xref: /linux/arch/alpha/kernel/time.c (revision 85d0b3a573d8b711ee0c96199ac24a0f3283ed68)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the clocksource time handling.
7  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
8  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
9  * 1997-01-09    Adrian Sun
10  *      use interval timer if CONFIG_RTC=y
11  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
12  *      fixed tick loss calculation in timer_interrupt
13  *      (round system clock to nearest tick instead of truncating)
14  *      fixed algorithm in time_init for getting time from CMOS clock
15  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
16  *	fixed algorithm in do_gettimeofday() for calculating the precise time
17  *	from processor cycle counter (now taking lost_ticks into account)
18  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
19  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
20  */
21 #include <linux/errno.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/param.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h>
30 #include <linux/irq.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/bcd.h>
34 #include <linux/profile.h>
35 #include <linux/irq_work.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/hwrpb.h>
40 
41 #include <linux/mc146818rtc.h>
42 #include <linux/time.h>
43 #include <linux/timex.h>
44 #include <linux/clocksource.h>
45 
46 #include "proto.h"
47 #include "irq_impl.h"
48 
49 DEFINE_SPINLOCK(rtc_lock);
50 EXPORT_SYMBOL(rtc_lock);
51 
52 #define TICK_SIZE (tick_nsec / 1000)
53 
54 /*
55  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
56  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
57  * for large CPU clock rates.
58  */
59 #define FIX_SHIFT	48
60 
61 /* lump static variables together for more efficient access: */
62 static struct {
63 	/* cycle counter last time it got invoked */
64 	__u32 last_time;
65 	/* ticks/cycle * 2^48 */
66 	unsigned long scaled_ticks_per_cycle;
67 	/* partial unused tick */
68 	unsigned long partial_tick;
69 } state;
70 
71 unsigned long est_cycle_freq;
72 
73 #ifdef CONFIG_IRQ_WORK
74 
75 DEFINE_PER_CPU(u8, irq_work_pending);
76 
77 #define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
78 #define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
79 #define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
80 
81 void arch_irq_work_raise(void)
82 {
83 	set_irq_work_pending_flag();
84 }
85 
86 #else  /* CONFIG_IRQ_WORK */
87 
88 #define test_irq_work_pending()      0
89 #define clear_irq_work_pending()
90 
91 #endif /* CONFIG_IRQ_WORK */
92 
93 
94 static inline __u32 rpcc(void)
95 {
96 	return __builtin_alpha_rpcc();
97 }
98 
99 /*
100  * timer_interrupt() needs to keep up the real-time clock,
101  * as well as call the "xtime_update()" routine every clocktick
102  */
103 irqreturn_t timer_interrupt(int irq, void *dev)
104 {
105 	unsigned long delta;
106 	__u32 now;
107 	long nticks;
108 
109 #ifndef CONFIG_SMP
110 	/* Not SMP, do kernel PC profiling here.  */
111 	profile_tick(CPU_PROFILING);
112 #endif
113 
114 	/*
115 	 * Calculate how many ticks have passed since the last update,
116 	 * including any previous partial leftover.  Save any resulting
117 	 * fraction for the next pass.
118 	 */
119 	now = rpcc();
120 	delta = now - state.last_time;
121 	state.last_time = now;
122 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
123 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
124 	nticks = delta >> FIX_SHIFT;
125 
126 	if (nticks)
127 		xtime_update(nticks);
128 
129 	if (test_irq_work_pending()) {
130 		clear_irq_work_pending();
131 		irq_work_run();
132 	}
133 
134 #ifndef CONFIG_SMP
135 	while (nticks--)
136 		update_process_times(user_mode(get_irq_regs()));
137 #endif
138 
139 	return IRQ_HANDLED;
140 }
141 
142 void __init
143 common_init_rtc(void)
144 {
145 	unsigned char x, sel = 0;
146 
147 	/* Reset periodic interrupt frequency.  */
148 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
149  	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
150 	/* Test includes known working values on various platforms
151 	   where 0x26 is wrong; we refuse to change those. */
152  	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
153 		sel = RTC_REF_CLCK_32KHZ + 6;
154 	}
155 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
156 	sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
157 #else
158 # error "Unknown HZ from arch/alpha/Kconfig"
159 #endif
160 	if (sel) {
161 		printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
162 		       CONFIG_HZ, sel);
163 		CMOS_WRITE(sel, RTC_FREQ_SELECT);
164  	}
165 
166 	/* Turn on periodic interrupts.  */
167 	x = CMOS_READ(RTC_CONTROL);
168 	if (!(x & RTC_PIE)) {
169 		printk("Turning on RTC interrupts.\n");
170 		x |= RTC_PIE;
171 		x &= ~(RTC_AIE | RTC_UIE);
172 		CMOS_WRITE(x, RTC_CONTROL);
173 	}
174 	(void) CMOS_READ(RTC_INTR_FLAGS);
175 
176 	outb(0x36, 0x43);	/* pit counter 0: system timer */
177 	outb(0x00, 0x40);
178 	outb(0x00, 0x40);
179 
180 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
181 	outb(0x31, 0x42);
182 	outb(0x13, 0x42);
183 
184 	init_rtc_irq();
185 }
186 
187 /* Validate a computed cycle counter result against the known bounds for
188    the given processor core.  There's too much brokenness in the way of
189    timing hardware for any one method to work everywhere.  :-(
190 
191    Return 0 if the result cannot be trusted, otherwise return the argument.  */
192 
193 static unsigned long __init
194 validate_cc_value(unsigned long cc)
195 {
196 	static struct bounds {
197 		unsigned int min, max;
198 	} cpu_hz[] __initdata = {
199 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
200 		[EV4_CPU]    = {  100000000,  300000000 },
201 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
202 		[EV45_CPU]   = {  200000000,  300000000 },
203 		[EV5_CPU]    = {  250000000,  433000000 },
204 		[EV56_CPU]   = {  333000000,  667000000 },
205 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
206 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
207 		[EV6_CPU]    = {  466000000,  600000000 },
208 		[EV67_CPU]   = {  600000000,  750000000 },
209 		[EV68AL_CPU] = {  750000000,  940000000 },
210 		[EV68CB_CPU] = { 1000000000, 1333333333 },
211 		/* None of the following are shipping as of 2001-11-01.  */
212 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
213 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
214 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
215 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
216 	};
217 
218 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
219 	const unsigned int deviation = 10000000;
220 
221 	struct percpu_struct *cpu;
222 	unsigned int index;
223 
224 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
225 	index = cpu->type & 0xffffffff;
226 
227 	/* If index out of bounds, no way to validate.  */
228 	if (index >= ARRAY_SIZE(cpu_hz))
229 		return cc;
230 
231 	/* If index contains no data, no way to validate.  */
232 	if (cpu_hz[index].max == 0)
233 		return cc;
234 
235 	if (cc < cpu_hz[index].min - deviation
236 	    || cc > cpu_hz[index].max + deviation)
237 		return 0;
238 
239 	return cc;
240 }
241 
242 
243 /*
244  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
245  * arch/i386/time.c.
246  */
247 
248 #define CALIBRATE_LATCH	0xffff
249 #define TIMEOUT_COUNT	0x100000
250 
251 static unsigned long __init
252 calibrate_cc_with_pit(void)
253 {
254 	int cc, count = 0;
255 
256 	/* Set the Gate high, disable speaker */
257 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
258 
259 	/*
260 	 * Now let's take care of CTC channel 2
261 	 *
262 	 * Set the Gate high, program CTC channel 2 for mode 0,
263 	 * (interrupt on terminal count mode), binary count,
264 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
265 	 */
266 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
267 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
268 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
269 
270 	cc = rpcc();
271 	do {
272 		count++;
273 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
274 	cc = rpcc() - cc;
275 
276 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
277 	if (count <= 1 || count == TIMEOUT_COUNT)
278 		return 0;
279 
280 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
281 }
282 
283 /* The Linux interpretation of the CMOS clock register contents:
284    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
285    RTC registers show the second which has precisely just started.
286    Let's hope other operating systems interpret the RTC the same way.  */
287 
288 static unsigned long __init
289 rpcc_after_update_in_progress(void)
290 {
291 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
292 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
293 
294 	return rpcc();
295 }
296 
297 #ifndef CONFIG_SMP
298 /* Until and unless we figure out how to get cpu cycle counters
299    in sync and keep them there, we can't use the rpcc.  */
300 static cycle_t read_rpcc(struct clocksource *cs)
301 {
302 	cycle_t ret = (cycle_t)rpcc();
303 	return ret;
304 }
305 
306 static struct clocksource clocksource_rpcc = {
307 	.name                   = "rpcc",
308 	.rating                 = 300,
309 	.read                   = read_rpcc,
310 	.mask                   = CLOCKSOURCE_MASK(32),
311 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
312 };
313 
314 static inline void register_rpcc_clocksource(long cycle_freq)
315 {
316 	clocksource_register_hz(&clocksource_rpcc, cycle_freq);
317 }
318 #else /* !CONFIG_SMP */
319 static inline void register_rpcc_clocksource(long cycle_freq)
320 {
321 }
322 #endif /* !CONFIG_SMP */
323 
324 void __init
325 time_init(void)
326 {
327 	unsigned int cc1, cc2;
328 	unsigned long cycle_freq, tolerance;
329 	long diff;
330 
331 	/* Calibrate CPU clock -- attempt #1.  */
332 	if (!est_cycle_freq)
333 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
334 
335 	cc1 = rpcc();
336 
337 	/* Calibrate CPU clock -- attempt #2.  */
338 	if (!est_cycle_freq) {
339 		cc1 = rpcc_after_update_in_progress();
340 		cc2 = rpcc_after_update_in_progress();
341 		est_cycle_freq = validate_cc_value(cc2 - cc1);
342 		cc1 = cc2;
343 	}
344 
345 	cycle_freq = hwrpb->cycle_freq;
346 	if (est_cycle_freq) {
347 		/* If the given value is within 250 PPM of what we calculated,
348 		   accept it.  Otherwise, use what we found.  */
349 		tolerance = cycle_freq / 4000;
350 		diff = cycle_freq - est_cycle_freq;
351 		if (diff < 0)
352 			diff = -diff;
353 		if ((unsigned long)diff > tolerance) {
354 			cycle_freq = est_cycle_freq;
355 			printk("HWRPB cycle frequency bogus.  "
356 			       "Estimated %lu Hz\n", cycle_freq);
357 		} else {
358 			est_cycle_freq = 0;
359 		}
360 	} else if (! validate_cc_value (cycle_freq)) {
361 		printk("HWRPB cycle frequency bogus, "
362 		       "and unable to estimate a proper value!\n");
363 	}
364 
365 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
366 	   to settle, as the Update-In-Progress bit going low isn't good
367 	   enough on some hardware.  2ms is our guess; we haven't found
368 	   bogomips yet, but this is close on a 500Mhz box.  */
369 	__delay(1000000);
370 
371 
372 	if (HZ > (1<<16)) {
373 		extern void __you_loose (void);
374 		__you_loose();
375 	}
376 
377 	register_rpcc_clocksource(cycle_freq);
378 
379 	state.last_time = cc1;
380 	state.scaled_ticks_per_cycle
381 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
382 	state.partial_tick = 0L;
383 
384 	/* Startup the timer source. */
385 	alpha_mv.init_rtc();
386 }
387