1 /* 2 * linux/arch/alpha/kernel/smp.c 3 * 4 * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com) 5 * Renamed modified smp_call_function to smp_call_function_on_cpu() 6 * Created an function that conforms to the old calling convention 7 * of smp_call_function(). 8 * 9 * This is helpful for DCPI. 10 * 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/kernel.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/module.h> 17 #include <linux/sched.h> 18 #include <linux/mm.h> 19 #include <linux/threads.h> 20 #include <linux/smp.h> 21 #include <linux/smp_lock.h> 22 #include <linux/interrupt.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/spinlock.h> 26 #include <linux/irq.h> 27 #include <linux/cache.h> 28 #include <linux/profile.h> 29 #include <linux/bitops.h> 30 31 #include <asm/hwrpb.h> 32 #include <asm/ptrace.h> 33 #include <asm/atomic.h> 34 35 #include <asm/io.h> 36 #include <asm/irq.h> 37 #include <asm/pgtable.h> 38 #include <asm/pgalloc.h> 39 #include <asm/mmu_context.h> 40 #include <asm/tlbflush.h> 41 42 #include "proto.h" 43 #include "irq_impl.h" 44 45 46 #define DEBUG_SMP 0 47 #if DEBUG_SMP 48 #define DBGS(args) printk args 49 #else 50 #define DBGS(args) 51 #endif 52 53 /* A collection of per-processor data. */ 54 struct cpuinfo_alpha cpu_data[NR_CPUS]; 55 56 /* A collection of single bit ipi messages. */ 57 static struct { 58 unsigned long bits ____cacheline_aligned; 59 } ipi_data[NR_CPUS] __cacheline_aligned; 60 61 enum ipi_message_type { 62 IPI_RESCHEDULE, 63 IPI_CALL_FUNC, 64 IPI_CPU_STOP, 65 }; 66 67 /* Set to a secondary's cpuid when it comes online. */ 68 static int smp_secondary_alive __initdata = 0; 69 70 /* Which cpus ids came online. */ 71 cpumask_t cpu_online_map; 72 73 EXPORT_SYMBOL(cpu_online_map); 74 75 int smp_num_probed; /* Internal processor count */ 76 int smp_num_cpus = 1; /* Number that came online. */ 77 78 extern void calibrate_delay(void); 79 80 81 82 /* 83 * Called by both boot and secondaries to move global data into 84 * per-processor storage. 85 */ 86 static inline void __init 87 smp_store_cpu_info(int cpuid) 88 { 89 cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy; 90 cpu_data[cpuid].last_asn = ASN_FIRST_VERSION; 91 cpu_data[cpuid].need_new_asn = 0; 92 cpu_data[cpuid].asn_lock = 0; 93 } 94 95 /* 96 * Ideally sets up per-cpu profiling hooks. Doesn't do much now... 97 */ 98 static inline void __init 99 smp_setup_percpu_timer(int cpuid) 100 { 101 cpu_data[cpuid].prof_counter = 1; 102 cpu_data[cpuid].prof_multiplier = 1; 103 } 104 105 static void __init 106 wait_boot_cpu_to_stop(int cpuid) 107 { 108 unsigned long stop = jiffies + 10*HZ; 109 110 while (time_before(jiffies, stop)) { 111 if (!smp_secondary_alive) 112 return; 113 barrier(); 114 } 115 116 printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid); 117 for (;;) 118 barrier(); 119 } 120 121 /* 122 * Where secondaries begin a life of C. 123 */ 124 void __init 125 smp_callin(void) 126 { 127 int cpuid = hard_smp_processor_id(); 128 129 if (cpu_test_and_set(cpuid, cpu_online_map)) { 130 printk("??, cpu 0x%x already present??\n", cpuid); 131 BUG(); 132 } 133 134 /* Turn on machine checks. */ 135 wrmces(7); 136 137 /* Set trap vectors. */ 138 trap_init(); 139 140 /* Set interrupt vector. */ 141 wrent(entInt, 0); 142 143 /* Get our local ticker going. */ 144 smp_setup_percpu_timer(cpuid); 145 146 /* Call platform-specific callin, if specified */ 147 if (alpha_mv.smp_callin) alpha_mv.smp_callin(); 148 149 /* All kernel threads share the same mm context. */ 150 atomic_inc(&init_mm.mm_count); 151 current->active_mm = &init_mm; 152 153 /* Must have completely accurate bogos. */ 154 local_irq_enable(); 155 156 /* Wait boot CPU to stop with irq enabled before running 157 calibrate_delay. */ 158 wait_boot_cpu_to_stop(cpuid); 159 mb(); 160 calibrate_delay(); 161 162 smp_store_cpu_info(cpuid); 163 /* Allow master to continue only after we written loops_per_jiffy. */ 164 wmb(); 165 smp_secondary_alive = 1; 166 167 DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n", 168 cpuid, current, current->active_mm)); 169 170 /* Do nothing. */ 171 cpu_idle(); 172 } 173 174 /* Wait until hwrpb->txrdy is clear for cpu. Return -1 on timeout. */ 175 static int __init 176 wait_for_txrdy (unsigned long cpumask) 177 { 178 unsigned long timeout; 179 180 if (!(hwrpb->txrdy & cpumask)) 181 return 0; 182 183 timeout = jiffies + 10*HZ; 184 while (time_before(jiffies, timeout)) { 185 if (!(hwrpb->txrdy & cpumask)) 186 return 0; 187 udelay(10); 188 barrier(); 189 } 190 191 return -1; 192 } 193 194 /* 195 * Send a message to a secondary's console. "START" is one such 196 * interesting message. ;-) 197 */ 198 static void __init 199 send_secondary_console_msg(char *str, int cpuid) 200 { 201 struct percpu_struct *cpu; 202 register char *cp1, *cp2; 203 unsigned long cpumask; 204 size_t len; 205 206 cpu = (struct percpu_struct *) 207 ((char*)hwrpb 208 + hwrpb->processor_offset 209 + cpuid * hwrpb->processor_size); 210 211 cpumask = (1UL << cpuid); 212 if (wait_for_txrdy(cpumask)) 213 goto timeout; 214 215 cp2 = str; 216 len = strlen(cp2); 217 *(unsigned int *)&cpu->ipc_buffer[0] = len; 218 cp1 = (char *) &cpu->ipc_buffer[1]; 219 memcpy(cp1, cp2, len); 220 221 /* atomic test and set */ 222 wmb(); 223 set_bit(cpuid, &hwrpb->rxrdy); 224 225 if (wait_for_txrdy(cpumask)) 226 goto timeout; 227 return; 228 229 timeout: 230 printk("Processor %x not ready\n", cpuid); 231 } 232 233 /* 234 * A secondary console wants to send a message. Receive it. 235 */ 236 static void 237 recv_secondary_console_msg(void) 238 { 239 int mycpu, i, cnt; 240 unsigned long txrdy = hwrpb->txrdy; 241 char *cp1, *cp2, buf[80]; 242 struct percpu_struct *cpu; 243 244 DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy)); 245 246 mycpu = hard_smp_processor_id(); 247 248 for (i = 0; i < NR_CPUS; i++) { 249 if (!(txrdy & (1UL << i))) 250 continue; 251 252 DBGS(("recv_secondary_console_msg: " 253 "TXRDY contains CPU %d.\n", i)); 254 255 cpu = (struct percpu_struct *) 256 ((char*)hwrpb 257 + hwrpb->processor_offset 258 + i * hwrpb->processor_size); 259 260 DBGS(("recv_secondary_console_msg: on %d from %d" 261 " HALT_REASON 0x%lx FLAGS 0x%lx\n", 262 mycpu, i, cpu->halt_reason, cpu->flags)); 263 264 cnt = cpu->ipc_buffer[0] >> 32; 265 if (cnt <= 0 || cnt >= 80) 266 strcpy(buf, "<<< BOGUS MSG >>>"); 267 else { 268 cp1 = (char *) &cpu->ipc_buffer[11]; 269 cp2 = buf; 270 strcpy(cp2, cp1); 271 272 while ((cp2 = strchr(cp2, '\r')) != 0) { 273 *cp2 = ' '; 274 if (cp2[1] == '\n') 275 cp2[1] = ' '; 276 } 277 } 278 279 DBGS((KERN_INFO "recv_secondary_console_msg: on %d " 280 "message is '%s'\n", mycpu, buf)); 281 } 282 283 hwrpb->txrdy = 0; 284 } 285 286 /* 287 * Convince the console to have a secondary cpu begin execution. 288 */ 289 static int __init 290 secondary_cpu_start(int cpuid, struct task_struct *idle) 291 { 292 struct percpu_struct *cpu; 293 struct pcb_struct *hwpcb, *ipcb; 294 unsigned long timeout; 295 296 cpu = (struct percpu_struct *) 297 ((char*)hwrpb 298 + hwrpb->processor_offset 299 + cpuid * hwrpb->processor_size); 300 hwpcb = (struct pcb_struct *) cpu->hwpcb; 301 ipcb = &task_thread_info(idle)->pcb; 302 303 /* Initialize the CPU's HWPCB to something just good enough for 304 us to get started. Immediately after starting, we'll swpctx 305 to the target idle task's pcb. Reuse the stack in the mean 306 time. Precalculate the target PCBB. */ 307 hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16; 308 hwpcb->usp = 0; 309 hwpcb->ptbr = ipcb->ptbr; 310 hwpcb->pcc = 0; 311 hwpcb->asn = 0; 312 hwpcb->unique = virt_to_phys(ipcb); 313 hwpcb->flags = ipcb->flags; 314 hwpcb->res1 = hwpcb->res2 = 0; 315 316 #if 0 317 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n", 318 hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique)); 319 #endif 320 DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n", 321 cpuid, idle->state, ipcb->flags)); 322 323 /* Setup HWRPB fields that SRM uses to activate secondary CPU */ 324 hwrpb->CPU_restart = __smp_callin; 325 hwrpb->CPU_restart_data = (unsigned long) __smp_callin; 326 327 /* Recalculate and update the HWRPB checksum */ 328 hwrpb_update_checksum(hwrpb); 329 330 /* 331 * Send a "start" command to the specified processor. 332 */ 333 334 /* SRM III 3.4.1.3 */ 335 cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */ 336 cpu->flags &= ~1; /* turn off Bootstrap In Progress */ 337 wmb(); 338 339 send_secondary_console_msg("START\r\n", cpuid); 340 341 /* Wait 10 seconds for an ACK from the console. */ 342 timeout = jiffies + 10*HZ; 343 while (time_before(jiffies, timeout)) { 344 if (cpu->flags & 1) 345 goto started; 346 udelay(10); 347 barrier(); 348 } 349 printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid); 350 return -1; 351 352 started: 353 DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid)); 354 return 0; 355 } 356 357 /* 358 * Bring one cpu online. 359 */ 360 static int __init 361 smp_boot_one_cpu(int cpuid) 362 { 363 struct task_struct *idle; 364 unsigned long timeout; 365 366 /* Cook up an idler for this guy. Note that the address we 367 give to kernel_thread is irrelevant -- it's going to start 368 where HWRPB.CPU_restart says to start. But this gets all 369 the other task-y sort of data structures set up like we 370 wish. We can't use kernel_thread since we must avoid 371 rescheduling the child. */ 372 idle = fork_idle(cpuid); 373 if (IS_ERR(idle)) 374 panic("failed fork for CPU %d", cpuid); 375 376 DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n", 377 cpuid, idle->state, idle->flags)); 378 379 /* Signal the secondary to wait a moment. */ 380 smp_secondary_alive = -1; 381 382 /* Whirrr, whirrr, whirrrrrrrrr... */ 383 if (secondary_cpu_start(cpuid, idle)) 384 return -1; 385 386 /* Notify the secondary CPU it can run calibrate_delay. */ 387 mb(); 388 smp_secondary_alive = 0; 389 390 /* We've been acked by the console; wait one second for 391 the task to start up for real. */ 392 timeout = jiffies + 1*HZ; 393 while (time_before(jiffies, timeout)) { 394 if (smp_secondary_alive == 1) 395 goto alive; 396 udelay(10); 397 barrier(); 398 } 399 400 /* We failed to boot the CPU. */ 401 402 printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid); 403 return -1; 404 405 alive: 406 /* Another "Red Snapper". */ 407 return 0; 408 } 409 410 /* 411 * Called from setup_arch. Detect an SMP system and which processors 412 * are present. 413 */ 414 void __init 415 setup_smp(void) 416 { 417 struct percpu_struct *cpubase, *cpu; 418 unsigned long i; 419 420 if (boot_cpuid != 0) { 421 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n", 422 boot_cpuid); 423 } 424 425 if (hwrpb->nr_processors > 1) { 426 int boot_cpu_palrev; 427 428 DBGS(("setup_smp: nr_processors %ld\n", 429 hwrpb->nr_processors)); 430 431 cpubase = (struct percpu_struct *) 432 ((char*)hwrpb + hwrpb->processor_offset); 433 boot_cpu_palrev = cpubase->pal_revision; 434 435 for (i = 0; i < hwrpb->nr_processors; i++) { 436 cpu = (struct percpu_struct *) 437 ((char *)cpubase + i*hwrpb->processor_size); 438 if ((cpu->flags & 0x1cc) == 0x1cc) { 439 smp_num_probed++; 440 /* Assume here that "whami" == index */ 441 cpu_set(i, cpu_present_map); 442 cpu->pal_revision = boot_cpu_palrev; 443 } 444 445 DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n", 446 i, cpu->flags, cpu->type)); 447 DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n", 448 i, cpu->pal_revision)); 449 } 450 } else { 451 smp_num_probed = 1; 452 } 453 454 printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_map = %lx\n", 455 smp_num_probed, cpu_present_map.bits[0]); 456 } 457 458 /* 459 * Called by smp_init prepare the secondaries 460 */ 461 void __init 462 smp_prepare_cpus(unsigned int max_cpus) 463 { 464 /* Take care of some initial bookkeeping. */ 465 memset(ipi_data, 0, sizeof(ipi_data)); 466 467 current_thread_info()->cpu = boot_cpuid; 468 469 smp_store_cpu_info(boot_cpuid); 470 smp_setup_percpu_timer(boot_cpuid); 471 472 /* Nothing to do on a UP box, or when told not to. */ 473 if (smp_num_probed == 1 || max_cpus == 0) { 474 cpu_present_map = cpumask_of_cpu(boot_cpuid); 475 printk(KERN_INFO "SMP mode deactivated.\n"); 476 return; 477 } 478 479 printk(KERN_INFO "SMP starting up secondaries.\n"); 480 481 smp_num_cpus = smp_num_probed; 482 } 483 484 void __devinit 485 smp_prepare_boot_cpu(void) 486 { 487 } 488 489 int __devinit 490 __cpu_up(unsigned int cpu) 491 { 492 smp_boot_one_cpu(cpu); 493 494 return cpu_online(cpu) ? 0 : -ENOSYS; 495 } 496 497 void __init 498 smp_cpus_done(unsigned int max_cpus) 499 { 500 int cpu; 501 unsigned long bogosum = 0; 502 503 for(cpu = 0; cpu < NR_CPUS; cpu++) 504 if (cpu_online(cpu)) 505 bogosum += cpu_data[cpu].loops_per_jiffy; 506 507 printk(KERN_INFO "SMP: Total of %d processors activated " 508 "(%lu.%02lu BogoMIPS).\n", 509 num_online_cpus(), 510 (bogosum + 2500) / (500000/HZ), 511 ((bogosum + 2500) / (5000/HZ)) % 100); 512 } 513 514 515 void 516 smp_percpu_timer_interrupt(struct pt_regs *regs) 517 { 518 int cpu = smp_processor_id(); 519 unsigned long user = user_mode(regs); 520 struct cpuinfo_alpha *data = &cpu_data[cpu]; 521 522 /* Record kernel PC. */ 523 profile_tick(CPU_PROFILING, regs); 524 525 if (!--data->prof_counter) { 526 /* We need to make like a normal interrupt -- otherwise 527 timer interrupts ignore the global interrupt lock, 528 which would be a Bad Thing. */ 529 irq_enter(); 530 531 update_process_times(user); 532 533 data->prof_counter = data->prof_multiplier; 534 535 irq_exit(); 536 } 537 } 538 539 int __init 540 setup_profiling_timer(unsigned int multiplier) 541 { 542 return -EINVAL; 543 } 544 545 546 static void 547 send_ipi_message(cpumask_t to_whom, enum ipi_message_type operation) 548 { 549 int i; 550 551 mb(); 552 for_each_cpu_mask(i, to_whom) 553 set_bit(operation, &ipi_data[i].bits); 554 555 mb(); 556 for_each_cpu_mask(i, to_whom) 557 wripir(i); 558 } 559 560 /* Structure and data for smp_call_function. This is designed to 561 minimize static memory requirements. Plus it looks cleaner. */ 562 563 struct smp_call_struct { 564 void (*func) (void *info); 565 void *info; 566 long wait; 567 atomic_t unstarted_count; 568 atomic_t unfinished_count; 569 }; 570 571 static struct smp_call_struct *smp_call_function_data; 572 573 /* Atomicly drop data into a shared pointer. The pointer is free if 574 it is initially locked. If retry, spin until free. */ 575 576 static int 577 pointer_lock (void *lock, void *data, int retry) 578 { 579 void *old, *tmp; 580 581 mb(); 582 again: 583 /* Compare and swap with zero. */ 584 asm volatile ( 585 "1: ldq_l %0,%1\n" 586 " mov %3,%2\n" 587 " bne %0,2f\n" 588 " stq_c %2,%1\n" 589 " beq %2,1b\n" 590 "2:" 591 : "=&r"(old), "=m"(*(void **)lock), "=&r"(tmp) 592 : "r"(data) 593 : "memory"); 594 595 if (old == 0) 596 return 0; 597 if (! retry) 598 return -EBUSY; 599 600 while (*(void **)lock) 601 barrier(); 602 goto again; 603 } 604 605 void 606 handle_ipi(struct pt_regs *regs) 607 { 608 int this_cpu = smp_processor_id(); 609 unsigned long *pending_ipis = &ipi_data[this_cpu].bits; 610 unsigned long ops; 611 612 #if 0 613 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n", 614 this_cpu, *pending_ipis, regs->pc)); 615 #endif 616 617 mb(); /* Order interrupt and bit testing. */ 618 while ((ops = xchg(pending_ipis, 0)) != 0) { 619 mb(); /* Order bit clearing and data access. */ 620 do { 621 unsigned long which; 622 623 which = ops & -ops; 624 ops &= ~which; 625 which = __ffs(which); 626 627 switch (which) { 628 case IPI_RESCHEDULE: 629 /* Reschedule callback. Everything to be done 630 is done by the interrupt return path. */ 631 break; 632 633 case IPI_CALL_FUNC: 634 { 635 struct smp_call_struct *data; 636 void (*func)(void *info); 637 void *info; 638 int wait; 639 640 data = smp_call_function_data; 641 func = data->func; 642 info = data->info; 643 wait = data->wait; 644 645 /* Notify the sending CPU that the data has been 646 received, and execution is about to begin. */ 647 mb(); 648 atomic_dec (&data->unstarted_count); 649 650 /* At this point the structure may be gone unless 651 wait is true. */ 652 (*func)(info); 653 654 /* Notify the sending CPU that the task is done. */ 655 mb(); 656 if (wait) atomic_dec (&data->unfinished_count); 657 break; 658 } 659 660 case IPI_CPU_STOP: 661 halt(); 662 663 default: 664 printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n", 665 this_cpu, which); 666 break; 667 } 668 } while (ops); 669 670 mb(); /* Order data access and bit testing. */ 671 } 672 673 cpu_data[this_cpu].ipi_count++; 674 675 if (hwrpb->txrdy) 676 recv_secondary_console_msg(); 677 } 678 679 void 680 smp_send_reschedule(int cpu) 681 { 682 #ifdef DEBUG_IPI_MSG 683 if (cpu == hard_smp_processor_id()) 684 printk(KERN_WARNING 685 "smp_send_reschedule: Sending IPI to self.\n"); 686 #endif 687 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 688 } 689 690 void 691 smp_send_stop(void) 692 { 693 cpumask_t to_whom = cpu_possible_map; 694 cpu_clear(smp_processor_id(), to_whom); 695 #ifdef DEBUG_IPI_MSG 696 if (hard_smp_processor_id() != boot_cpu_id) 697 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n"); 698 #endif 699 send_ipi_message(to_whom, IPI_CPU_STOP); 700 } 701 702 /* 703 * Run a function on all other CPUs. 704 * <func> The function to run. This must be fast and non-blocking. 705 * <info> An arbitrary pointer to pass to the function. 706 * <retry> If true, keep retrying until ready. 707 * <wait> If true, wait until function has completed on other CPUs. 708 * [RETURNS] 0 on success, else a negative status code. 709 * 710 * Does not return until remote CPUs are nearly ready to execute <func> 711 * or are or have executed. 712 * You must not call this function with disabled interrupts or from a 713 * hardware interrupt handler or from a bottom half handler. 714 */ 715 716 int 717 smp_call_function_on_cpu (void (*func) (void *info), void *info, int retry, 718 int wait, cpumask_t to_whom) 719 { 720 struct smp_call_struct data; 721 unsigned long timeout; 722 int num_cpus_to_call; 723 724 /* Can deadlock when called with interrupts disabled */ 725 WARN_ON(irqs_disabled()); 726 727 data.func = func; 728 data.info = info; 729 data.wait = wait; 730 731 cpu_clear(smp_processor_id(), to_whom); 732 num_cpus_to_call = cpus_weight(to_whom); 733 734 atomic_set(&data.unstarted_count, num_cpus_to_call); 735 atomic_set(&data.unfinished_count, num_cpus_to_call); 736 737 /* Acquire the smp_call_function_data mutex. */ 738 if (pointer_lock(&smp_call_function_data, &data, retry)) 739 return -EBUSY; 740 741 /* Send a message to the requested CPUs. */ 742 send_ipi_message(to_whom, IPI_CALL_FUNC); 743 744 /* Wait for a minimal response. */ 745 timeout = jiffies + HZ; 746 while (atomic_read (&data.unstarted_count) > 0 747 && time_before (jiffies, timeout)) 748 barrier(); 749 750 /* If there's no response yet, log a message but allow a longer 751 * timeout period -- if we get a response this time, log 752 * a message saying when we got it.. 753 */ 754 if (atomic_read(&data.unstarted_count) > 0) { 755 long start_time = jiffies; 756 printk(KERN_ERR "%s: initial timeout -- trying long wait\n", 757 __FUNCTION__); 758 timeout = jiffies + 30 * HZ; 759 while (atomic_read(&data.unstarted_count) > 0 760 && time_before(jiffies, timeout)) 761 barrier(); 762 if (atomic_read(&data.unstarted_count) <= 0) { 763 long delta = jiffies - start_time; 764 printk(KERN_ERR 765 "%s: response %ld.%ld seconds into long wait\n", 766 __FUNCTION__, delta / HZ, 767 (100 * (delta - ((delta / HZ) * HZ))) / HZ); 768 } 769 } 770 771 /* We either got one or timed out -- clear the lock. */ 772 mb(); 773 smp_call_function_data = NULL; 774 775 /* 776 * If after both the initial and long timeout periods we still don't 777 * have a response, something is very wrong... 778 */ 779 BUG_ON(atomic_read (&data.unstarted_count) > 0); 780 781 /* Wait for a complete response, if needed. */ 782 if (wait) { 783 while (atomic_read (&data.unfinished_count) > 0) 784 barrier(); 785 } 786 787 return 0; 788 } 789 790 int 791 smp_call_function (void (*func) (void *info), void *info, int retry, int wait) 792 { 793 return smp_call_function_on_cpu (func, info, retry, wait, 794 cpu_online_map); 795 } 796 797 static void 798 ipi_imb(void *ignored) 799 { 800 imb(); 801 } 802 803 void 804 smp_imb(void) 805 { 806 /* Must wait other processors to flush their icache before continue. */ 807 if (on_each_cpu(ipi_imb, NULL, 1, 1)) 808 printk(KERN_CRIT "smp_imb: timed out\n"); 809 } 810 811 static void 812 ipi_flush_tlb_all(void *ignored) 813 { 814 tbia(); 815 } 816 817 void 818 flush_tlb_all(void) 819 { 820 /* Although we don't have any data to pass, we do want to 821 synchronize with the other processors. */ 822 if (on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1)) { 823 printk(KERN_CRIT "flush_tlb_all: timed out\n"); 824 } 825 } 826 827 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock) 828 829 static void 830 ipi_flush_tlb_mm(void *x) 831 { 832 struct mm_struct *mm = (struct mm_struct *) x; 833 if (mm == current->active_mm && !asn_locked()) 834 flush_tlb_current(mm); 835 else 836 flush_tlb_other(mm); 837 } 838 839 void 840 flush_tlb_mm(struct mm_struct *mm) 841 { 842 preempt_disable(); 843 844 if (mm == current->active_mm) { 845 flush_tlb_current(mm); 846 if (atomic_read(&mm->mm_users) <= 1) { 847 int cpu, this_cpu = smp_processor_id(); 848 for (cpu = 0; cpu < NR_CPUS; cpu++) { 849 if (!cpu_online(cpu) || cpu == this_cpu) 850 continue; 851 if (mm->context[cpu]) 852 mm->context[cpu] = 0; 853 } 854 preempt_enable(); 855 return; 856 } 857 } 858 859 if (smp_call_function(ipi_flush_tlb_mm, mm, 1, 1)) { 860 printk(KERN_CRIT "flush_tlb_mm: timed out\n"); 861 } 862 863 preempt_enable(); 864 } 865 866 struct flush_tlb_page_struct { 867 struct vm_area_struct *vma; 868 struct mm_struct *mm; 869 unsigned long addr; 870 }; 871 872 static void 873 ipi_flush_tlb_page(void *x) 874 { 875 struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x; 876 struct mm_struct * mm = data->mm; 877 878 if (mm == current->active_mm && !asn_locked()) 879 flush_tlb_current_page(mm, data->vma, data->addr); 880 else 881 flush_tlb_other(mm); 882 } 883 884 void 885 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) 886 { 887 struct flush_tlb_page_struct data; 888 struct mm_struct *mm = vma->vm_mm; 889 890 preempt_disable(); 891 892 if (mm == current->active_mm) { 893 flush_tlb_current_page(mm, vma, addr); 894 if (atomic_read(&mm->mm_users) <= 1) { 895 int cpu, this_cpu = smp_processor_id(); 896 for (cpu = 0; cpu < NR_CPUS; cpu++) { 897 if (!cpu_online(cpu) || cpu == this_cpu) 898 continue; 899 if (mm->context[cpu]) 900 mm->context[cpu] = 0; 901 } 902 preempt_enable(); 903 return; 904 } 905 } 906 907 data.vma = vma; 908 data.mm = mm; 909 data.addr = addr; 910 911 if (smp_call_function(ipi_flush_tlb_page, &data, 1, 1)) { 912 printk(KERN_CRIT "flush_tlb_page: timed out\n"); 913 } 914 915 preempt_enable(); 916 } 917 918 void 919 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 920 { 921 /* On the Alpha we always flush the whole user tlb. */ 922 flush_tlb_mm(vma->vm_mm); 923 } 924 925 static void 926 ipi_flush_icache_page(void *x) 927 { 928 struct mm_struct *mm = (struct mm_struct *) x; 929 if (mm == current->active_mm && !asn_locked()) 930 __load_new_mm_context(mm); 931 else 932 flush_tlb_other(mm); 933 } 934 935 void 936 flush_icache_user_range(struct vm_area_struct *vma, struct page *page, 937 unsigned long addr, int len) 938 { 939 struct mm_struct *mm = vma->vm_mm; 940 941 if ((vma->vm_flags & VM_EXEC) == 0) 942 return; 943 944 preempt_disable(); 945 946 if (mm == current->active_mm) { 947 __load_new_mm_context(mm); 948 if (atomic_read(&mm->mm_users) <= 1) { 949 int cpu, this_cpu = smp_processor_id(); 950 for (cpu = 0; cpu < NR_CPUS; cpu++) { 951 if (!cpu_online(cpu) || cpu == this_cpu) 952 continue; 953 if (mm->context[cpu]) 954 mm->context[cpu] = 0; 955 } 956 preempt_enable(); 957 return; 958 } 959 } 960 961 if (smp_call_function(ipi_flush_icache_page, mm, 1, 1)) { 962 printk(KERN_CRIT "flush_icache_page: timed out\n"); 963 } 964 965 preempt_enable(); 966 } 967