xref: /linux/arch/alpha/kernel/sys_mikasa.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *	linux/arch/alpha/kernel/sys_mikasa.c
3  *
4  *	Copyright (C) 1995 David A Rusling
5  *	Copyright (C) 1996 Jay A Estabrook
6  *	Copyright (C) 1998, 1999 Richard Henderson
7  *
8  * Code supporting the MIKASA (AlphaServer 1000).
9  */
10 
11 #include <linux/config.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/mm.h>
15 #include <linux/sched.h>
16 #include <linux/pci.h>
17 #include <linux/init.h>
18 #include <linux/bitops.h>
19 
20 #include <asm/ptrace.h>
21 #include <asm/system.h>
22 #include <asm/dma.h>
23 #include <asm/irq.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io.h>
26 #include <asm/pgtable.h>
27 #include <asm/core_apecs.h>
28 #include <asm/core_cia.h>
29 #include <asm/tlbflush.h>
30 
31 #include "proto.h"
32 #include "irq_impl.h"
33 #include "pci_impl.h"
34 #include "machvec_impl.h"
35 
36 
37 /* Note mask bit is true for ENABLED irqs.  */
38 static int cached_irq_mask;
39 
40 static inline void
41 mikasa_update_irq_hw(int mask)
42 {
43 	outw(mask, 0x536);
44 }
45 
46 static inline void
47 mikasa_enable_irq(unsigned int irq)
48 {
49 	mikasa_update_irq_hw(cached_irq_mask |= 1 << (irq - 16));
50 }
51 
52 static void
53 mikasa_disable_irq(unsigned int irq)
54 {
55 	mikasa_update_irq_hw(cached_irq_mask &= ~(1 << (irq - 16)));
56 }
57 
58 static unsigned int
59 mikasa_startup_irq(unsigned int irq)
60 {
61 	mikasa_enable_irq(irq);
62 	return 0;
63 }
64 
65 static void
66 mikasa_end_irq(unsigned int irq)
67 {
68 	if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
69 		mikasa_enable_irq(irq);
70 }
71 
72 static struct hw_interrupt_type mikasa_irq_type = {
73 	.typename	= "MIKASA",
74 	.startup	= mikasa_startup_irq,
75 	.shutdown	= mikasa_disable_irq,
76 	.enable		= mikasa_enable_irq,
77 	.disable	= mikasa_disable_irq,
78 	.ack		= mikasa_disable_irq,
79 	.end		= mikasa_end_irq,
80 };
81 
82 static void
83 mikasa_device_interrupt(unsigned long vector, struct pt_regs *regs)
84 {
85 	unsigned long pld;
86 	unsigned int i;
87 
88 	/* Read the interrupt summary registers */
89 	pld = (((~inw(0x534) & 0x0000ffffUL) << 16)
90 	       | (((unsigned long) inb(0xa0)) << 8)
91 	       | inb(0x20));
92 
93 	/*
94 	 * Now for every possible bit set, work through them and call
95 	 * the appropriate interrupt handler.
96 	 */
97 	while (pld) {
98 		i = ffz(~pld);
99 		pld &= pld - 1; /* clear least bit set */
100 		if (i < 16) {
101 			isa_device_interrupt(vector, regs);
102 		} else {
103 			handle_irq(i, regs);
104 		}
105 	}
106 }
107 
108 static void __init
109 mikasa_init_irq(void)
110 {
111 	long i;
112 
113 	if (alpha_using_srm)
114 		alpha_mv.device_interrupt = srm_device_interrupt;
115 
116 	mikasa_update_irq_hw(0);
117 
118 	for (i = 16; i < 32; ++i) {
119 		irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL;
120 		irq_desc[i].chip = &mikasa_irq_type;
121 	}
122 
123 	init_i8259a_irqs();
124 	common_init_isa_dma();
125 }
126 
127 
128 /*
129  * PCI Fixup configuration.
130  *
131  * Summary @ 0x536:
132  * Bit      Meaning
133  * 0        Interrupt Line A from slot 0
134  * 1        Interrupt Line B from slot 0
135  * 2        Interrupt Line C from slot 0
136  * 3        Interrupt Line D from slot 0
137  * 4        Interrupt Line A from slot 1
138  * 5        Interrupt line B from slot 1
139  * 6        Interrupt Line C from slot 1
140  * 7        Interrupt Line D from slot 1
141  * 8        Interrupt Line A from slot 2
142  * 9        Interrupt Line B from slot 2
143  *10        Interrupt Line C from slot 2
144  *11        Interrupt Line D from slot 2
145  *12        NCR 810 SCSI
146  *13        Power Supply Fail
147  *14        Temperature Warn
148  *15        Reserved
149  *
150  * The device to slot mapping looks like:
151  *
152  * Slot     Device
153  *  6       NCR SCSI controller
154  *  7       Intel PCI-EISA bridge chip
155  * 11       PCI on board slot 0
156  * 12       PCI on board slot 1
157  * 13       PCI on board slot 2
158  *
159  *
160  * This two layered interrupt approach means that we allocate IRQ 16 and
161  * above for PCI interrupts.  The IRQ relates to which bit the interrupt
162  * comes in on.  This makes interrupt processing much easier.
163  */
164 
165 static int __init
166 mikasa_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
167 {
168 	static char irq_tab[8][5] __initdata = {
169 		/*INT    INTA   INTB   INTC   INTD */
170 		{16+12, 16+12, 16+12, 16+12, 16+12},	/* IdSel 17,  SCSI */
171 		{   -1,    -1,    -1,    -1,    -1},	/* IdSel 18,  PCEB */
172 		{   -1,    -1,    -1,    -1,    -1},	/* IdSel 19,  ???? */
173 		{   -1,    -1,    -1,    -1,    -1},	/* IdSel 20,  ???? */
174 		{   -1,    -1,    -1,    -1,    -1},	/* IdSel 21,  ???? */
175 		{ 16+0,  16+0,  16+1,  16+2,  16+3},	/* IdSel 22,  slot 0 */
176 		{ 16+4,  16+4,  16+5,  16+6,  16+7},	/* IdSel 23,  slot 1 */
177 		{ 16+8,  16+8,  16+9, 16+10, 16+11},	/* IdSel 24,  slot 2 */
178 	};
179 	const long min_idsel = 6, max_idsel = 13, irqs_per_slot = 5;
180 	return COMMON_TABLE_LOOKUP;
181 }
182 
183 
184 #if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO)
185 static void
186 mikasa_apecs_machine_check(unsigned long vector, unsigned long la_ptr,
187 		           struct pt_regs * regs)
188 {
189 #define MCHK_NO_DEVSEL 0x205U
190 #define MCHK_NO_TABT 0x204U
191 
192 	struct el_common *mchk_header;
193 	unsigned int code;
194 
195 	mchk_header = (struct el_common *)la_ptr;
196 
197 	/* Clear the error before any reporting.  */
198 	mb();
199 	mb(); /* magic */
200 	draina();
201 	apecs_pci_clr_err();
202 	wrmces(0x7);
203 	mb();
204 
205 	code = mchk_header->code;
206 	process_mcheck_info(vector, la_ptr, regs, "MIKASA APECS",
207 			    (mcheck_expected(0)
208 			     && (code == MCHK_NO_DEVSEL
209 			         || code == MCHK_NO_TABT)));
210 }
211 #endif
212 
213 
214 /*
215  * The System Vector
216  */
217 
218 #if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO)
219 struct alpha_machine_vector mikasa_mv __initmv = {
220 	.vector_name		= "Mikasa",
221 	DO_EV4_MMU,
222 	DO_DEFAULT_RTC,
223 	DO_APECS_IO,
224 	.machine_check		= mikasa_apecs_machine_check,
225 	.max_isa_dma_address	= ALPHA_MAX_ISA_DMA_ADDRESS,
226 	.min_io_address		= DEFAULT_IO_BASE,
227 	.min_mem_address	= APECS_AND_LCA_DEFAULT_MEM_BASE,
228 
229 	.nr_irqs		= 32,
230 	.device_interrupt	= mikasa_device_interrupt,
231 
232 	.init_arch		= apecs_init_arch,
233 	.init_irq		= mikasa_init_irq,
234 	.init_rtc		= common_init_rtc,
235 	.init_pci		= common_init_pci,
236 	.pci_map_irq		= mikasa_map_irq,
237 	.pci_swizzle		= common_swizzle,
238 };
239 ALIAS_MV(mikasa)
240 #endif
241 
242 #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_PRIMO)
243 struct alpha_machine_vector mikasa_primo_mv __initmv = {
244 	.vector_name		= "Mikasa-Primo",
245 	DO_EV5_MMU,
246 	DO_DEFAULT_RTC,
247 	DO_CIA_IO,
248 	.machine_check		= cia_machine_check,
249 	.max_isa_dma_address	= ALPHA_MAX_ISA_DMA_ADDRESS,
250 	.min_io_address		= DEFAULT_IO_BASE,
251 	.min_mem_address	= CIA_DEFAULT_MEM_BASE,
252 
253 	.nr_irqs		= 32,
254 	.device_interrupt	= mikasa_device_interrupt,
255 
256 	.init_arch		= cia_init_arch,
257 	.init_irq		= mikasa_init_irq,
258 	.init_rtc		= common_init_rtc,
259 	.init_pci		= cia_init_pci,
260 	.kill_arch		= cia_kill_arch,
261 	.pci_map_irq		= mikasa_map_irq,
262 	.pci_swizzle		= common_swizzle,
263 };
264 ALIAS_MV(mikasa_primo)
265 #endif
266