xref: /linux/arch/alpha/kernel/process.c (revision d6296cb65320be16dbf20f2fd584ddc25f3437cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/alpha/kernel/process.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling.
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/user.h>
25 #include <linux/time.h>
26 #include <linux/major.h>
27 #include <linux/stat.h>
28 #include <linux/vt.h>
29 #include <linux/mman.h>
30 #include <linux/elfcore.h>
31 #include <linux/reboot.h>
32 #include <linux/tty.h>
33 #include <linux/console.h>
34 #include <linux/slab.h>
35 #include <linux/rcupdate.h>
36 
37 #include <asm/reg.h>
38 #include <linux/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/hwrpb.h>
41 #include <asm/fpu.h>
42 
43 #include "proto.h"
44 #include "pci_impl.h"
45 
46 /*
47  * Power off function, if any
48  */
49 void (*pm_power_off)(void) = machine_power_off;
50 EXPORT_SYMBOL(pm_power_off);
51 
52 #ifdef CONFIG_ALPHA_WTINT
53 /*
54  * Sleep the CPU.
55  * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
56  */
57 void arch_cpu_idle(void)
58 {
59 	wtint(0);
60 }
61 
62 void arch_cpu_idle_dead(void)
63 {
64 	wtint(INT_MAX);
65 }
66 #endif /* ALPHA_WTINT */
67 
68 struct halt_info {
69 	int mode;
70 	char *restart_cmd;
71 };
72 
73 static void
74 common_shutdown_1(void *generic_ptr)
75 {
76 	struct halt_info *how = (struct halt_info *)generic_ptr;
77 	struct percpu_struct *cpup;
78 	unsigned long *pflags, flags;
79 	int cpuid = smp_processor_id();
80 
81 	/* No point in taking interrupts anymore. */
82 	local_irq_disable();
83 
84 	cpup = (struct percpu_struct *)
85 			((unsigned long)hwrpb + hwrpb->processor_offset
86 			 + hwrpb->processor_size * cpuid);
87 	pflags = &cpup->flags;
88 	flags = *pflags;
89 
90 	/* Clear reason to "default"; clear "bootstrap in progress". */
91 	flags &= ~0x00ff0001UL;
92 
93 #ifdef CONFIG_SMP
94 	/* Secondaries halt here. */
95 	if (cpuid != boot_cpuid) {
96 		flags |= 0x00040000UL; /* "remain halted" */
97 		*pflags = flags;
98 		set_cpu_present(cpuid, false);
99 		set_cpu_possible(cpuid, false);
100 		halt();
101 	}
102 #endif
103 
104 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
105 		if (!how->restart_cmd) {
106 			flags |= 0x00020000UL; /* "cold bootstrap" */
107 		} else {
108 			/* For SRM, we could probably set environment
109 			   variables to get this to work.  We'd have to
110 			   delay this until after srm_paging_stop unless
111 			   we ever got srm_fixup working.
112 
113 			   At the moment, SRM will use the last boot device,
114 			   but the file and flags will be the defaults, when
115 			   doing a "warm" bootstrap.  */
116 			flags |= 0x00030000UL; /* "warm bootstrap" */
117 		}
118 	} else {
119 		flags |= 0x00040000UL; /* "remain halted" */
120 	}
121 	*pflags = flags;
122 
123 #ifdef CONFIG_SMP
124 	/* Wait for the secondaries to halt. */
125 	set_cpu_present(boot_cpuid, false);
126 	set_cpu_possible(boot_cpuid, false);
127 	while (!cpumask_empty(cpu_present_mask))
128 		barrier();
129 #endif
130 
131 	/* If booted from SRM, reset some of the original environment. */
132 	if (alpha_using_srm) {
133 #ifdef CONFIG_DUMMY_CONSOLE
134 		/* If we've gotten here after SysRq-b, leave interrupt
135 		   context before taking over the console. */
136 		if (in_irq())
137 			irq_exit();
138 		/* This has the effect of resetting the VGA video origin.  */
139 		console_lock();
140 		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
141 		console_unlock();
142 #endif
143 		pci_restore_srm_config();
144 		set_hae(srm_hae);
145 	}
146 
147 	if (alpha_mv.kill_arch)
148 		alpha_mv.kill_arch(how->mode);
149 
150 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
151 		/* Unfortunately, since MILO doesn't currently understand
152 		   the hwrpb bits above, we can't reliably halt the
153 		   processor and keep it halted.  So just loop.  */
154 		return;
155 	}
156 
157 	if (alpha_using_srm)
158 		srm_paging_stop();
159 
160 	halt();
161 }
162 
163 static void
164 common_shutdown(int mode, char *restart_cmd)
165 {
166 	struct halt_info args;
167 	args.mode = mode;
168 	args.restart_cmd = restart_cmd;
169 	on_each_cpu(common_shutdown_1, &args, 0);
170 }
171 
172 void
173 machine_restart(char *restart_cmd)
174 {
175 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
176 }
177 
178 
179 void
180 machine_halt(void)
181 {
182 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
183 }
184 
185 
186 void
187 machine_power_off(void)
188 {
189 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
190 }
191 
192 
193 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
194    saved in the context it's used.  */
195 
196 void
197 show_regs(struct pt_regs *regs)
198 {
199 	show_regs_print_info(KERN_DEFAULT);
200 	dik_show_regs(regs, NULL);
201 }
202 
203 /*
204  * Re-start a thread when doing execve()
205  */
206 void
207 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
208 {
209 	regs->pc = pc;
210 	regs->ps = 8;
211 	wrusp(sp);
212 }
213 EXPORT_SYMBOL(start_thread);
214 
215 void
216 flush_thread(void)
217 {
218 	/* Arrange for each exec'ed process to start off with a clean slate
219 	   with respect to the FPU.  This is all exceptions disabled.  */
220 	current_thread_info()->ieee_state = 0;
221 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
222 
223 	/* Clean slate for TLS.  */
224 	current_thread_info()->pcb.unique = 0;
225 }
226 
227 /*
228  * Copy architecture-specific thread state
229  */
230 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
231 {
232 	unsigned long clone_flags = args->flags;
233 	unsigned long usp = args->stack;
234 	unsigned long tls = args->tls;
235 	extern void ret_from_fork(void);
236 	extern void ret_from_kernel_thread(void);
237 
238 	struct thread_info *childti = task_thread_info(p);
239 	struct pt_regs *childregs = task_pt_regs(p);
240 	struct pt_regs *regs = current_pt_regs();
241 	struct switch_stack *childstack, *stack;
242 
243 	childstack = ((struct switch_stack *) childregs) - 1;
244 	childti->pcb.ksp = (unsigned long) childstack;
245 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
246 
247 	if (unlikely(args->fn)) {
248 		/* kernel thread */
249 		memset(childstack, 0,
250 			sizeof(struct switch_stack) + sizeof(struct pt_regs));
251 		childstack->r26 = (unsigned long) ret_from_kernel_thread;
252 		childstack->r9 = (unsigned long) args->fn;
253 		childstack->r10 = (unsigned long) args->fn_arg;
254 		childregs->hae = alpha_mv.hae_cache;
255 		childti->pcb.usp = 0;
256 		return 0;
257 	}
258 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
259 	   value from the parent, which will have been set by the block
260 	   copy in dup_task_struct.  This is non-intuitive, but is
261 	   required for proper operation in the case of a threaded
262 	   application calling fork.  */
263 	if (clone_flags & CLONE_SETTLS)
264 		childti->pcb.unique = tls;
265 	else
266 		regs->r20 = 0;	/* OSF/1 has some strange fork() semantics.  */
267 	childti->pcb.usp = usp ?: rdusp();
268 	*childregs = *regs;
269 	childregs->r0 = 0;
270 	childregs->r19 = 0;
271 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
272 	stack = ((struct switch_stack *) regs) - 1;
273 	*childstack = *stack;
274 	childstack->r26 = (unsigned long) ret_from_fork;
275 	return 0;
276 }
277 
278 /*
279  * Fill in the user structure for a ELF core dump.
280  */
281 void
282 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
283 {
284 	/* switch stack follows right below pt_regs: */
285 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
286 
287 	dest[ 0] = pt->r0;
288 	dest[ 1] = pt->r1;
289 	dest[ 2] = pt->r2;
290 	dest[ 3] = pt->r3;
291 	dest[ 4] = pt->r4;
292 	dest[ 5] = pt->r5;
293 	dest[ 6] = pt->r6;
294 	dest[ 7] = pt->r7;
295 	dest[ 8] = pt->r8;
296 	dest[ 9] = sw->r9;
297 	dest[10] = sw->r10;
298 	dest[11] = sw->r11;
299 	dest[12] = sw->r12;
300 	dest[13] = sw->r13;
301 	dest[14] = sw->r14;
302 	dest[15] = sw->r15;
303 	dest[16] = pt->r16;
304 	dest[17] = pt->r17;
305 	dest[18] = pt->r18;
306 	dest[19] = pt->r19;
307 	dest[20] = pt->r20;
308 	dest[21] = pt->r21;
309 	dest[22] = pt->r22;
310 	dest[23] = pt->r23;
311 	dest[24] = pt->r24;
312 	dest[25] = pt->r25;
313 	dest[26] = pt->r26;
314 	dest[27] = pt->r27;
315 	dest[28] = pt->r28;
316 	dest[29] = pt->gp;
317 	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
318 	dest[31] = pt->pc;
319 
320 	/* Once upon a time this was the PS value.  Which is stupid
321 	   since that is always 8 for usermode.  Usurped for the more
322 	   useful value of the thread's UNIQUE field.  */
323 	dest[32] = ti->pcb.unique;
324 }
325 EXPORT_SYMBOL(dump_elf_thread);
326 
327 int
328 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
329 {
330 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
331 	return 1;
332 }
333 EXPORT_SYMBOL(dump_elf_task);
334 
335 int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
336 {
337 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(t) - 1;
338 	memcpy(fpu, sw->fp, 32 * 8);
339 	return 1;
340 }
341 
342 /*
343  * Return saved PC of a blocked thread.  This assumes the frame
344  * pointer is the 6th saved long on the kernel stack and that the
345  * saved return address is the first long in the frame.  This all
346  * holds provided the thread blocked through a call to schedule() ($15
347  * is the frame pointer in schedule() and $15 is saved at offset 48 by
348  * entry.S:do_switch_stack).
349  *
350  * Under heavy swap load I've seen this lose in an ugly way.  So do
351  * some extra sanity checking on the ranges we expect these pointers
352  * to be in so that we can fail gracefully.  This is just for ps after
353  * all.  -- r~
354  */
355 
356 static unsigned long
357 thread_saved_pc(struct task_struct *t)
358 {
359 	unsigned long base = (unsigned long)task_stack_page(t);
360 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
361 
362 	if (sp > base && sp+6*8 < base + 16*1024) {
363 		fp = ((unsigned long*)sp)[6];
364 		if (fp > sp && fp < base + 16*1024)
365 			return *(unsigned long *)fp;
366 	}
367 
368 	return 0;
369 }
370 
371 unsigned long
372 __get_wchan(struct task_struct *p)
373 {
374 	unsigned long schedule_frame;
375 	unsigned long pc;
376 
377 	/*
378 	 * This one depends on the frame size of schedule().  Do a
379 	 * "disass schedule" in gdb to find the frame size.  Also, the
380 	 * code assumes that sleep_on() follows immediately after
381 	 * interruptible_sleep_on() and that add_timer() follows
382 	 * immediately after interruptible_sleep().  Ugly, isn't it?
383 	 * Maybe adding a wchan field to task_struct would be better,
384 	 * after all...
385 	 */
386 
387 	pc = thread_saved_pc(p);
388 	if (in_sched_functions(pc)) {
389 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
390 		return ((unsigned long *)schedule_frame)[12];
391 	}
392 	return pc;
393 }
394