xref: /linux/arch/alpha/kernel/smp.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/arch/alpha/kernel/smp.c
4  *
5  *      2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com)
6  *            Renamed modified smp_call_function to smp_call_function_on_cpu()
7  *            Created an function that conforms to the old calling convention
8  *            of smp_call_function().
9  *
10  *            This is helpful for DCPI.
11  *
12  */
13 
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/interrupt.h>
24 #include <linux/init.h>
25 #include <linux/delay.h>
26 #include <linux/spinlock.h>
27 #include <linux/irq.h>
28 #include <linux/cache.h>
29 #include <linux/profile.h>
30 #include <linux/bitops.h>
31 #include <linux/cpu.h>
32 
33 #include <asm/hwrpb.h>
34 #include <asm/ptrace.h>
35 #include <linux/atomic.h>
36 
37 #include <asm/io.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
42 
43 #include "proto.h"
44 #include "irq_impl.h"
45 
46 
47 #define DEBUG_SMP 0
48 #if DEBUG_SMP
49 #define DBGS(args)	printk args
50 #else
51 #define DBGS(args)
52 #endif
53 
54 /* A collection of per-processor data.  */
55 struct cpuinfo_alpha cpu_data[NR_CPUS];
56 EXPORT_SYMBOL(cpu_data);
57 
58 /* A collection of single bit ipi messages.  */
59 static struct {
60 	unsigned long bits ____cacheline_aligned;
61 } ipi_data[NR_CPUS] __cacheline_aligned;
62 
63 enum ipi_message_type {
64 	IPI_RESCHEDULE,
65 	IPI_CALL_FUNC,
66 	IPI_CPU_STOP,
67 };
68 
69 /* Set to a secondary's cpuid when it comes online.  */
70 static int smp_secondary_alive = 0;
71 
72 int smp_num_probed;		/* Internal processor count */
73 int smp_num_cpus = 1;		/* Number that came online.  */
74 EXPORT_SYMBOL(smp_num_cpus);
75 
76 /*
77  * Called by both boot and secondaries to move global data into
78  *  per-processor storage.
79  */
80 static inline void __init
81 smp_store_cpu_info(int cpuid)
82 {
83 	cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy;
84 	cpu_data[cpuid].last_asn = ASN_FIRST_VERSION;
85 	cpu_data[cpuid].need_new_asn = 0;
86 	cpu_data[cpuid].asn_lock = 0;
87 }
88 
89 /*
90  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
91  */
92 static inline void __init
93 smp_setup_percpu_timer(int cpuid)
94 {
95 	cpu_data[cpuid].prof_counter = 1;
96 	cpu_data[cpuid].prof_multiplier = 1;
97 }
98 
99 static void __init
100 wait_boot_cpu_to_stop(int cpuid)
101 {
102 	unsigned long stop = jiffies + 10*HZ;
103 
104 	while (time_before(jiffies, stop)) {
105 	        if (!smp_secondary_alive)
106 			return;
107 		barrier();
108 	}
109 
110 	printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid);
111 	for (;;)
112 		barrier();
113 }
114 
115 /*
116  * Where secondaries begin a life of C.
117  */
118 void __init
119 smp_callin(void)
120 {
121 	int cpuid = hard_smp_processor_id();
122 
123 	if (cpu_online(cpuid)) {
124 		printk("??, cpu 0x%x already present??\n", cpuid);
125 		BUG();
126 	}
127 	set_cpu_online(cpuid, true);
128 
129 	/* Turn on machine checks.  */
130 	wrmces(7);
131 
132 	/* Set trap vectors.  */
133 	trap_init();
134 
135 	/* Set interrupt vector.  */
136 	wrent(entInt, 0);
137 
138 	/* Get our local ticker going. */
139 	smp_setup_percpu_timer(cpuid);
140 	init_clockevent();
141 
142 	/* Call platform-specific callin, if specified */
143 	if (alpha_mv.smp_callin)
144 		alpha_mv.smp_callin();
145 
146 	/* All kernel threads share the same mm context.  */
147 	mmgrab(&init_mm);
148 	current->active_mm = &init_mm;
149 
150 	/* inform the notifiers about the new cpu */
151 	notify_cpu_starting(cpuid);
152 
153 	/* Must have completely accurate bogos.  */
154 	local_irq_enable();
155 
156 	/* Wait boot CPU to stop with irq enabled before running
157 	   calibrate_delay. */
158 	wait_boot_cpu_to_stop(cpuid);
159 	mb();
160 	calibrate_delay();
161 
162 	smp_store_cpu_info(cpuid);
163 	/* Allow master to continue only after we written loops_per_jiffy.  */
164 	wmb();
165 	smp_secondary_alive = 1;
166 
167 	DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n",
168 	      cpuid, current, current->active_mm));
169 
170 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
171 }
172 
173 /* Wait until hwrpb->txrdy is clear for cpu.  Return -1 on timeout.  */
174 static int
175 wait_for_txrdy (unsigned long cpumask)
176 {
177 	unsigned long timeout;
178 
179 	if (!(hwrpb->txrdy & cpumask))
180 		return 0;
181 
182 	timeout = jiffies + 10*HZ;
183 	while (time_before(jiffies, timeout)) {
184 		if (!(hwrpb->txrdy & cpumask))
185 			return 0;
186 		udelay(10);
187 		barrier();
188 	}
189 
190 	return -1;
191 }
192 
193 /*
194  * Send a message to a secondary's console.  "START" is one such
195  * interesting message.  ;-)
196  */
197 static void
198 send_secondary_console_msg(char *str, int cpuid)
199 {
200 	struct percpu_struct *cpu;
201 	register char *cp1, *cp2;
202 	unsigned long cpumask;
203 	size_t len;
204 
205 	cpu = (struct percpu_struct *)
206 		((char*)hwrpb
207 		 + hwrpb->processor_offset
208 		 + cpuid * hwrpb->processor_size);
209 
210 	cpumask = (1UL << cpuid);
211 	if (wait_for_txrdy(cpumask))
212 		goto timeout;
213 
214 	cp2 = str;
215 	len = strlen(cp2);
216 	*(unsigned int *)&cpu->ipc_buffer[0] = len;
217 	cp1 = (char *) &cpu->ipc_buffer[1];
218 	memcpy(cp1, cp2, len);
219 
220 	/* atomic test and set */
221 	wmb();
222 	set_bit(cpuid, &hwrpb->rxrdy);
223 
224 	if (wait_for_txrdy(cpumask))
225 		goto timeout;
226 	return;
227 
228  timeout:
229 	printk("Processor %x not ready\n", cpuid);
230 }
231 
232 /*
233  * A secondary console wants to send a message.  Receive it.
234  */
235 static void
236 recv_secondary_console_msg(void)
237 {
238 	int mycpu, i, cnt;
239 	unsigned long txrdy = hwrpb->txrdy;
240 	char *cp1, *cp2, buf[80];
241 	struct percpu_struct *cpu;
242 
243 	DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy));
244 
245 	mycpu = hard_smp_processor_id();
246 
247 	for (i = 0; i < NR_CPUS; i++) {
248 		if (!(txrdy & (1UL << i)))
249 			continue;
250 
251 		DBGS(("recv_secondary_console_msg: "
252 		      "TXRDY contains CPU %d.\n", i));
253 
254 		cpu = (struct percpu_struct *)
255 		  ((char*)hwrpb
256 		   + hwrpb->processor_offset
257 		   + i * hwrpb->processor_size);
258 
259  		DBGS(("recv_secondary_console_msg: on %d from %d"
260 		      " HALT_REASON 0x%lx FLAGS 0x%lx\n",
261 		      mycpu, i, cpu->halt_reason, cpu->flags));
262 
263 		cnt = cpu->ipc_buffer[0] >> 32;
264 		if (cnt <= 0 || cnt >= 80)
265 			strcpy(buf, "<<< BOGUS MSG >>>");
266 		else {
267 			cp1 = (char *) &cpu->ipc_buffer[1];
268 			cp2 = buf;
269 			memcpy(cp2, cp1, cnt);
270 			cp2[cnt] = '\0';
271 
272 			while ((cp2 = strchr(cp2, '\r')) != 0) {
273 				*cp2 = ' ';
274 				if (cp2[1] == '\n')
275 					cp2[1] = ' ';
276 			}
277 		}
278 
279 		DBGS((KERN_INFO "recv_secondary_console_msg: on %d "
280 		      "message is '%s'\n", mycpu, buf));
281 	}
282 
283 	hwrpb->txrdy = 0;
284 }
285 
286 /*
287  * Convince the console to have a secondary cpu begin execution.
288  */
289 static int
290 secondary_cpu_start(int cpuid, struct task_struct *idle)
291 {
292 	struct percpu_struct *cpu;
293 	struct pcb_struct *hwpcb, *ipcb;
294 	unsigned long timeout;
295 
296 	cpu = (struct percpu_struct *)
297 		((char*)hwrpb
298 		 + hwrpb->processor_offset
299 		 + cpuid * hwrpb->processor_size);
300 	hwpcb = (struct pcb_struct *) cpu->hwpcb;
301 	ipcb = &task_thread_info(idle)->pcb;
302 
303 	/* Initialize the CPU's HWPCB to something just good enough for
304 	   us to get started.  Immediately after starting, we'll swpctx
305 	   to the target idle task's pcb.  Reuse the stack in the mean
306 	   time.  Precalculate the target PCBB.  */
307 	hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16;
308 	hwpcb->usp = 0;
309 	hwpcb->ptbr = ipcb->ptbr;
310 	hwpcb->pcc = 0;
311 	hwpcb->asn = 0;
312 	hwpcb->unique = virt_to_phys(ipcb);
313 	hwpcb->flags = ipcb->flags;
314 	hwpcb->res1 = hwpcb->res2 = 0;
315 
316 #if 0
317 	DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n",
318 	      hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique));
319 #endif
320 	DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
321 	      cpuid, idle->state, ipcb->flags));
322 
323 	/* Setup HWRPB fields that SRM uses to activate secondary CPU */
324 	hwrpb->CPU_restart = __smp_callin;
325 	hwrpb->CPU_restart_data = (unsigned long) __smp_callin;
326 
327 	/* Recalculate and update the HWRPB checksum */
328 	hwrpb_update_checksum(hwrpb);
329 
330 	/*
331 	 * Send a "start" command to the specified processor.
332 	 */
333 
334 	/* SRM III 3.4.1.3 */
335 	cpu->flags |= 0x22;	/* turn on Context Valid and Restart Capable */
336 	cpu->flags &= ~1;	/* turn off Bootstrap In Progress */
337 	wmb();
338 
339 	send_secondary_console_msg("START\r\n", cpuid);
340 
341 	/* Wait 10 seconds for an ACK from the console.  */
342 	timeout = jiffies + 10*HZ;
343 	while (time_before(jiffies, timeout)) {
344 		if (cpu->flags & 1)
345 			goto started;
346 		udelay(10);
347 		barrier();
348 	}
349 	printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid);
350 	return -1;
351 
352  started:
353 	DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
354 	return 0;
355 }
356 
357 /*
358  * Bring one cpu online.
359  */
360 static int
361 smp_boot_one_cpu(int cpuid, struct task_struct *idle)
362 {
363 	unsigned long timeout;
364 
365 	/* Signal the secondary to wait a moment.  */
366 	smp_secondary_alive = -1;
367 
368 	/* Whirrr, whirrr, whirrrrrrrrr... */
369 	if (secondary_cpu_start(cpuid, idle))
370 		return -1;
371 
372 	/* Notify the secondary CPU it can run calibrate_delay.  */
373 	mb();
374 	smp_secondary_alive = 0;
375 
376 	/* We've been acked by the console; wait one second for
377 	   the task to start up for real.  */
378 	timeout = jiffies + 1*HZ;
379 	while (time_before(jiffies, timeout)) {
380 		if (smp_secondary_alive == 1)
381 			goto alive;
382 		udelay(10);
383 		barrier();
384 	}
385 
386 	/* We failed to boot the CPU.  */
387 
388 	printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
389 	return -1;
390 
391  alive:
392 	/* Another "Red Snapper". */
393 	return 0;
394 }
395 
396 /*
397  * Called from setup_arch.  Detect an SMP system and which processors
398  * are present.
399  */
400 void __init
401 setup_smp(void)
402 {
403 	struct percpu_struct *cpubase, *cpu;
404 	unsigned long i;
405 
406 	if (boot_cpuid != 0) {
407 		printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n",
408 		       boot_cpuid);
409 	}
410 
411 	if (hwrpb->nr_processors > 1) {
412 		int boot_cpu_palrev;
413 
414 		DBGS(("setup_smp: nr_processors %ld\n",
415 		      hwrpb->nr_processors));
416 
417 		cpubase = (struct percpu_struct *)
418 			((char*)hwrpb + hwrpb->processor_offset);
419 		boot_cpu_palrev = cpubase->pal_revision;
420 
421 		for (i = 0; i < hwrpb->nr_processors; i++) {
422 			cpu = (struct percpu_struct *)
423 				((char *)cpubase + i*hwrpb->processor_size);
424 			if ((cpu->flags & 0x1cc) == 0x1cc) {
425 				smp_num_probed++;
426 				set_cpu_possible(i, true);
427 				set_cpu_present(i, true);
428 				cpu->pal_revision = boot_cpu_palrev;
429 			}
430 
431 			DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
432 			      i, cpu->flags, cpu->type));
433 			DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
434 			      i, cpu->pal_revision));
435 		}
436 	} else {
437 		smp_num_probed = 1;
438 	}
439 
440 	printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n",
441 	       smp_num_probed, cpumask_bits(cpu_present_mask)[0]);
442 }
443 
444 /*
445  * Called by smp_init prepare the secondaries
446  */
447 void __init
448 smp_prepare_cpus(unsigned int max_cpus)
449 {
450 	/* Take care of some initial bookkeeping.  */
451 	memset(ipi_data, 0, sizeof(ipi_data));
452 
453 	current_thread_info()->cpu = boot_cpuid;
454 
455 	smp_store_cpu_info(boot_cpuid);
456 	smp_setup_percpu_timer(boot_cpuid);
457 
458 	/* Nothing to do on a UP box, or when told not to.  */
459 	if (smp_num_probed == 1 || max_cpus == 0) {
460 		init_cpu_possible(cpumask_of(boot_cpuid));
461 		init_cpu_present(cpumask_of(boot_cpuid));
462 		printk(KERN_INFO "SMP mode deactivated.\n");
463 		return;
464 	}
465 
466 	printk(KERN_INFO "SMP starting up secondaries.\n");
467 
468 	smp_num_cpus = smp_num_probed;
469 }
470 
471 int
472 __cpu_up(unsigned int cpu, struct task_struct *tidle)
473 {
474 	smp_boot_one_cpu(cpu, tidle);
475 
476 	return cpu_online(cpu) ? 0 : -ENOSYS;
477 }
478 
479 void __init
480 smp_cpus_done(unsigned int max_cpus)
481 {
482 	int cpu;
483 	unsigned long bogosum = 0;
484 
485 	for(cpu = 0; cpu < NR_CPUS; cpu++)
486 		if (cpu_online(cpu))
487 			bogosum += cpu_data[cpu].loops_per_jiffy;
488 
489 	printk(KERN_INFO "SMP: Total of %d processors activated "
490 	       "(%lu.%02lu BogoMIPS).\n",
491 	       num_online_cpus(),
492 	       (bogosum + 2500) / (500000/HZ),
493 	       ((bogosum + 2500) / (5000/HZ)) % 100);
494 }
495 
496 static void
497 send_ipi_message(const struct cpumask *to_whom, enum ipi_message_type operation)
498 {
499 	int i;
500 
501 	mb();
502 	for_each_cpu(i, to_whom)
503 		set_bit(operation, &ipi_data[i].bits);
504 
505 	mb();
506 	for_each_cpu(i, to_whom)
507 		wripir(i);
508 }
509 
510 void
511 handle_ipi(struct pt_regs *regs)
512 {
513 	int this_cpu = smp_processor_id();
514 	unsigned long *pending_ipis = &ipi_data[this_cpu].bits;
515 	unsigned long ops;
516 
517 #if 0
518 	DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n",
519 	      this_cpu, *pending_ipis, regs->pc));
520 #endif
521 
522 	mb();	/* Order interrupt and bit testing. */
523 	while ((ops = xchg(pending_ipis, 0)) != 0) {
524 	  mb();	/* Order bit clearing and data access. */
525 	  do {
526 		unsigned long which;
527 
528 		which = ops & -ops;
529 		ops &= ~which;
530 		which = __ffs(which);
531 
532 		switch (which) {
533 		case IPI_RESCHEDULE:
534 			scheduler_ipi();
535 			break;
536 
537 		case IPI_CALL_FUNC:
538 			generic_smp_call_function_interrupt();
539 			break;
540 
541 		case IPI_CPU_STOP:
542 			halt();
543 
544 		default:
545 			printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
546 			       this_cpu, which);
547 			break;
548 		}
549 	  } while (ops);
550 
551 	  mb();	/* Order data access and bit testing. */
552 	}
553 
554 	cpu_data[this_cpu].ipi_count++;
555 
556 	if (hwrpb->txrdy)
557 		recv_secondary_console_msg();
558 }
559 
560 void
561 arch_smp_send_reschedule(int cpu)
562 {
563 #ifdef DEBUG_IPI_MSG
564 	if (cpu == hard_smp_processor_id())
565 		printk(KERN_WARNING
566 		       "smp_send_reschedule: Sending IPI to self.\n");
567 #endif
568 	send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
569 }
570 
571 void
572 smp_send_stop(void)
573 {
574 	cpumask_t to_whom;
575 	cpumask_copy(&to_whom, cpu_online_mask);
576 	cpumask_clear_cpu(smp_processor_id(), &to_whom);
577 #ifdef DEBUG_IPI_MSG
578 	if (hard_smp_processor_id() != boot_cpu_id)
579 		printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n");
580 #endif
581 	send_ipi_message(&to_whom, IPI_CPU_STOP);
582 }
583 
584 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
585 {
586 	send_ipi_message(mask, IPI_CALL_FUNC);
587 }
588 
589 void arch_send_call_function_single_ipi(int cpu)
590 {
591 	send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
592 }
593 
594 static void
595 ipi_imb(void *ignored)
596 {
597 	imb();
598 }
599 
600 void
601 smp_imb(void)
602 {
603 	/* Must wait other processors to flush their icache before continue. */
604 	on_each_cpu(ipi_imb, NULL, 1);
605 }
606 EXPORT_SYMBOL(smp_imb);
607 
608 static void
609 ipi_flush_tlb_all(void *ignored)
610 {
611 	tbia();
612 }
613 
614 void
615 flush_tlb_all(void)
616 {
617 	/* Although we don't have any data to pass, we do want to
618 	   synchronize with the other processors.  */
619 	on_each_cpu(ipi_flush_tlb_all, NULL, 1);
620 }
621 
622 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock)
623 
624 static void
625 ipi_flush_tlb_mm(void *x)
626 {
627 	struct mm_struct *mm = x;
628 	if (mm == current->active_mm && !asn_locked())
629 		flush_tlb_current(mm);
630 	else
631 		flush_tlb_other(mm);
632 }
633 
634 void
635 flush_tlb_mm(struct mm_struct *mm)
636 {
637 	preempt_disable();
638 
639 	if (mm == current->active_mm) {
640 		flush_tlb_current(mm);
641 		if (atomic_read(&mm->mm_users) <= 1) {
642 			int cpu, this_cpu = smp_processor_id();
643 			for (cpu = 0; cpu < NR_CPUS; cpu++) {
644 				if (!cpu_online(cpu) || cpu == this_cpu)
645 					continue;
646 				if (mm->context[cpu])
647 					mm->context[cpu] = 0;
648 			}
649 			preempt_enable();
650 			return;
651 		}
652 	}
653 
654 	smp_call_function(ipi_flush_tlb_mm, mm, 1);
655 
656 	preempt_enable();
657 }
658 EXPORT_SYMBOL(flush_tlb_mm);
659 
660 struct flush_tlb_page_struct {
661 	struct vm_area_struct *vma;
662 	struct mm_struct *mm;
663 	unsigned long addr;
664 };
665 
666 static void
667 ipi_flush_tlb_page(void *x)
668 {
669 	struct flush_tlb_page_struct *data = x;
670 	struct mm_struct * mm = data->mm;
671 
672 	if (mm == current->active_mm && !asn_locked())
673 		flush_tlb_current_page(mm, data->vma, data->addr);
674 	else
675 		flush_tlb_other(mm);
676 }
677 
678 void
679 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
680 {
681 	struct flush_tlb_page_struct data;
682 	struct mm_struct *mm = vma->vm_mm;
683 
684 	preempt_disable();
685 
686 	if (mm == current->active_mm) {
687 		flush_tlb_current_page(mm, vma, addr);
688 		if (atomic_read(&mm->mm_users) <= 1) {
689 			int cpu, this_cpu = smp_processor_id();
690 			for (cpu = 0; cpu < NR_CPUS; cpu++) {
691 				if (!cpu_online(cpu) || cpu == this_cpu)
692 					continue;
693 				if (mm->context[cpu])
694 					mm->context[cpu] = 0;
695 			}
696 			preempt_enable();
697 			return;
698 		}
699 	}
700 
701 	data.vma = vma;
702 	data.mm = mm;
703 	data.addr = addr;
704 
705 	smp_call_function(ipi_flush_tlb_page, &data, 1);
706 
707 	preempt_enable();
708 }
709 EXPORT_SYMBOL(flush_tlb_page);
710 
711 void
712 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
713 {
714 	/* On the Alpha we always flush the whole user tlb.  */
715 	flush_tlb_mm(vma->vm_mm);
716 }
717 EXPORT_SYMBOL(flush_tlb_range);
718 
719 static void
720 ipi_flush_icache_page(void *x)
721 {
722 	struct mm_struct *mm = (struct mm_struct *) x;
723 	if (mm == current->active_mm && !asn_locked())
724 		__load_new_mm_context(mm);
725 	else
726 		flush_tlb_other(mm);
727 }
728 
729 void
730 flush_icache_user_page(struct vm_area_struct *vma, struct page *page,
731 			unsigned long addr, int len)
732 {
733 	struct mm_struct *mm = vma->vm_mm;
734 
735 	if ((vma->vm_flags & VM_EXEC) == 0)
736 		return;
737 
738 	preempt_disable();
739 
740 	if (mm == current->active_mm) {
741 		__load_new_mm_context(mm);
742 		if (atomic_read(&mm->mm_users) <= 1) {
743 			int cpu, this_cpu = smp_processor_id();
744 			for (cpu = 0; cpu < NR_CPUS; cpu++) {
745 				if (!cpu_online(cpu) || cpu == this_cpu)
746 					continue;
747 				if (mm->context[cpu])
748 					mm->context[cpu] = 0;
749 			}
750 			preempt_enable();
751 			return;
752 		}
753 	}
754 
755 	smp_call_function(ipi_flush_icache_page, mm, 1);
756 
757 	preempt_enable();
758 }
759