1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 #include <linux/irq_work.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/io.h> 48 #include <asm/hwrpb.h> 49 #include <asm/8253pit.h> 50 #include <asm/rtc.h> 51 52 #include <linux/mc146818rtc.h> 53 #include <linux/time.h> 54 #include <linux/timex.h> 55 #include <linux/clocksource.h> 56 57 #include "proto.h" 58 #include "irq_impl.h" 59 60 static int set_rtc_mmss(unsigned long); 61 62 DEFINE_SPINLOCK(rtc_lock); 63 EXPORT_SYMBOL(rtc_lock); 64 65 #define TICK_SIZE (tick_nsec / 1000) 66 67 /* 68 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 69 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 70 * for large CPU clock rates. 71 */ 72 #define FIX_SHIFT 48 73 74 /* lump static variables together for more efficient access: */ 75 static struct { 76 /* cycle counter last time it got invoked */ 77 __u32 last_time; 78 /* ticks/cycle * 2^48 */ 79 unsigned long scaled_ticks_per_cycle; 80 /* partial unused tick */ 81 unsigned long partial_tick; 82 } state; 83 84 unsigned long est_cycle_freq; 85 86 #ifdef CONFIG_IRQ_WORK 87 88 DEFINE_PER_CPU(u8, irq_work_pending); 89 90 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1 91 #define test_irq_work_pending() __get_cpu_var(irq_work_pending) 92 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0 93 94 void set_irq_work_pending(void) 95 { 96 set_irq_work_pending_flag(); 97 } 98 99 #else /* CONFIG_IRQ_WORK */ 100 101 #define test_irq_work_pending() 0 102 #define clear_irq_work_pending() 103 104 #endif /* CONFIG_IRQ_WORK */ 105 106 107 static inline __u32 rpcc(void) 108 { 109 __u32 result; 110 asm volatile ("rpcc %0" : "=r"(result)); 111 return result; 112 } 113 114 int update_persistent_clock(struct timespec now) 115 { 116 return set_rtc_mmss(now.tv_sec); 117 } 118 119 void read_persistent_clock(struct timespec *ts) 120 { 121 unsigned int year, mon, day, hour, min, sec, epoch; 122 123 sec = CMOS_READ(RTC_SECONDS); 124 min = CMOS_READ(RTC_MINUTES); 125 hour = CMOS_READ(RTC_HOURS); 126 day = CMOS_READ(RTC_DAY_OF_MONTH); 127 mon = CMOS_READ(RTC_MONTH); 128 year = CMOS_READ(RTC_YEAR); 129 130 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 131 sec = bcd2bin(sec); 132 min = bcd2bin(min); 133 hour = bcd2bin(hour); 134 day = bcd2bin(day); 135 mon = bcd2bin(mon); 136 year = bcd2bin(year); 137 } 138 139 /* PC-like is standard; used for year >= 70 */ 140 epoch = 1900; 141 if (year < 20) 142 epoch = 2000; 143 else if (year >= 20 && year < 48) 144 /* NT epoch */ 145 epoch = 1980; 146 else if (year >= 48 && year < 70) 147 /* Digital UNIX epoch */ 148 epoch = 1952; 149 150 printk(KERN_INFO "Using epoch = %d\n", epoch); 151 152 if ((year += epoch) < 1970) 153 year += 100; 154 155 ts->tv_sec = mktime(year, mon, day, hour, min, sec); 156 ts->tv_nsec = 0; 157 } 158 159 160 161 /* 162 * timer_interrupt() needs to keep up the real-time clock, 163 * as well as call the "xtime_update()" routine every clocktick 164 */ 165 irqreturn_t timer_interrupt(int irq, void *dev) 166 { 167 unsigned long delta; 168 __u32 now; 169 long nticks; 170 171 #ifndef CONFIG_SMP 172 /* Not SMP, do kernel PC profiling here. */ 173 profile_tick(CPU_PROFILING); 174 #endif 175 176 /* 177 * Calculate how many ticks have passed since the last update, 178 * including any previous partial leftover. Save any resulting 179 * fraction for the next pass. 180 */ 181 now = rpcc(); 182 delta = now - state.last_time; 183 state.last_time = now; 184 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 185 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 186 nticks = delta >> FIX_SHIFT; 187 188 if (nticks) 189 xtime_update(nticks); 190 191 if (test_irq_work_pending()) { 192 clear_irq_work_pending(); 193 irq_work_run(); 194 } 195 196 #ifndef CONFIG_SMP 197 while (nticks--) 198 update_process_times(user_mode(get_irq_regs())); 199 #endif 200 201 return IRQ_HANDLED; 202 } 203 204 void __init 205 common_init_rtc(void) 206 { 207 unsigned char x; 208 209 /* Reset periodic interrupt frequency. */ 210 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 211 /* Test includes known working values on various platforms 212 where 0x26 is wrong; we refuse to change those. */ 213 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 214 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 215 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 216 } 217 218 /* Turn on periodic interrupts. */ 219 x = CMOS_READ(RTC_CONTROL); 220 if (!(x & RTC_PIE)) { 221 printk("Turning on RTC interrupts.\n"); 222 x |= RTC_PIE; 223 x &= ~(RTC_AIE | RTC_UIE); 224 CMOS_WRITE(x, RTC_CONTROL); 225 } 226 (void) CMOS_READ(RTC_INTR_FLAGS); 227 228 outb(0x36, 0x43); /* pit counter 0: system timer */ 229 outb(0x00, 0x40); 230 outb(0x00, 0x40); 231 232 outb(0xb6, 0x43); /* pit counter 2: speaker */ 233 outb(0x31, 0x42); 234 outb(0x13, 0x42); 235 236 init_rtc_irq(); 237 } 238 239 unsigned int common_get_rtc_time(struct rtc_time *time) 240 { 241 return __get_rtc_time(time); 242 } 243 244 int common_set_rtc_time(struct rtc_time *time) 245 { 246 return __set_rtc_time(time); 247 } 248 249 /* Validate a computed cycle counter result against the known bounds for 250 the given processor core. There's too much brokenness in the way of 251 timing hardware for any one method to work everywhere. :-( 252 253 Return 0 if the result cannot be trusted, otherwise return the argument. */ 254 255 static unsigned long __init 256 validate_cc_value(unsigned long cc) 257 { 258 static struct bounds { 259 unsigned int min, max; 260 } cpu_hz[] __initdata = { 261 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 262 [EV4_CPU] = { 100000000, 300000000 }, 263 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 264 [EV45_CPU] = { 200000000, 300000000 }, 265 [EV5_CPU] = { 250000000, 433000000 }, 266 [EV56_CPU] = { 333000000, 667000000 }, 267 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 268 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 269 [EV6_CPU] = { 466000000, 600000000 }, 270 [EV67_CPU] = { 600000000, 750000000 }, 271 [EV68AL_CPU] = { 750000000, 940000000 }, 272 [EV68CB_CPU] = { 1000000000, 1333333333 }, 273 /* None of the following are shipping as of 2001-11-01. */ 274 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 275 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 276 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 277 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 278 }; 279 280 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 281 const unsigned int deviation = 10000000; 282 283 struct percpu_struct *cpu; 284 unsigned int index; 285 286 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 287 index = cpu->type & 0xffffffff; 288 289 /* If index out of bounds, no way to validate. */ 290 if (index >= ARRAY_SIZE(cpu_hz)) 291 return cc; 292 293 /* If index contains no data, no way to validate. */ 294 if (cpu_hz[index].max == 0) 295 return cc; 296 297 if (cc < cpu_hz[index].min - deviation 298 || cc > cpu_hz[index].max + deviation) 299 return 0; 300 301 return cc; 302 } 303 304 305 /* 306 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 307 * arch/i386/time.c. 308 */ 309 310 #define CALIBRATE_LATCH 0xffff 311 #define TIMEOUT_COUNT 0x100000 312 313 static unsigned long __init 314 calibrate_cc_with_pit(void) 315 { 316 int cc, count = 0; 317 318 /* Set the Gate high, disable speaker */ 319 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 320 321 /* 322 * Now let's take care of CTC channel 2 323 * 324 * Set the Gate high, program CTC channel 2 for mode 0, 325 * (interrupt on terminal count mode), binary count, 326 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 327 */ 328 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 329 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 330 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 331 332 cc = rpcc(); 333 do { 334 count++; 335 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 336 cc = rpcc() - cc; 337 338 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 339 if (count <= 1 || count == TIMEOUT_COUNT) 340 return 0; 341 342 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 343 } 344 345 /* The Linux interpretation of the CMOS clock register contents: 346 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 347 RTC registers show the second which has precisely just started. 348 Let's hope other operating systems interpret the RTC the same way. */ 349 350 static unsigned long __init 351 rpcc_after_update_in_progress(void) 352 { 353 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 354 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 355 356 return rpcc(); 357 } 358 359 #ifndef CONFIG_SMP 360 /* Until and unless we figure out how to get cpu cycle counters 361 in sync and keep them there, we can't use the rpcc. */ 362 static cycle_t read_rpcc(struct clocksource *cs) 363 { 364 cycle_t ret = (cycle_t)rpcc(); 365 return ret; 366 } 367 368 static struct clocksource clocksource_rpcc = { 369 .name = "rpcc", 370 .rating = 300, 371 .read = read_rpcc, 372 .mask = CLOCKSOURCE_MASK(32), 373 .flags = CLOCK_SOURCE_IS_CONTINUOUS 374 }; 375 376 static inline void register_rpcc_clocksource(long cycle_freq) 377 { 378 clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4); 379 clocksource_register(&clocksource_rpcc); 380 } 381 #else /* !CONFIG_SMP */ 382 static inline void register_rpcc_clocksource(long cycle_freq) 383 { 384 } 385 #endif /* !CONFIG_SMP */ 386 387 void __init 388 time_init(void) 389 { 390 unsigned int cc1, cc2; 391 unsigned long cycle_freq, tolerance; 392 long diff; 393 394 /* Calibrate CPU clock -- attempt #1. */ 395 if (!est_cycle_freq) 396 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 397 398 cc1 = rpcc(); 399 400 /* Calibrate CPU clock -- attempt #2. */ 401 if (!est_cycle_freq) { 402 cc1 = rpcc_after_update_in_progress(); 403 cc2 = rpcc_after_update_in_progress(); 404 est_cycle_freq = validate_cc_value(cc2 - cc1); 405 cc1 = cc2; 406 } 407 408 cycle_freq = hwrpb->cycle_freq; 409 if (est_cycle_freq) { 410 /* If the given value is within 250 PPM of what we calculated, 411 accept it. Otherwise, use what we found. */ 412 tolerance = cycle_freq / 4000; 413 diff = cycle_freq - est_cycle_freq; 414 if (diff < 0) 415 diff = -diff; 416 if ((unsigned long)diff > tolerance) { 417 cycle_freq = est_cycle_freq; 418 printk("HWRPB cycle frequency bogus. " 419 "Estimated %lu Hz\n", cycle_freq); 420 } else { 421 est_cycle_freq = 0; 422 } 423 } else if (! validate_cc_value (cycle_freq)) { 424 printk("HWRPB cycle frequency bogus, " 425 "and unable to estimate a proper value!\n"); 426 } 427 428 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 429 to settle, as the Update-In-Progress bit going low isn't good 430 enough on some hardware. 2ms is our guess; we haven't found 431 bogomips yet, but this is close on a 500Mhz box. */ 432 __delay(1000000); 433 434 435 if (HZ > (1<<16)) { 436 extern void __you_loose (void); 437 __you_loose(); 438 } 439 440 register_rpcc_clocksource(cycle_freq); 441 442 state.last_time = cc1; 443 state.scaled_ticks_per_cycle 444 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 445 state.partial_tick = 0L; 446 447 /* Startup the timer source. */ 448 alpha_mv.init_rtc(); 449 } 450 451 /* 452 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 453 * called 500 ms after the second nowtime has started, because when 454 * nowtime is written into the registers of the CMOS clock, it will 455 * jump to the next second precisely 500 ms later. Check the Motorola 456 * MC146818A or Dallas DS12887 data sheet for details. 457 * 458 * BUG: This routine does not handle hour overflow properly; it just 459 * sets the minutes. Usually you won't notice until after reboot! 460 */ 461 462 463 static int 464 set_rtc_mmss(unsigned long nowtime) 465 { 466 int retval = 0; 467 int real_seconds, real_minutes, cmos_minutes; 468 unsigned char save_control, save_freq_select; 469 470 /* irq are locally disabled here */ 471 spin_lock(&rtc_lock); 472 /* Tell the clock it's being set */ 473 save_control = CMOS_READ(RTC_CONTROL); 474 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 475 476 /* Stop and reset prescaler */ 477 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 478 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 479 480 cmos_minutes = CMOS_READ(RTC_MINUTES); 481 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 482 cmos_minutes = bcd2bin(cmos_minutes); 483 484 /* 485 * since we're only adjusting minutes and seconds, 486 * don't interfere with hour overflow. This avoids 487 * messing with unknown time zones but requires your 488 * RTC not to be off by more than 15 minutes 489 */ 490 real_seconds = nowtime % 60; 491 real_minutes = nowtime / 60; 492 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 493 /* correct for half hour time zone */ 494 real_minutes += 30; 495 } 496 real_minutes %= 60; 497 498 if (abs(real_minutes - cmos_minutes) < 30) { 499 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 500 real_seconds = bin2bcd(real_seconds); 501 real_minutes = bin2bcd(real_minutes); 502 } 503 CMOS_WRITE(real_seconds,RTC_SECONDS); 504 CMOS_WRITE(real_minutes,RTC_MINUTES); 505 } else { 506 printk_once(KERN_NOTICE 507 "set_rtc_mmss: can't update from %d to %d\n", 508 cmos_minutes, real_minutes); 509 retval = -1; 510 } 511 512 /* The following flags have to be released exactly in this order, 513 * otherwise the DS12887 (popular MC146818A clone with integrated 514 * battery and quartz) will not reset the oscillator and will not 515 * update precisely 500 ms later. You won't find this mentioned in 516 * the Dallas Semiconductor data sheets, but who believes data 517 * sheets anyway ... -- Markus Kuhn 518 */ 519 CMOS_WRITE(save_control, RTC_CONTROL); 520 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 521 spin_unlock(&rtc_lock); 522 523 return retval; 524 } 525