xref: /linux/arch/alpha/kernel/time.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/rtc.h>
50 
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 #include <linux/clocksource.h>
55 
56 #include "proto.h"
57 #include "irq_impl.h"
58 
59 static int set_rtc_mmss(unsigned long);
60 
61 DEFINE_SPINLOCK(rtc_lock);
62 EXPORT_SYMBOL(rtc_lock);
63 
64 #define TICK_SIZE (tick_nsec / 1000)
65 
66 /*
67  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
68  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69  * for large CPU clock rates.
70  */
71 #define FIX_SHIFT	48
72 
73 /* lump static variables together for more efficient access: */
74 static struct {
75 	/* cycle counter last time it got invoked */
76 	__u32 last_time;
77 	/* ticks/cycle * 2^48 */
78 	unsigned long scaled_ticks_per_cycle;
79 	/* partial unused tick */
80 	unsigned long partial_tick;
81 } state;
82 
83 unsigned long est_cycle_freq;
84 
85 #ifdef CONFIG_IRQ_WORK
86 
87 DEFINE_PER_CPU(u8, irq_work_pending);
88 
89 #define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
90 #define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
91 #define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
92 
93 void arch_irq_work_raise(void)
94 {
95 	set_irq_work_pending_flag();
96 }
97 
98 #else  /* CONFIG_IRQ_WORK */
99 
100 #define test_irq_work_pending()      0
101 #define clear_irq_work_pending()
102 
103 #endif /* CONFIG_IRQ_WORK */
104 
105 
106 static inline __u32 rpcc(void)
107 {
108     __u32 result;
109     asm volatile ("rpcc %0" : "=r"(result));
110     return result;
111 }
112 
113 int update_persistent_clock(struct timespec now)
114 {
115 	return set_rtc_mmss(now.tv_sec);
116 }
117 
118 void read_persistent_clock(struct timespec *ts)
119 {
120 	unsigned int year, mon, day, hour, min, sec, epoch;
121 
122 	sec = CMOS_READ(RTC_SECONDS);
123 	min = CMOS_READ(RTC_MINUTES);
124 	hour = CMOS_READ(RTC_HOURS);
125 	day = CMOS_READ(RTC_DAY_OF_MONTH);
126 	mon = CMOS_READ(RTC_MONTH);
127 	year = CMOS_READ(RTC_YEAR);
128 
129 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
130 		sec = bcd2bin(sec);
131 		min = bcd2bin(min);
132 		hour = bcd2bin(hour);
133 		day = bcd2bin(day);
134 		mon = bcd2bin(mon);
135 		year = bcd2bin(year);
136 	}
137 
138 	/* PC-like is standard; used for year >= 70 */
139 	epoch = 1900;
140 	if (year < 20)
141 		epoch = 2000;
142 	else if (year >= 20 && year < 48)
143 		/* NT epoch */
144 		epoch = 1980;
145 	else if (year >= 48 && year < 70)
146 		/* Digital UNIX epoch */
147 		epoch = 1952;
148 
149 	printk(KERN_INFO "Using epoch = %d\n", epoch);
150 
151 	if ((year += epoch) < 1970)
152 		year += 100;
153 
154 	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
155 	ts->tv_nsec = 0;
156 }
157 
158 
159 
160 /*
161  * timer_interrupt() needs to keep up the real-time clock,
162  * as well as call the "xtime_update()" routine every clocktick
163  */
164 irqreturn_t timer_interrupt(int irq, void *dev)
165 {
166 	unsigned long delta;
167 	__u32 now;
168 	long nticks;
169 
170 #ifndef CONFIG_SMP
171 	/* Not SMP, do kernel PC profiling here.  */
172 	profile_tick(CPU_PROFILING);
173 #endif
174 
175 	/*
176 	 * Calculate how many ticks have passed since the last update,
177 	 * including any previous partial leftover.  Save any resulting
178 	 * fraction for the next pass.
179 	 */
180 	now = rpcc();
181 	delta = now - state.last_time;
182 	state.last_time = now;
183 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
184 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
185 	nticks = delta >> FIX_SHIFT;
186 
187 	if (nticks)
188 		xtime_update(nticks);
189 
190 	if (test_irq_work_pending()) {
191 		clear_irq_work_pending();
192 		irq_work_run();
193 	}
194 
195 #ifndef CONFIG_SMP
196 	while (nticks--)
197 		update_process_times(user_mode(get_irq_regs()));
198 #endif
199 
200 	return IRQ_HANDLED;
201 }
202 
203 void __init
204 common_init_rtc(void)
205 {
206 	unsigned char x;
207 
208 	/* Reset periodic interrupt frequency.  */
209 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210         /* Test includes known working values on various platforms
211            where 0x26 is wrong; we refuse to change those. */
212 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
214 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
215 	}
216 
217 	/* Turn on periodic interrupts.  */
218 	x = CMOS_READ(RTC_CONTROL);
219 	if (!(x & RTC_PIE)) {
220 		printk("Turning on RTC interrupts.\n");
221 		x |= RTC_PIE;
222 		x &= ~(RTC_AIE | RTC_UIE);
223 		CMOS_WRITE(x, RTC_CONTROL);
224 	}
225 	(void) CMOS_READ(RTC_INTR_FLAGS);
226 
227 	outb(0x36, 0x43);	/* pit counter 0: system timer */
228 	outb(0x00, 0x40);
229 	outb(0x00, 0x40);
230 
231 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
232 	outb(0x31, 0x42);
233 	outb(0x13, 0x42);
234 
235 	init_rtc_irq();
236 }
237 
238 unsigned int common_get_rtc_time(struct rtc_time *time)
239 {
240 	return __get_rtc_time(time);
241 }
242 
243 int common_set_rtc_time(struct rtc_time *time)
244 {
245 	return __set_rtc_time(time);
246 }
247 
248 /* Validate a computed cycle counter result against the known bounds for
249    the given processor core.  There's too much brokenness in the way of
250    timing hardware for any one method to work everywhere.  :-(
251 
252    Return 0 if the result cannot be trusted, otherwise return the argument.  */
253 
254 static unsigned long __init
255 validate_cc_value(unsigned long cc)
256 {
257 	static struct bounds {
258 		unsigned int min, max;
259 	} cpu_hz[] __initdata = {
260 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
261 		[EV4_CPU]    = {  100000000,  300000000 },
262 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
263 		[EV45_CPU]   = {  200000000,  300000000 },
264 		[EV5_CPU]    = {  250000000,  433000000 },
265 		[EV56_CPU]   = {  333000000,  667000000 },
266 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
267 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
268 		[EV6_CPU]    = {  466000000,  600000000 },
269 		[EV67_CPU]   = {  600000000,  750000000 },
270 		[EV68AL_CPU] = {  750000000,  940000000 },
271 		[EV68CB_CPU] = { 1000000000, 1333333333 },
272 		/* None of the following are shipping as of 2001-11-01.  */
273 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
274 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
275 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
276 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
277 	};
278 
279 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
280 	const unsigned int deviation = 10000000;
281 
282 	struct percpu_struct *cpu;
283 	unsigned int index;
284 
285 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
286 	index = cpu->type & 0xffffffff;
287 
288 	/* If index out of bounds, no way to validate.  */
289 	if (index >= ARRAY_SIZE(cpu_hz))
290 		return cc;
291 
292 	/* If index contains no data, no way to validate.  */
293 	if (cpu_hz[index].max == 0)
294 		return cc;
295 
296 	if (cc < cpu_hz[index].min - deviation
297 	    || cc > cpu_hz[index].max + deviation)
298 		return 0;
299 
300 	return cc;
301 }
302 
303 
304 /*
305  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
306  * arch/i386/time.c.
307  */
308 
309 #define CALIBRATE_LATCH	0xffff
310 #define TIMEOUT_COUNT	0x100000
311 
312 static unsigned long __init
313 calibrate_cc_with_pit(void)
314 {
315 	int cc, count = 0;
316 
317 	/* Set the Gate high, disable speaker */
318 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
319 
320 	/*
321 	 * Now let's take care of CTC channel 2
322 	 *
323 	 * Set the Gate high, program CTC channel 2 for mode 0,
324 	 * (interrupt on terminal count mode), binary count,
325 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
326 	 */
327 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
328 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
329 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
330 
331 	cc = rpcc();
332 	do {
333 		count++;
334 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
335 	cc = rpcc() - cc;
336 
337 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
338 	if (count <= 1 || count == TIMEOUT_COUNT)
339 		return 0;
340 
341 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
342 }
343 
344 /* The Linux interpretation of the CMOS clock register contents:
345    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
346    RTC registers show the second which has precisely just started.
347    Let's hope other operating systems interpret the RTC the same way.  */
348 
349 static unsigned long __init
350 rpcc_after_update_in_progress(void)
351 {
352 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
353 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
354 
355 	return rpcc();
356 }
357 
358 #ifndef CONFIG_SMP
359 /* Until and unless we figure out how to get cpu cycle counters
360    in sync and keep them there, we can't use the rpcc.  */
361 static cycle_t read_rpcc(struct clocksource *cs)
362 {
363 	cycle_t ret = (cycle_t)rpcc();
364 	return ret;
365 }
366 
367 static struct clocksource clocksource_rpcc = {
368 	.name                   = "rpcc",
369 	.rating                 = 300,
370 	.read                   = read_rpcc,
371 	.mask                   = CLOCKSOURCE_MASK(32),
372 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
373 };
374 
375 static inline void register_rpcc_clocksource(long cycle_freq)
376 {
377 	clocksource_register_hz(&clocksource_rpcc, cycle_freq);
378 }
379 #else /* !CONFIG_SMP */
380 static inline void register_rpcc_clocksource(long cycle_freq)
381 {
382 }
383 #endif /* !CONFIG_SMP */
384 
385 void __init
386 time_init(void)
387 {
388 	unsigned int cc1, cc2;
389 	unsigned long cycle_freq, tolerance;
390 	long diff;
391 
392 	/* Calibrate CPU clock -- attempt #1.  */
393 	if (!est_cycle_freq)
394 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
395 
396 	cc1 = rpcc();
397 
398 	/* Calibrate CPU clock -- attempt #2.  */
399 	if (!est_cycle_freq) {
400 		cc1 = rpcc_after_update_in_progress();
401 		cc2 = rpcc_after_update_in_progress();
402 		est_cycle_freq = validate_cc_value(cc2 - cc1);
403 		cc1 = cc2;
404 	}
405 
406 	cycle_freq = hwrpb->cycle_freq;
407 	if (est_cycle_freq) {
408 		/* If the given value is within 250 PPM of what we calculated,
409 		   accept it.  Otherwise, use what we found.  */
410 		tolerance = cycle_freq / 4000;
411 		diff = cycle_freq - est_cycle_freq;
412 		if (diff < 0)
413 			diff = -diff;
414 		if ((unsigned long)diff > tolerance) {
415 			cycle_freq = est_cycle_freq;
416 			printk("HWRPB cycle frequency bogus.  "
417 			       "Estimated %lu Hz\n", cycle_freq);
418 		} else {
419 			est_cycle_freq = 0;
420 		}
421 	} else if (! validate_cc_value (cycle_freq)) {
422 		printk("HWRPB cycle frequency bogus, "
423 		       "and unable to estimate a proper value!\n");
424 	}
425 
426 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
427 	   to settle, as the Update-In-Progress bit going low isn't good
428 	   enough on some hardware.  2ms is our guess; we haven't found
429 	   bogomips yet, but this is close on a 500Mhz box.  */
430 	__delay(1000000);
431 
432 
433 	if (HZ > (1<<16)) {
434 		extern void __you_loose (void);
435 		__you_loose();
436 	}
437 
438 	register_rpcc_clocksource(cycle_freq);
439 
440 	state.last_time = cc1;
441 	state.scaled_ticks_per_cycle
442 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
443 	state.partial_tick = 0L;
444 
445 	/* Startup the timer source. */
446 	alpha_mv.init_rtc();
447 }
448 
449 /*
450  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
451  * called 500 ms after the second nowtime has started, because when
452  * nowtime is written into the registers of the CMOS clock, it will
453  * jump to the next second precisely 500 ms later. Check the Motorola
454  * MC146818A or Dallas DS12887 data sheet for details.
455  *
456  * BUG: This routine does not handle hour overflow properly; it just
457  *      sets the minutes. Usually you won't notice until after reboot!
458  */
459 
460 
461 static int
462 set_rtc_mmss(unsigned long nowtime)
463 {
464 	int retval = 0;
465 	int real_seconds, real_minutes, cmos_minutes;
466 	unsigned char save_control, save_freq_select;
467 
468 	/* irq are locally disabled here */
469 	spin_lock(&rtc_lock);
470 	/* Tell the clock it's being set */
471 	save_control = CMOS_READ(RTC_CONTROL);
472 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
473 
474 	/* Stop and reset prescaler */
475 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
476 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
477 
478 	cmos_minutes = CMOS_READ(RTC_MINUTES);
479 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
480 		cmos_minutes = bcd2bin(cmos_minutes);
481 
482 	/*
483 	 * since we're only adjusting minutes and seconds,
484 	 * don't interfere with hour overflow. This avoids
485 	 * messing with unknown time zones but requires your
486 	 * RTC not to be off by more than 15 minutes
487 	 */
488 	real_seconds = nowtime % 60;
489 	real_minutes = nowtime / 60;
490 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
491 		/* correct for half hour time zone */
492 		real_minutes += 30;
493 	}
494 	real_minutes %= 60;
495 
496 	if (abs(real_minutes - cmos_minutes) < 30) {
497 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
498 			real_seconds = bin2bcd(real_seconds);
499 			real_minutes = bin2bcd(real_minutes);
500 		}
501 		CMOS_WRITE(real_seconds,RTC_SECONDS);
502 		CMOS_WRITE(real_minutes,RTC_MINUTES);
503 	} else {
504 		printk_once(KERN_NOTICE
505 		       "set_rtc_mmss: can't update from %d to %d\n",
506 		       cmos_minutes, real_minutes);
507  		retval = -1;
508 	}
509 
510 	/* The following flags have to be released exactly in this order,
511 	 * otherwise the DS12887 (popular MC146818A clone with integrated
512 	 * battery and quartz) will not reset the oscillator and will not
513 	 * update precisely 500 ms later. You won't find this mentioned in
514 	 * the Dallas Semiconductor data sheets, but who believes data
515 	 * sheets anyway ...                           -- Markus Kuhn
516 	 */
517 	CMOS_WRITE(save_control, RTC_CONTROL);
518 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
519 	spin_unlock(&rtc_lock);
520 
521 	return retval;
522 }
523