1 // SPDX-License-Identifier: GPL-2.0 2 /* ptrace.c */ 3 /* By Ross Biro 1/23/92 */ 4 /* edited by Linus Torvalds */ 5 /* mangled further by Bob Manson (manson@santafe.edu) */ 6 /* more mutilation by David Mosberger (davidm@azstarnet.com) */ 7 8 #include <linux/kernel.h> 9 #include <linux/sched.h> 10 #include <linux/sched/task_stack.h> 11 #include <linux/mm.h> 12 #include <linux/smp.h> 13 #include <linux/errno.h> 14 #include <linux/ptrace.h> 15 #include <linux/user.h> 16 #include <linux/security.h> 17 #include <linux/signal.h> 18 #include <linux/tracehook.h> 19 #include <linux/audit.h> 20 21 #include <linux/uaccess.h> 22 #include <asm/fpu.h> 23 24 #include "proto.h" 25 26 #define DEBUG DBG_MEM 27 #undef DEBUG 28 29 #ifdef DEBUG 30 enum { 31 DBG_MEM = (1<<0), 32 DBG_BPT = (1<<1), 33 DBG_MEM_ALL = (1<<2) 34 }; 35 #define DBG(fac,args) {if ((fac) & DEBUG) printk args;} 36 #else 37 #define DBG(fac,args) 38 #endif 39 40 #define BREAKINST 0x00000080 /* call_pal bpt */ 41 42 /* 43 * does not yet catch signals sent when the child dies. 44 * in exit.c or in signal.c. 45 */ 46 47 /* 48 * Processes always block with the following stack-layout: 49 * 50 * +================================+ <---- task + 2*PAGE_SIZE 51 * | PALcode saved frame (ps, pc, | ^ 52 * | gp, a0, a1, a2) | | 53 * +================================+ | struct pt_regs 54 * | | | 55 * | frame generated by SAVE_ALL | | 56 * | | v 57 * +================================+ 58 * | | ^ 59 * | frame saved by do_switch_stack | | struct switch_stack 60 * | | v 61 * +================================+ 62 */ 63 64 /* 65 * The following table maps a register index into the stack offset at 66 * which the register is saved. Register indices are 0-31 for integer 67 * regs, 32-63 for fp regs, and 64 for the pc. Notice that sp and 68 * zero have no stack-slot and need to be treated specially (see 69 * get_reg/put_reg below). 70 */ 71 enum { 72 REG_R0 = 0, REG_F0 = 32, REG_FPCR = 63, REG_PC = 64 73 }; 74 75 #define PT_REG(reg) \ 76 (PAGE_SIZE*2 - sizeof(struct pt_regs) + offsetof(struct pt_regs, reg)) 77 78 #define SW_REG(reg) \ 79 (PAGE_SIZE*2 - sizeof(struct pt_regs) - sizeof(struct switch_stack) \ 80 + offsetof(struct switch_stack, reg)) 81 82 static int regoff[] = { 83 PT_REG( r0), PT_REG( r1), PT_REG( r2), PT_REG( r3), 84 PT_REG( r4), PT_REG( r5), PT_REG( r6), PT_REG( r7), 85 PT_REG( r8), SW_REG( r9), SW_REG( r10), SW_REG( r11), 86 SW_REG( r12), SW_REG( r13), SW_REG( r14), SW_REG( r15), 87 PT_REG( r16), PT_REG( r17), PT_REG( r18), PT_REG( r19), 88 PT_REG( r20), PT_REG( r21), PT_REG( r22), PT_REG( r23), 89 PT_REG( r24), PT_REG( r25), PT_REG( r26), PT_REG( r27), 90 PT_REG( r28), PT_REG( gp), -1, -1, 91 SW_REG(fp[ 0]), SW_REG(fp[ 1]), SW_REG(fp[ 2]), SW_REG(fp[ 3]), 92 SW_REG(fp[ 4]), SW_REG(fp[ 5]), SW_REG(fp[ 6]), SW_REG(fp[ 7]), 93 SW_REG(fp[ 8]), SW_REG(fp[ 9]), SW_REG(fp[10]), SW_REG(fp[11]), 94 SW_REG(fp[12]), SW_REG(fp[13]), SW_REG(fp[14]), SW_REG(fp[15]), 95 SW_REG(fp[16]), SW_REG(fp[17]), SW_REG(fp[18]), SW_REG(fp[19]), 96 SW_REG(fp[20]), SW_REG(fp[21]), SW_REG(fp[22]), SW_REG(fp[23]), 97 SW_REG(fp[24]), SW_REG(fp[25]), SW_REG(fp[26]), SW_REG(fp[27]), 98 SW_REG(fp[28]), SW_REG(fp[29]), SW_REG(fp[30]), SW_REG(fp[31]), 99 PT_REG( pc) 100 }; 101 102 static unsigned long zero; 103 104 /* 105 * Get address of register REGNO in task TASK. 106 */ 107 static unsigned long * 108 get_reg_addr(struct task_struct * task, unsigned long regno) 109 { 110 unsigned long *addr; 111 112 if (regno == 30) { 113 addr = &task_thread_info(task)->pcb.usp; 114 } else if (regno == 65) { 115 addr = &task_thread_info(task)->pcb.unique; 116 } else if (regno == 31 || regno > 65) { 117 zero = 0; 118 addr = &zero; 119 } else { 120 addr = task_stack_page(task) + regoff[regno]; 121 } 122 return addr; 123 } 124 125 /* 126 * Get contents of register REGNO in task TASK. 127 */ 128 static unsigned long 129 get_reg(struct task_struct * task, unsigned long regno) 130 { 131 /* Special hack for fpcr -- combine hardware and software bits. */ 132 if (regno == 63) { 133 unsigned long fpcr = *get_reg_addr(task, regno); 134 unsigned long swcr 135 = task_thread_info(task)->ieee_state & IEEE_SW_MASK; 136 swcr = swcr_update_status(swcr, fpcr); 137 return fpcr | swcr; 138 } 139 return *get_reg_addr(task, regno); 140 } 141 142 /* 143 * Write contents of register REGNO in task TASK. 144 */ 145 static int 146 put_reg(struct task_struct *task, unsigned long regno, unsigned long data) 147 { 148 if (regno == 63) { 149 task_thread_info(task)->ieee_state 150 = ((task_thread_info(task)->ieee_state & ~IEEE_SW_MASK) 151 | (data & IEEE_SW_MASK)); 152 data = (data & FPCR_DYN_MASK) | ieee_swcr_to_fpcr(data); 153 } 154 *get_reg_addr(task, regno) = data; 155 return 0; 156 } 157 158 static inline int 159 read_int(struct task_struct *task, unsigned long addr, int * data) 160 { 161 int copied = access_process_vm(task, addr, data, sizeof(int), 162 FOLL_FORCE); 163 return (copied == sizeof(int)) ? 0 : -EIO; 164 } 165 166 static inline int 167 write_int(struct task_struct *task, unsigned long addr, int data) 168 { 169 int copied = access_process_vm(task, addr, &data, sizeof(int), 170 FOLL_FORCE | FOLL_WRITE); 171 return (copied == sizeof(int)) ? 0 : -EIO; 172 } 173 174 /* 175 * Set breakpoint. 176 */ 177 int 178 ptrace_set_bpt(struct task_struct * child) 179 { 180 int displ, i, res, reg_b, nsaved = 0; 181 unsigned int insn, op_code; 182 unsigned long pc; 183 184 pc = get_reg(child, REG_PC); 185 res = read_int(child, pc, (int *) &insn); 186 if (res < 0) 187 return res; 188 189 op_code = insn >> 26; 190 if (op_code >= 0x30) { 191 /* 192 * It's a branch: instead of trying to figure out 193 * whether the branch will be taken or not, we'll put 194 * a breakpoint at either location. This is simpler, 195 * more reliable, and probably not a whole lot slower 196 * than the alternative approach of emulating the 197 * branch (emulation can be tricky for fp branches). 198 */ 199 displ = ((s32)(insn << 11)) >> 9; 200 task_thread_info(child)->bpt_addr[nsaved++] = pc + 4; 201 if (displ) /* guard against unoptimized code */ 202 task_thread_info(child)->bpt_addr[nsaved++] 203 = pc + 4 + displ; 204 DBG(DBG_BPT, ("execing branch\n")); 205 } else if (op_code == 0x1a) { 206 reg_b = (insn >> 16) & 0x1f; 207 task_thread_info(child)->bpt_addr[nsaved++] = get_reg(child, reg_b); 208 DBG(DBG_BPT, ("execing jump\n")); 209 } else { 210 task_thread_info(child)->bpt_addr[nsaved++] = pc + 4; 211 DBG(DBG_BPT, ("execing normal insn\n")); 212 } 213 214 /* install breakpoints: */ 215 for (i = 0; i < nsaved; ++i) { 216 res = read_int(child, task_thread_info(child)->bpt_addr[i], 217 (int *) &insn); 218 if (res < 0) 219 return res; 220 task_thread_info(child)->bpt_insn[i] = insn; 221 DBG(DBG_BPT, (" -> next_pc=%lx\n", 222 task_thread_info(child)->bpt_addr[i])); 223 res = write_int(child, task_thread_info(child)->bpt_addr[i], 224 BREAKINST); 225 if (res < 0) 226 return res; 227 } 228 task_thread_info(child)->bpt_nsaved = nsaved; 229 return 0; 230 } 231 232 /* 233 * Ensure no single-step breakpoint is pending. Returns non-zero 234 * value if child was being single-stepped. 235 */ 236 int 237 ptrace_cancel_bpt(struct task_struct * child) 238 { 239 int i, nsaved = task_thread_info(child)->bpt_nsaved; 240 241 task_thread_info(child)->bpt_nsaved = 0; 242 243 if (nsaved > 2) { 244 printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved); 245 nsaved = 2; 246 } 247 248 for (i = 0; i < nsaved; ++i) { 249 write_int(child, task_thread_info(child)->bpt_addr[i], 250 task_thread_info(child)->bpt_insn[i]); 251 } 252 return (nsaved != 0); 253 } 254 255 void user_enable_single_step(struct task_struct *child) 256 { 257 /* Mark single stepping. */ 258 task_thread_info(child)->bpt_nsaved = -1; 259 } 260 261 void user_disable_single_step(struct task_struct *child) 262 { 263 ptrace_cancel_bpt(child); 264 } 265 266 /* 267 * Called by kernel/ptrace.c when detaching.. 268 * 269 * Make sure the single step bit is not set. 270 */ 271 void ptrace_disable(struct task_struct *child) 272 { 273 user_disable_single_step(child); 274 } 275 276 long arch_ptrace(struct task_struct *child, long request, 277 unsigned long addr, unsigned long data) 278 { 279 unsigned long tmp; 280 size_t copied; 281 long ret; 282 283 switch (request) { 284 /* When I and D space are separate, these will need to be fixed. */ 285 case PTRACE_PEEKTEXT: /* read word at location addr. */ 286 case PTRACE_PEEKDATA: 287 copied = ptrace_access_vm(child, addr, &tmp, sizeof(tmp), 288 FOLL_FORCE); 289 ret = -EIO; 290 if (copied != sizeof(tmp)) 291 break; 292 293 force_successful_syscall_return(); 294 ret = tmp; 295 break; 296 297 /* Read register number ADDR. */ 298 case PTRACE_PEEKUSR: 299 force_successful_syscall_return(); 300 ret = get_reg(child, addr); 301 DBG(DBG_MEM, ("peek $%lu->%#lx\n", addr, ret)); 302 break; 303 304 /* When I and D space are separate, this will have to be fixed. */ 305 case PTRACE_POKETEXT: /* write the word at location addr. */ 306 case PTRACE_POKEDATA: 307 ret = generic_ptrace_pokedata(child, addr, data); 308 break; 309 310 case PTRACE_POKEUSR: /* write the specified register */ 311 DBG(DBG_MEM, ("poke $%lu<-%#lx\n", addr, data)); 312 ret = put_reg(child, addr, data); 313 break; 314 default: 315 ret = ptrace_request(child, request, addr, data); 316 break; 317 } 318 return ret; 319 } 320 321 asmlinkage unsigned long syscall_trace_enter(void) 322 { 323 unsigned long ret = 0; 324 struct pt_regs *regs = current_pt_regs(); 325 if (test_thread_flag(TIF_SYSCALL_TRACE) && 326 tracehook_report_syscall_entry(current_pt_regs())) 327 ret = -1UL; 328 audit_syscall_entry(regs->r0, regs->r16, regs->r17, regs->r18, regs->r19); 329 return ret ?: current_pt_regs()->r0; 330 } 331 332 asmlinkage void 333 syscall_trace_leave(void) 334 { 335 audit_syscall_exit(current_pt_regs()); 336 if (test_thread_flag(TIF_SYSCALL_TRACE)) 337 tracehook_report_syscall_exit(current_pt_regs(), 0); 338 } 339