xref: /linux/arch/alpha/kernel/sys_mikasa.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/arch/alpha/kernel/sys_mikasa.c
4  *
5  *	Copyright (C) 1995 David A Rusling
6  *	Copyright (C) 1996 Jay A Estabrook
7  *	Copyright (C) 1998, 1999 Richard Henderson
8  *
9  * Code supporting the MIKASA (AlphaServer 1000).
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/mm.h>
15 #include <linux/sched.h>
16 #include <linux/pci.h>
17 #include <linux/init.h>
18 #include <linux/bitops.h>
19 
20 #include <asm/ptrace.h>
21 #include <asm/mce.h>
22 #include <asm/dma.h>
23 #include <asm/irq.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io.h>
26 #include <asm/core_cia.h>
27 #include <asm/tlbflush.h>
28 
29 #include "proto.h"
30 #include "irq_impl.h"
31 #include "pci_impl.h"
32 #include "machvec_impl.h"
33 
34 
35 /* Note mask bit is true for ENABLED irqs.  */
36 static int cached_irq_mask;
37 
38 static inline void
39 mikasa_update_irq_hw(int mask)
40 {
41 	outw(mask, 0x536);
42 }
43 
44 static inline void
45 mikasa_enable_irq(struct irq_data *d)
46 {
47 	mikasa_update_irq_hw(cached_irq_mask |= 1 << (d->irq - 16));
48 }
49 
50 static void
51 mikasa_disable_irq(struct irq_data *d)
52 {
53 	mikasa_update_irq_hw(cached_irq_mask &= ~(1 << (d->irq - 16)));
54 }
55 
56 static struct irq_chip mikasa_irq_type = {
57 	.name		= "MIKASA",
58 	.irq_unmask	= mikasa_enable_irq,
59 	.irq_mask	= mikasa_disable_irq,
60 	.irq_mask_ack	= mikasa_disable_irq,
61 };
62 
63 static void
64 mikasa_device_interrupt(unsigned long vector)
65 {
66 	unsigned long pld;
67 	unsigned int i;
68 
69 	/* Read the interrupt summary registers */
70 	pld = (((~inw(0x534) & 0x0000ffffUL) << 16)
71 	       | (((unsigned long) inb(0xa0)) << 8)
72 	       | inb(0x20));
73 
74 	/*
75 	 * Now for every possible bit set, work through them and call
76 	 * the appropriate interrupt handler.
77 	 */
78 	while (pld) {
79 		i = ffz(~pld);
80 		pld &= pld - 1; /* clear least bit set */
81 		if (i < 16) {
82 			isa_device_interrupt(vector);
83 		} else {
84 			handle_irq(i);
85 		}
86 	}
87 }
88 
89 static void __init
90 mikasa_init_irq(void)
91 {
92 	long i;
93 
94 	if (alpha_using_srm)
95 		alpha_mv.device_interrupt = srm_device_interrupt;
96 
97 	mikasa_update_irq_hw(0);
98 
99 	for (i = 16; i < 32; ++i) {
100 		irq_set_chip_and_handler(i, &mikasa_irq_type,
101 					 handle_level_irq);
102 		irq_set_status_flags(i, IRQ_LEVEL);
103 	}
104 
105 	init_i8259a_irqs();
106 	common_init_isa_dma();
107 }
108 
109 
110 /*
111  * PCI Fixup configuration.
112  *
113  * Summary @ 0x536:
114  * Bit      Meaning
115  * 0        Interrupt Line A from slot 0
116  * 1        Interrupt Line B from slot 0
117  * 2        Interrupt Line C from slot 0
118  * 3        Interrupt Line D from slot 0
119  * 4        Interrupt Line A from slot 1
120  * 5        Interrupt line B from slot 1
121  * 6        Interrupt Line C from slot 1
122  * 7        Interrupt Line D from slot 1
123  * 8        Interrupt Line A from slot 2
124  * 9        Interrupt Line B from slot 2
125  *10        Interrupt Line C from slot 2
126  *11        Interrupt Line D from slot 2
127  *12        NCR 810 SCSI
128  *13        Power Supply Fail
129  *14        Temperature Warn
130  *15        Reserved
131  *
132  * The device to slot mapping looks like:
133  *
134  * Slot     Device
135  *  6       NCR SCSI controller
136  *  7       Intel PCI-EISA bridge chip
137  * 11       PCI on board slot 0
138  * 12       PCI on board slot 1
139  * 13       PCI on board slot 2
140  *
141  *
142  * This two layered interrupt approach means that we allocate IRQ 16 and
143  * above for PCI interrupts.  The IRQ relates to which bit the interrupt
144  * comes in on.  This makes interrupt processing much easier.
145  */
146 
147 static int
148 mikasa_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
149 {
150 	static char irq_tab[8][5] = {
151 		/*INT    INTA   INTB   INTC   INTD */
152 		{16+12, 16+12, 16+12, 16+12, 16+12},	/* IdSel 17,  SCSI */
153 		{   -1,    -1,    -1,    -1,    -1},	/* IdSel 18,  PCEB */
154 		{   -1,    -1,    -1,    -1,    -1},	/* IdSel 19,  ???? */
155 		{   -1,    -1,    -1,    -1,    -1},	/* IdSel 20,  ???? */
156 		{   -1,    -1,    -1,    -1,    -1},	/* IdSel 21,  ???? */
157 		{ 16+0,  16+0,  16+1,  16+2,  16+3},	/* IdSel 22,  slot 0 */
158 		{ 16+4,  16+4,  16+5,  16+6,  16+7},	/* IdSel 23,  slot 1 */
159 		{ 16+8,  16+8,  16+9, 16+10, 16+11},	/* IdSel 24,  slot 2 */
160 	};
161 	const long min_idsel = 6, max_idsel = 13, irqs_per_slot = 5;
162 	return COMMON_TABLE_LOOKUP;
163 }
164 
165 
166 /*
167  * The System Vector
168  */
169 struct alpha_machine_vector mikasa_primo_mv __initmv = {
170 	.vector_name		= "Mikasa-Primo",
171 	DO_EV5_MMU,
172 	DO_DEFAULT_RTC,
173 	DO_CIA_IO,
174 	.machine_check		= cia_machine_check,
175 	.max_isa_dma_address	= ALPHA_MAX_ISA_DMA_ADDRESS,
176 	.min_io_address		= DEFAULT_IO_BASE,
177 	.min_mem_address	= CIA_DEFAULT_MEM_BASE,
178 
179 	.nr_irqs		= 32,
180 	.device_interrupt	= mikasa_device_interrupt,
181 
182 	.init_arch		= cia_init_arch,
183 	.init_irq		= mikasa_init_irq,
184 	.init_rtc		= common_init_rtc,
185 	.init_pci		= cia_init_pci,
186 	.kill_arch		= cia_kill_arch,
187 	.pci_map_irq		= mikasa_map_irq,
188 	.pci_swizzle		= common_swizzle,
189 };
190 ALIAS_MV(mikasa_primo)
191