xref: /linux/arch/alpha/kernel/time.c (revision 834f0c353ae430c1a6ce023c9b77bbd3ff9241a7)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
50 #include <asm/rtc.h>
51 
52 #include <linux/mc146818rtc.h>
53 #include <linux/time.h>
54 #include <linux/timex.h>
55 #include <linux/clocksource.h>
56 
57 #include "proto.h"
58 #include "irq_impl.h"
59 
60 static int set_rtc_mmss(unsigned long);
61 
62 DEFINE_SPINLOCK(rtc_lock);
63 EXPORT_SYMBOL(rtc_lock);
64 
65 #define TICK_SIZE (tick_nsec / 1000)
66 
67 /*
68  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
69  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
70  * for large CPU clock rates.
71  */
72 #define FIX_SHIFT	48
73 
74 /* lump static variables together for more efficient access: */
75 static struct {
76 	/* cycle counter last time it got invoked */
77 	__u32 last_time;
78 	/* ticks/cycle * 2^48 */
79 	unsigned long scaled_ticks_per_cycle;
80 	/* partial unused tick */
81 	unsigned long partial_tick;
82 } state;
83 
84 unsigned long est_cycle_freq;
85 
86 #ifdef CONFIG_IRQ_WORK
87 
88 DEFINE_PER_CPU(u8, irq_work_pending);
89 
90 #define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
91 #define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
92 #define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
93 
94 void set_irq_work_pending(void)
95 {
96 	set_irq_work_pending_flag();
97 }
98 
99 #else  /* CONFIG_IRQ_WORK */
100 
101 #define test_irq_work_pending()      0
102 #define clear_irq_work_pending()
103 
104 #endif /* CONFIG_IRQ_WORK */
105 
106 
107 static inline __u32 rpcc(void)
108 {
109     __u32 result;
110     asm volatile ("rpcc %0" : "=r"(result));
111     return result;
112 }
113 
114 int update_persistent_clock(struct timespec now)
115 {
116 	return set_rtc_mmss(now.tv_sec);
117 }
118 
119 void read_persistent_clock(struct timespec *ts)
120 {
121 	unsigned int year, mon, day, hour, min, sec, epoch;
122 
123 	sec = CMOS_READ(RTC_SECONDS);
124 	min = CMOS_READ(RTC_MINUTES);
125 	hour = CMOS_READ(RTC_HOURS);
126 	day = CMOS_READ(RTC_DAY_OF_MONTH);
127 	mon = CMOS_READ(RTC_MONTH);
128 	year = CMOS_READ(RTC_YEAR);
129 
130 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
131 		sec = bcd2bin(sec);
132 		min = bcd2bin(min);
133 		hour = bcd2bin(hour);
134 		day = bcd2bin(day);
135 		mon = bcd2bin(mon);
136 		year = bcd2bin(year);
137 	}
138 
139 	/* PC-like is standard; used for year >= 70 */
140 	epoch = 1900;
141 	if (year < 20)
142 		epoch = 2000;
143 	else if (year >= 20 && year < 48)
144 		/* NT epoch */
145 		epoch = 1980;
146 	else if (year >= 48 && year < 70)
147 		/* Digital UNIX epoch */
148 		epoch = 1952;
149 
150 	printk(KERN_INFO "Using epoch = %d\n", epoch);
151 
152 	if ((year += epoch) < 1970)
153 		year += 100;
154 
155 	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
156 	ts->tv_nsec = 0;
157 }
158 
159 
160 
161 /*
162  * timer_interrupt() needs to keep up the real-time clock,
163  * as well as call the "xtime_update()" routine every clocktick
164  */
165 irqreturn_t timer_interrupt(int irq, void *dev)
166 {
167 	unsigned long delta;
168 	__u32 now;
169 	long nticks;
170 
171 #ifndef CONFIG_SMP
172 	/* Not SMP, do kernel PC profiling here.  */
173 	profile_tick(CPU_PROFILING);
174 #endif
175 
176 	/*
177 	 * Calculate how many ticks have passed since the last update,
178 	 * including any previous partial leftover.  Save any resulting
179 	 * fraction for the next pass.
180 	 */
181 	now = rpcc();
182 	delta = now - state.last_time;
183 	state.last_time = now;
184 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
185 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
186 	nticks = delta >> FIX_SHIFT;
187 
188 	if (nticks)
189 		xtime_update(nticks);
190 
191 	if (test_irq_work_pending()) {
192 		clear_irq_work_pending();
193 		irq_work_run();
194 	}
195 
196 #ifndef CONFIG_SMP
197 	while (nticks--)
198 		update_process_times(user_mode(get_irq_regs()));
199 #endif
200 
201 	return IRQ_HANDLED;
202 }
203 
204 void __init
205 common_init_rtc(void)
206 {
207 	unsigned char x;
208 
209 	/* Reset periodic interrupt frequency.  */
210 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
211         /* Test includes known working values on various platforms
212            where 0x26 is wrong; we refuse to change those. */
213 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
214 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
215 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
216 	}
217 
218 	/* Turn on periodic interrupts.  */
219 	x = CMOS_READ(RTC_CONTROL);
220 	if (!(x & RTC_PIE)) {
221 		printk("Turning on RTC interrupts.\n");
222 		x |= RTC_PIE;
223 		x &= ~(RTC_AIE | RTC_UIE);
224 		CMOS_WRITE(x, RTC_CONTROL);
225 	}
226 	(void) CMOS_READ(RTC_INTR_FLAGS);
227 
228 	outb(0x36, 0x43);	/* pit counter 0: system timer */
229 	outb(0x00, 0x40);
230 	outb(0x00, 0x40);
231 
232 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
233 	outb(0x31, 0x42);
234 	outb(0x13, 0x42);
235 
236 	init_rtc_irq();
237 }
238 
239 unsigned int common_get_rtc_time(struct rtc_time *time)
240 {
241 	return __get_rtc_time(time);
242 }
243 
244 int common_set_rtc_time(struct rtc_time *time)
245 {
246 	return __set_rtc_time(time);
247 }
248 
249 /* Validate a computed cycle counter result against the known bounds for
250    the given processor core.  There's too much brokenness in the way of
251    timing hardware for any one method to work everywhere.  :-(
252 
253    Return 0 if the result cannot be trusted, otherwise return the argument.  */
254 
255 static unsigned long __init
256 validate_cc_value(unsigned long cc)
257 {
258 	static struct bounds {
259 		unsigned int min, max;
260 	} cpu_hz[] __initdata = {
261 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
262 		[EV4_CPU]    = {  100000000,  300000000 },
263 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
264 		[EV45_CPU]   = {  200000000,  300000000 },
265 		[EV5_CPU]    = {  250000000,  433000000 },
266 		[EV56_CPU]   = {  333000000,  667000000 },
267 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
268 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
269 		[EV6_CPU]    = {  466000000,  600000000 },
270 		[EV67_CPU]   = {  600000000,  750000000 },
271 		[EV68AL_CPU] = {  750000000,  940000000 },
272 		[EV68CB_CPU] = { 1000000000, 1333333333 },
273 		/* None of the following are shipping as of 2001-11-01.  */
274 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
275 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
276 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
277 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
278 	};
279 
280 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
281 	const unsigned int deviation = 10000000;
282 
283 	struct percpu_struct *cpu;
284 	unsigned int index;
285 
286 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
287 	index = cpu->type & 0xffffffff;
288 
289 	/* If index out of bounds, no way to validate.  */
290 	if (index >= ARRAY_SIZE(cpu_hz))
291 		return cc;
292 
293 	/* If index contains no data, no way to validate.  */
294 	if (cpu_hz[index].max == 0)
295 		return cc;
296 
297 	if (cc < cpu_hz[index].min - deviation
298 	    || cc > cpu_hz[index].max + deviation)
299 		return 0;
300 
301 	return cc;
302 }
303 
304 
305 /*
306  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
307  * arch/i386/time.c.
308  */
309 
310 #define CALIBRATE_LATCH	0xffff
311 #define TIMEOUT_COUNT	0x100000
312 
313 static unsigned long __init
314 calibrate_cc_with_pit(void)
315 {
316 	int cc, count = 0;
317 
318 	/* Set the Gate high, disable speaker */
319 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
320 
321 	/*
322 	 * Now let's take care of CTC channel 2
323 	 *
324 	 * Set the Gate high, program CTC channel 2 for mode 0,
325 	 * (interrupt on terminal count mode), binary count,
326 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
327 	 */
328 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
329 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
330 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
331 
332 	cc = rpcc();
333 	do {
334 		count++;
335 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
336 	cc = rpcc() - cc;
337 
338 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
339 	if (count <= 1 || count == TIMEOUT_COUNT)
340 		return 0;
341 
342 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
343 }
344 
345 /* The Linux interpretation of the CMOS clock register contents:
346    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
347    RTC registers show the second which has precisely just started.
348    Let's hope other operating systems interpret the RTC the same way.  */
349 
350 static unsigned long __init
351 rpcc_after_update_in_progress(void)
352 {
353 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
354 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
355 
356 	return rpcc();
357 }
358 
359 #ifndef CONFIG_SMP
360 /* Until and unless we figure out how to get cpu cycle counters
361    in sync and keep them there, we can't use the rpcc.  */
362 static cycle_t read_rpcc(struct clocksource *cs)
363 {
364 	cycle_t ret = (cycle_t)rpcc();
365 	return ret;
366 }
367 
368 static struct clocksource clocksource_rpcc = {
369 	.name                   = "rpcc",
370 	.rating                 = 300,
371 	.read                   = read_rpcc,
372 	.mask                   = CLOCKSOURCE_MASK(32),
373 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
374 };
375 
376 static inline void register_rpcc_clocksource(long cycle_freq)
377 {
378 	clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4);
379 	clocksource_register(&clocksource_rpcc);
380 }
381 #else /* !CONFIG_SMP */
382 static inline void register_rpcc_clocksource(long cycle_freq)
383 {
384 }
385 #endif /* !CONFIG_SMP */
386 
387 void __init
388 time_init(void)
389 {
390 	unsigned int cc1, cc2;
391 	unsigned long cycle_freq, tolerance;
392 	long diff;
393 
394 	/* Calibrate CPU clock -- attempt #1.  */
395 	if (!est_cycle_freq)
396 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
397 
398 	cc1 = rpcc();
399 
400 	/* Calibrate CPU clock -- attempt #2.  */
401 	if (!est_cycle_freq) {
402 		cc1 = rpcc_after_update_in_progress();
403 		cc2 = rpcc_after_update_in_progress();
404 		est_cycle_freq = validate_cc_value(cc2 - cc1);
405 		cc1 = cc2;
406 	}
407 
408 	cycle_freq = hwrpb->cycle_freq;
409 	if (est_cycle_freq) {
410 		/* If the given value is within 250 PPM of what we calculated,
411 		   accept it.  Otherwise, use what we found.  */
412 		tolerance = cycle_freq / 4000;
413 		diff = cycle_freq - est_cycle_freq;
414 		if (diff < 0)
415 			diff = -diff;
416 		if ((unsigned long)diff > tolerance) {
417 			cycle_freq = est_cycle_freq;
418 			printk("HWRPB cycle frequency bogus.  "
419 			       "Estimated %lu Hz\n", cycle_freq);
420 		} else {
421 			est_cycle_freq = 0;
422 		}
423 	} else if (! validate_cc_value (cycle_freq)) {
424 		printk("HWRPB cycle frequency bogus, "
425 		       "and unable to estimate a proper value!\n");
426 	}
427 
428 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
429 	   to settle, as the Update-In-Progress bit going low isn't good
430 	   enough on some hardware.  2ms is our guess; we haven't found
431 	   bogomips yet, but this is close on a 500Mhz box.  */
432 	__delay(1000000);
433 
434 
435 	if (HZ > (1<<16)) {
436 		extern void __you_loose (void);
437 		__you_loose();
438 	}
439 
440 	register_rpcc_clocksource(cycle_freq);
441 
442 	state.last_time = cc1;
443 	state.scaled_ticks_per_cycle
444 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
445 	state.partial_tick = 0L;
446 
447 	/* Startup the timer source. */
448 	alpha_mv.init_rtc();
449 }
450 
451 /*
452  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
453  * called 500 ms after the second nowtime has started, because when
454  * nowtime is written into the registers of the CMOS clock, it will
455  * jump to the next second precisely 500 ms later. Check the Motorola
456  * MC146818A or Dallas DS12887 data sheet for details.
457  *
458  * BUG: This routine does not handle hour overflow properly; it just
459  *      sets the minutes. Usually you won't notice until after reboot!
460  */
461 
462 
463 static int
464 set_rtc_mmss(unsigned long nowtime)
465 {
466 	int retval = 0;
467 	int real_seconds, real_minutes, cmos_minutes;
468 	unsigned char save_control, save_freq_select;
469 
470 	/* irq are locally disabled here */
471 	spin_lock(&rtc_lock);
472 	/* Tell the clock it's being set */
473 	save_control = CMOS_READ(RTC_CONTROL);
474 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
475 
476 	/* Stop and reset prescaler */
477 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
478 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
479 
480 	cmos_minutes = CMOS_READ(RTC_MINUTES);
481 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
482 		cmos_minutes = bcd2bin(cmos_minutes);
483 
484 	/*
485 	 * since we're only adjusting minutes and seconds,
486 	 * don't interfere with hour overflow. This avoids
487 	 * messing with unknown time zones but requires your
488 	 * RTC not to be off by more than 15 minutes
489 	 */
490 	real_seconds = nowtime % 60;
491 	real_minutes = nowtime / 60;
492 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
493 		/* correct for half hour time zone */
494 		real_minutes += 30;
495 	}
496 	real_minutes %= 60;
497 
498 	if (abs(real_minutes - cmos_minutes) < 30) {
499 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
500 			real_seconds = bin2bcd(real_seconds);
501 			real_minutes = bin2bcd(real_minutes);
502 		}
503 		CMOS_WRITE(real_seconds,RTC_SECONDS);
504 		CMOS_WRITE(real_minutes,RTC_MINUTES);
505 	} else {
506 		printk_once(KERN_NOTICE
507 		       "set_rtc_mmss: can't update from %d to %d\n",
508 		       cmos_minutes, real_minutes);
509  		retval = -1;
510 	}
511 
512 	/* The following flags have to be released exactly in this order,
513 	 * otherwise the DS12887 (popular MC146818A clone with integrated
514 	 * battery and quartz) will not reset the oscillator and will not
515 	 * update precisely 500 ms later. You won't find this mentioned in
516 	 * the Dallas Semiconductor data sheets, but who believes data
517 	 * sheets anyway ...                           -- Markus Kuhn
518 	 */
519 	CMOS_WRITE(save_control, RTC_CONTROL);
520 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
521 	spin_unlock(&rtc_lock);
522 
523 	return retval;
524 }
525