) { 426 /* If the given value is within 250 PPM of what we calculated, 427 accept it. Otherwise, use what we found. */ 428 tolerance = cycle_freq / 4000; 429 diff = cycle_freq - est_cycle_freq; 430 if (diff < 0) 431 diff = -diff; 432 if ((unsigned long)diff > tolerance) { 433 cycle_freq = est_cycle_freq; 434 printk("HWRPB cycle frequency bogus. " 435 "Estimated %lu Hz\n", cycle_freq); 436 } else { 437 est_cycle_freq = 0; 438 } 439 } else if (! validate_cc_value (cycle_freq)) { 440 printk("HWRPB cycle frequency bogus, " 441 "and unable to estimate a proper value!\n"); 442 } 443 444 /* See above for restrictions on using clocksource_rpcc. */ 445 #ifndef CONFIG_ALPHA_WTINT 446 if (hwrpb->nr_processors == 1) 447 clocksource_register_hz(&clocksource_rpcc, cycle_freq); 448 #endif 449 450 /* Startup the timer source. */ 451 alpha_mv.init_rtc(); 452 init_rtc_clockevent(); 453 } 454 455 /* Initialize the clock_event_device for secondary cpus. */ 456 #ifdef CONFIG_SMP 457 void __init 458 init_clockevent(void) 459 { 460 if (alpha_using_qemu) 461 init_qemu_clockevent(); 462 else 463 init_rtc_clockevent(); 464 } 465 #endif 466