1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/io.h> 47 #include <asm/hwrpb.h> 48 #include <asm/8253pit.h> 49 #include <asm/rtc.h> 50 51 #include <linux/mc146818rtc.h> 52 #include <linux/time.h> 53 #include <linux/timex.h> 54 #include <linux/clocksource.h> 55 56 #include "proto.h" 57 #include "irq_impl.h" 58 59 static int set_rtc_mmss(unsigned long); 60 61 DEFINE_SPINLOCK(rtc_lock); 62 EXPORT_SYMBOL(rtc_lock); 63 64 #define TICK_SIZE (tick_nsec / 1000) 65 66 /* 67 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 69 * for large CPU clock rates. 70 */ 71 #define FIX_SHIFT 48 72 73 /* lump static variables together for more efficient access: */ 74 static struct { 75 /* cycle counter last time it got invoked */ 76 __u32 last_time; 77 /* ticks/cycle * 2^48 */ 78 unsigned long scaled_ticks_per_cycle; 79 /* partial unused tick */ 80 unsigned long partial_tick; 81 } state; 82 83 unsigned long est_cycle_freq; 84 85 86 static inline __u32 rpcc(void) 87 { 88 __u32 result; 89 asm volatile ("rpcc %0" : "=r"(result)); 90 return result; 91 } 92 93 int update_persistent_clock(struct timespec now) 94 { 95 return set_rtc_mmss(now.tv_sec); 96 } 97 98 void read_persistent_clock(struct timespec *ts) 99 { 100 unsigned int year, mon, day, hour, min, sec, epoch; 101 102 sec = CMOS_READ(RTC_SECONDS); 103 min = CMOS_READ(RTC_MINUTES); 104 hour = CMOS_READ(RTC_HOURS); 105 day = CMOS_READ(RTC_DAY_OF_MONTH); 106 mon = CMOS_READ(RTC_MONTH); 107 year = CMOS_READ(RTC_YEAR); 108 109 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 110 sec = bcd2bin(sec); 111 min = bcd2bin(min); 112 hour = bcd2bin(hour); 113 day = bcd2bin(day); 114 mon = bcd2bin(mon); 115 year = bcd2bin(year); 116 } 117 118 /* PC-like is standard; used for year >= 70 */ 119 epoch = 1900; 120 if (year < 20) 121 epoch = 2000; 122 else if (year >= 20 && year < 48) 123 /* NT epoch */ 124 epoch = 1980; 125 else if (year >= 48 && year < 70) 126 /* Digital UNIX epoch */ 127 epoch = 1952; 128 129 printk(KERN_INFO "Using epoch = %d\n", epoch); 130 131 if ((year += epoch) < 1970) 132 year += 100; 133 134 ts->tv_sec = mktime(year, mon, day, hour, min, sec); 135 } 136 137 138 139 /* 140 * timer_interrupt() needs to keep up the real-time clock, 141 * as well as call the "do_timer()" routine every clocktick 142 */ 143 irqreturn_t timer_interrupt(int irq, void *dev) 144 { 145 unsigned long delta; 146 __u32 now; 147 long nticks; 148 149 #ifndef CONFIG_SMP 150 /* Not SMP, do kernel PC profiling here. */ 151 profile_tick(CPU_PROFILING); 152 #endif 153 154 write_seqlock(&xtime_lock); 155 156 /* 157 * Calculate how many ticks have passed since the last update, 158 * including any previous partial leftover. Save any resulting 159 * fraction for the next pass. 160 */ 161 now = rpcc(); 162 delta = now - state.last_time; 163 state.last_time = now; 164 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 165 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 166 nticks = delta >> FIX_SHIFT; 167 168 if (nticks) 169 do_timer(nticks); 170 171 write_sequnlock(&xtime_lock); 172 173 #ifndef CONFIG_SMP 174 while (nticks--) 175 update_process_times(user_mode(get_irq_regs())); 176 #endif 177 178 return IRQ_HANDLED; 179 } 180 181 void __init 182 common_init_rtc(void) 183 { 184 unsigned char x; 185 186 /* Reset periodic interrupt frequency. */ 187 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 188 /* Test includes known working values on various platforms 189 where 0x26 is wrong; we refuse to change those. */ 190 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 191 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 192 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 193 } 194 195 /* Turn on periodic interrupts. */ 196 x = CMOS_READ(RTC_CONTROL); 197 if (!(x & RTC_PIE)) { 198 printk("Turning on RTC interrupts.\n"); 199 x |= RTC_PIE; 200 x &= ~(RTC_AIE | RTC_UIE); 201 CMOS_WRITE(x, RTC_CONTROL); 202 } 203 (void) CMOS_READ(RTC_INTR_FLAGS); 204 205 outb(0x36, 0x43); /* pit counter 0: system timer */ 206 outb(0x00, 0x40); 207 outb(0x00, 0x40); 208 209 outb(0xb6, 0x43); /* pit counter 2: speaker */ 210 outb(0x31, 0x42); 211 outb(0x13, 0x42); 212 213 init_rtc_irq(); 214 } 215 216 unsigned int common_get_rtc_time(struct rtc_time *time) 217 { 218 return __get_rtc_time(time); 219 } 220 221 int common_set_rtc_time(struct rtc_time *time) 222 { 223 return __set_rtc_time(time); 224 } 225 226 /* Validate a computed cycle counter result against the known bounds for 227 the given processor core. There's too much brokenness in the way of 228 timing hardware for any one method to work everywhere. :-( 229 230 Return 0 if the result cannot be trusted, otherwise return the argument. */ 231 232 static unsigned long __init 233 validate_cc_value(unsigned long cc) 234 { 235 static struct bounds { 236 unsigned int min, max; 237 } cpu_hz[] __initdata = { 238 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 239 [EV4_CPU] = { 100000000, 300000000 }, 240 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 241 [EV45_CPU] = { 200000000, 300000000 }, 242 [EV5_CPU] = { 250000000, 433000000 }, 243 [EV56_CPU] = { 333000000, 667000000 }, 244 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 245 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 246 [EV6_CPU] = { 466000000, 600000000 }, 247 [EV67_CPU] = { 600000000, 750000000 }, 248 [EV68AL_CPU] = { 750000000, 940000000 }, 249 [EV68CB_CPU] = { 1000000000, 1333333333 }, 250 /* None of the following are shipping as of 2001-11-01. */ 251 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 252 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 253 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 254 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 255 }; 256 257 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 258 const unsigned int deviation = 10000000; 259 260 struct percpu_struct *cpu; 261 unsigned int index; 262 263 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 264 index = cpu->type & 0xffffffff; 265 266 /* If index out of bounds, no way to validate. */ 267 if (index >= ARRAY_SIZE(cpu_hz)) 268 return cc; 269 270 /* If index contains no data, no way to validate. */ 271 if (cpu_hz[index].max == 0) 272 return cc; 273 274 if (cc < cpu_hz[index].min - deviation 275 || cc > cpu_hz[index].max + deviation) 276 return 0; 277 278 return cc; 279 } 280 281 282 /* 283 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 284 * arch/i386/time.c. 285 */ 286 287 #define CALIBRATE_LATCH 0xffff 288 #define TIMEOUT_COUNT 0x100000 289 290 static unsigned long __init 291 calibrate_cc_with_pit(void) 292 { 293 int cc, count = 0; 294 295 /* Set the Gate high, disable speaker */ 296 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 297 298 /* 299 * Now let's take care of CTC channel 2 300 * 301 * Set the Gate high, program CTC channel 2 for mode 0, 302 * (interrupt on terminal count mode), binary count, 303 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 304 */ 305 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 306 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 307 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 308 309 cc = rpcc(); 310 do { 311 count++; 312 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 313 cc = rpcc() - cc; 314 315 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 316 if (count <= 1 || count == TIMEOUT_COUNT) 317 return 0; 318 319 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 320 } 321 322 /* The Linux interpretation of the CMOS clock register contents: 323 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 324 RTC registers show the second which has precisely just started. 325 Let's hope other operating systems interpret the RTC the same way. */ 326 327 static unsigned long __init 328 rpcc_after_update_in_progress(void) 329 { 330 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 331 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 332 333 return rpcc(); 334 } 335 336 #ifndef CONFIG_SMP 337 /* Until and unless we figure out how to get cpu cycle counters 338 in sync and keep them there, we can't use the rpcc. */ 339 static cycle_t read_rpcc(struct clocksource *cs) 340 { 341 cycle_t ret = (cycle_t)rpcc(); 342 return ret; 343 } 344 345 static struct clocksource clocksource_rpcc = { 346 .name = "rpcc", 347 .rating = 300, 348 .read = read_rpcc, 349 .mask = CLOCKSOURCE_MASK(32), 350 .flags = CLOCK_SOURCE_IS_CONTINUOUS 351 }; 352 353 static inline void register_rpcc_clocksource(long cycle_freq) 354 { 355 clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4); 356 clocksource_register(&clocksource_rpcc); 357 } 358 #else /* !CONFIG_SMP */ 359 static inline void register_rpcc_clocksource(long cycle_freq) 360 { 361 } 362 #endif /* !CONFIG_SMP */ 363 364 void __init 365 time_init(void) 366 { 367 unsigned int cc1, cc2; 368 unsigned long cycle_freq, tolerance; 369 long diff; 370 371 /* Calibrate CPU clock -- attempt #1. */ 372 if (!est_cycle_freq) 373 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 374 375 cc1 = rpcc(); 376 377 /* Calibrate CPU clock -- attempt #2. */ 378 if (!est_cycle_freq) { 379 cc1 = rpcc_after_update_in_progress(); 380 cc2 = rpcc_after_update_in_progress(); 381 est_cycle_freq = validate_cc_value(cc2 - cc1); 382 cc1 = cc2; 383 } 384 385 cycle_freq = hwrpb->cycle_freq; 386 if (est_cycle_freq) { 387 /* If the given value is within 250 PPM of what we calculated, 388 accept it. Otherwise, use what we found. */ 389 tolerance = cycle_freq / 4000; 390 diff = cycle_freq - est_cycle_freq; 391 if (diff < 0) 392 diff = -diff; 393 if ((unsigned long)diff > tolerance) { 394 cycle_freq = est_cycle_freq; 395 printk("HWRPB cycle frequency bogus. " 396 "Estimated %lu Hz\n", cycle_freq); 397 } else { 398 est_cycle_freq = 0; 399 } 400 } else if (! validate_cc_value (cycle_freq)) { 401 printk("HWRPB cycle frequency bogus, " 402 "and unable to estimate a proper value!\n"); 403 } 404 405 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 406 to settle, as the Update-In-Progress bit going low isn't good 407 enough on some hardware. 2ms is our guess; we haven't found 408 bogomips yet, but this is close on a 500Mhz box. */ 409 __delay(1000000); 410 411 412 if (HZ > (1<<16)) { 413 extern void __you_loose (void); 414 __you_loose(); 415 } 416 417 register_rpcc_clocksource(cycle_freq); 418 419 state.last_time = cc1; 420 state.scaled_ticks_per_cycle 421 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 422 state.partial_tick = 0L; 423 424 /* Startup the timer source. */ 425 alpha_mv.init_rtc(); 426 } 427 428 /* 429 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 430 * called 500 ms after the second nowtime has started, because when 431 * nowtime is written into the registers of the CMOS clock, it will 432 * jump to the next second precisely 500 ms later. Check the Motorola 433 * MC146818A or Dallas DS12887 data sheet for details. 434 * 435 * BUG: This routine does not handle hour overflow properly; it just 436 * sets the minutes. Usually you won't notice until after reboot! 437 */ 438 439 440 static int 441 set_rtc_mmss(unsigned long nowtime) 442 { 443 int retval = 0; 444 int real_seconds, real_minutes, cmos_minutes; 445 unsigned char save_control, save_freq_select; 446 447 /* irq are locally disabled here */ 448 spin_lock(&rtc_lock); 449 /* Tell the clock it's being set */ 450 save_control = CMOS_READ(RTC_CONTROL); 451 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 452 453 /* Stop and reset prescaler */ 454 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 455 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 456 457 cmos_minutes = CMOS_READ(RTC_MINUTES); 458 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 459 cmos_minutes = bcd2bin(cmos_minutes); 460 461 /* 462 * since we're only adjusting minutes and seconds, 463 * don't interfere with hour overflow. This avoids 464 * messing with unknown time zones but requires your 465 * RTC not to be off by more than 15 minutes 466 */ 467 real_seconds = nowtime % 60; 468 real_minutes = nowtime / 60; 469 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 470 /* correct for half hour time zone */ 471 real_minutes += 30; 472 } 473 real_minutes %= 60; 474 475 if (abs(real_minutes - cmos_minutes) < 30) { 476 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 477 real_seconds = bin2bcd(real_seconds); 478 real_minutes = bin2bcd(real_minutes); 479 } 480 CMOS_WRITE(real_seconds,RTC_SECONDS); 481 CMOS_WRITE(real_minutes,RTC_MINUTES); 482 } else { 483 printk(KERN_WARNING 484 "set_rtc_mmss: can't update from %d to %d\n", 485 cmos_minutes, real_minutes); 486 retval = -1; 487 } 488 489 /* The following flags have to be released exactly in this order, 490 * otherwise the DS12887 (popular MC146818A clone with integrated 491 * battery and quartz) will not reset the oscillator and will not 492 * update precisely 500 ms later. You won't find this mentioned in 493 * the Dallas Semiconductor data sheets, but who believes data 494 * sheets anyway ... -- Markus Kuhn 495 */ 496 CMOS_WRITE(save_control, RTC_CONTROL); 497 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 498 spin_unlock(&rtc_lock); 499 500 return retval; 501 } 502