xref: /linux/arch/alpha/kernel/process.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/config.h>
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/smp.h>
18 #include <linux/smp_lock.h>
19 #include <linux/stddef.h>
20 #include <linux/unistd.h>
21 #include <linux/ptrace.h>
22 #include <linux/slab.h>
23 #include <linux/user.h>
24 #include <linux/a.out.h>
25 #include <linux/utsname.h>
26 #include <linux/time.h>
27 #include <linux/major.h>
28 #include <linux/stat.h>
29 #include <linux/mman.h>
30 #include <linux/elfcore.h>
31 #include <linux/reboot.h>
32 #include <linux/tty.h>
33 #include <linux/console.h>
34 
35 #include <asm/reg.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/pgtable.h>
40 #include <asm/hwrpb.h>
41 #include <asm/fpu.h>
42 
43 #include "proto.h"
44 #include "pci_impl.h"
45 
46 void
47 cpu_idle(void)
48 {
49 	set_thread_flag(TIF_POLLING_NRFLAG);
50 
51 	while (1) {
52 		/* FIXME -- EV6 and LCA45 know how to power down
53 		   the CPU.  */
54 
55 		while (!need_resched())
56 			cpu_relax();
57 		schedule();
58 	}
59 }
60 
61 
62 struct halt_info {
63 	int mode;
64 	char *restart_cmd;
65 };
66 
67 static void
68 common_shutdown_1(void *generic_ptr)
69 {
70 	struct halt_info *how = (struct halt_info *)generic_ptr;
71 	struct percpu_struct *cpup;
72 	unsigned long *pflags, flags;
73 	int cpuid = smp_processor_id();
74 
75 	/* No point in taking interrupts anymore. */
76 	local_irq_disable();
77 
78 	cpup = (struct percpu_struct *)
79 			((unsigned long)hwrpb + hwrpb->processor_offset
80 			 + hwrpb->processor_size * cpuid);
81 	pflags = &cpup->flags;
82 	flags = *pflags;
83 
84 	/* Clear reason to "default"; clear "bootstrap in progress". */
85 	flags &= ~0x00ff0001UL;
86 
87 #ifdef CONFIG_SMP
88 	/* Secondaries halt here. */
89 	if (cpuid != boot_cpuid) {
90 		flags |= 0x00040000UL; /* "remain halted" */
91 		*pflags = flags;
92 		clear_bit(cpuid, &cpu_present_mask);
93 		halt();
94 	}
95 #endif
96 
97 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
98 		if (!how->restart_cmd) {
99 			flags |= 0x00020000UL; /* "cold bootstrap" */
100 		} else {
101 			/* For SRM, we could probably set environment
102 			   variables to get this to work.  We'd have to
103 			   delay this until after srm_paging_stop unless
104 			   we ever got srm_fixup working.
105 
106 			   At the moment, SRM will use the last boot device,
107 			   but the file and flags will be the defaults, when
108 			   doing a "warm" bootstrap.  */
109 			flags |= 0x00030000UL; /* "warm bootstrap" */
110 		}
111 	} else {
112 		flags |= 0x00040000UL; /* "remain halted" */
113 	}
114 	*pflags = flags;
115 
116 #ifdef CONFIG_SMP
117 	/* Wait for the secondaries to halt. */
118 	cpu_clear(boot_cpuid, cpu_possible_map);
119 	while (cpus_weight(cpu_possible_map))
120 		barrier();
121 #endif
122 
123 	/* If booted from SRM, reset some of the original environment. */
124 	if (alpha_using_srm) {
125 #ifdef CONFIG_DUMMY_CONSOLE
126 		/* If we've gotten here after SysRq-b, leave interrupt
127 		   context before taking over the console. */
128 		if (in_interrupt())
129 			irq_exit();
130 		/* This has the effect of resetting the VGA video origin.  */
131 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
132 #endif
133 		pci_restore_srm_config();
134 		set_hae(srm_hae);
135 	}
136 
137 	if (alpha_mv.kill_arch)
138 		alpha_mv.kill_arch(how->mode);
139 
140 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
141 		/* Unfortunately, since MILO doesn't currently understand
142 		   the hwrpb bits above, we can't reliably halt the
143 		   processor and keep it halted.  So just loop.  */
144 		return;
145 	}
146 
147 	if (alpha_using_srm)
148 		srm_paging_stop();
149 
150 	halt();
151 }
152 
153 static void
154 common_shutdown(int mode, char *restart_cmd)
155 {
156 	struct halt_info args;
157 	args.mode = mode;
158 	args.restart_cmd = restart_cmd;
159 	on_each_cpu(common_shutdown_1, &args, 1, 0);
160 }
161 
162 void
163 machine_restart(char *restart_cmd)
164 {
165 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
166 }
167 
168 
169 void
170 machine_halt(void)
171 {
172 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
173 }
174 
175 
176 void
177 machine_power_off(void)
178 {
179 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
180 }
181 
182 
183 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
184    saved in the context it's used.  */
185 
186 void
187 show_regs(struct pt_regs *regs)
188 {
189 	dik_show_regs(regs, NULL);
190 }
191 
192 /*
193  * Re-start a thread when doing execve()
194  */
195 void
196 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
197 {
198 	set_fs(USER_DS);
199 	regs->pc = pc;
200 	regs->ps = 8;
201 	wrusp(sp);
202 }
203 
204 /*
205  * Free current thread data structures etc..
206  */
207 void
208 exit_thread(void)
209 {
210 }
211 
212 void
213 flush_thread(void)
214 {
215 	/* Arrange for each exec'ed process to start off with a clean slate
216 	   with respect to the FPU.  This is all exceptions disabled.  */
217 	current_thread_info()->ieee_state = 0;
218 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
219 
220 	/* Clean slate for TLS.  */
221 	current_thread_info()->pcb.unique = 0;
222 }
223 
224 void
225 release_thread(struct task_struct *dead_task)
226 {
227 }
228 
229 /*
230  * "alpha_clone()".. By the time we get here, the
231  * non-volatile registers have also been saved on the
232  * stack. We do some ugly pointer stuff here.. (see
233  * also copy_thread)
234  *
235  * Notice that "fork()" is implemented in terms of clone,
236  * with parameters (SIGCHLD, 0).
237  */
238 int
239 alpha_clone(unsigned long clone_flags, unsigned long usp,
240 	    int __user *parent_tid, int __user *child_tid,
241 	    unsigned long tls_value, struct pt_regs *regs)
242 {
243 	if (!usp)
244 		usp = rdusp();
245 
246 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
247 }
248 
249 int
250 alpha_vfork(struct pt_regs *regs)
251 {
252 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
253 		       regs, 0, NULL, NULL);
254 }
255 
256 /*
257  * Copy an alpha thread..
258  *
259  * Note the "stack_offset" stuff: when returning to kernel mode, we need
260  * to have some extra stack-space for the kernel stack that still exists
261  * after the "ret_from_fork".  When returning to user mode, we only want
262  * the space needed by the syscall stack frame (ie "struct pt_regs").
263  * Use the passed "regs" pointer to determine how much space we need
264  * for a kernel fork().
265  */
266 
267 int
268 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
269 	    unsigned long unused,
270 	    struct task_struct * p, struct pt_regs * regs)
271 {
272 	extern void ret_from_fork(void);
273 
274 	struct thread_info *childti = p->thread_info;
275 	struct pt_regs * childregs;
276 	struct switch_stack * childstack, *stack;
277 	unsigned long stack_offset, settls;
278 
279 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
280 	if (!(regs->ps & 8))
281 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
282 	childregs = (struct pt_regs *)
283 	  (stack_offset + PAGE_SIZE + (long) childti);
284 
285 	*childregs = *regs;
286 	settls = regs->r20;
287 	childregs->r0 = 0;
288 	childregs->r19 = 0;
289 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
290 	regs->r20 = 0;
291 	stack = ((struct switch_stack *) regs) - 1;
292 	childstack = ((struct switch_stack *) childregs) - 1;
293 	*childstack = *stack;
294 	childstack->r26 = (unsigned long) ret_from_fork;
295 	childti->pcb.usp = usp;
296 	childti->pcb.ksp = (unsigned long) childstack;
297 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
298 
299 	/* Set a new TLS for the child thread?  Peek back into the
300 	   syscall arguments that we saved on syscall entry.  Oops,
301 	   except we'd have clobbered it with the parent/child set
302 	   of r20.  Read the saved copy.  */
303 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
304 	   value from the parent, which will have been set by the block
305 	   copy in dup_task_struct.  This is non-intuitive, but is
306 	   required for proper operation in the case of a threaded
307 	   application calling fork.  */
308 	if (clone_flags & CLONE_SETTLS)
309 		childti->pcb.unique = settls;
310 
311 	return 0;
312 }
313 
314 /*
315  * Fill in the user structure for an ECOFF core dump.
316  */
317 void
318 dump_thread(struct pt_regs * pt, struct user * dump)
319 {
320 	/* switch stack follows right below pt_regs: */
321 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
322 
323 	dump->magic = CMAGIC;
324 	dump->start_code  = current->mm->start_code;
325 	dump->start_data  = current->mm->start_data;
326 	dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
327 	dump->u_tsize = ((current->mm->end_code - dump->start_code)
328 			 >> PAGE_SHIFT);
329 	dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data)
330 			 >> PAGE_SHIFT);
331 	dump->u_ssize = (current->mm->start_stack - dump->start_stack
332 			 + PAGE_SIZE-1) >> PAGE_SHIFT;
333 
334 	/*
335 	 * We store the registers in an order/format that is
336 	 * compatible with DEC Unix/OSF/1 as this makes life easier
337 	 * for gdb.
338 	 */
339 	dump->regs[EF_V0]  = pt->r0;
340 	dump->regs[EF_T0]  = pt->r1;
341 	dump->regs[EF_T1]  = pt->r2;
342 	dump->regs[EF_T2]  = pt->r3;
343 	dump->regs[EF_T3]  = pt->r4;
344 	dump->regs[EF_T4]  = pt->r5;
345 	dump->regs[EF_T5]  = pt->r6;
346 	dump->regs[EF_T6]  = pt->r7;
347 	dump->regs[EF_T7]  = pt->r8;
348 	dump->regs[EF_S0]  = sw->r9;
349 	dump->regs[EF_S1]  = sw->r10;
350 	dump->regs[EF_S2]  = sw->r11;
351 	dump->regs[EF_S3]  = sw->r12;
352 	dump->regs[EF_S4]  = sw->r13;
353 	dump->regs[EF_S5]  = sw->r14;
354 	dump->regs[EF_S6]  = sw->r15;
355 	dump->regs[EF_A3]  = pt->r19;
356 	dump->regs[EF_A4]  = pt->r20;
357 	dump->regs[EF_A5]  = pt->r21;
358 	dump->regs[EF_T8]  = pt->r22;
359 	dump->regs[EF_T9]  = pt->r23;
360 	dump->regs[EF_T10] = pt->r24;
361 	dump->regs[EF_T11] = pt->r25;
362 	dump->regs[EF_RA]  = pt->r26;
363 	dump->regs[EF_T12] = pt->r27;
364 	dump->regs[EF_AT]  = pt->r28;
365 	dump->regs[EF_SP]  = rdusp();
366 	dump->regs[EF_PS]  = pt->ps;
367 	dump->regs[EF_PC]  = pt->pc;
368 	dump->regs[EF_GP]  = pt->gp;
369 	dump->regs[EF_A0]  = pt->r16;
370 	dump->regs[EF_A1]  = pt->r17;
371 	dump->regs[EF_A2]  = pt->r18;
372 	memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
373 }
374 
375 /*
376  * Fill in the user structure for a ELF core dump.
377  */
378 void
379 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
380 {
381 	/* switch stack follows right below pt_regs: */
382 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
383 
384 	dest[ 0] = pt->r0;
385 	dest[ 1] = pt->r1;
386 	dest[ 2] = pt->r2;
387 	dest[ 3] = pt->r3;
388 	dest[ 4] = pt->r4;
389 	dest[ 5] = pt->r5;
390 	dest[ 6] = pt->r6;
391 	dest[ 7] = pt->r7;
392 	dest[ 8] = pt->r8;
393 	dest[ 9] = sw->r9;
394 	dest[10] = sw->r10;
395 	dest[11] = sw->r11;
396 	dest[12] = sw->r12;
397 	dest[13] = sw->r13;
398 	dest[14] = sw->r14;
399 	dest[15] = sw->r15;
400 	dest[16] = pt->r16;
401 	dest[17] = pt->r17;
402 	dest[18] = pt->r18;
403 	dest[19] = pt->r19;
404 	dest[20] = pt->r20;
405 	dest[21] = pt->r21;
406 	dest[22] = pt->r22;
407 	dest[23] = pt->r23;
408 	dest[24] = pt->r24;
409 	dest[25] = pt->r25;
410 	dest[26] = pt->r26;
411 	dest[27] = pt->r27;
412 	dest[28] = pt->r28;
413 	dest[29] = pt->gp;
414 	dest[30] = rdusp();
415 	dest[31] = pt->pc;
416 
417 	/* Once upon a time this was the PS value.  Which is stupid
418 	   since that is always 8 for usermode.  Usurped for the more
419 	   useful value of the thread's UNIQUE field.  */
420 	dest[32] = ti->pcb.unique;
421 }
422 
423 int
424 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
425 {
426 	struct thread_info *ti;
427 	struct pt_regs *pt;
428 
429 	ti = task->thread_info;
430 	pt = (struct pt_regs *)((unsigned long)ti + 2*PAGE_SIZE) - 1;
431 
432 	dump_elf_thread(dest, pt, ti);
433 
434 	return 1;
435 }
436 
437 int
438 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
439 {
440 	struct thread_info *ti;
441 	struct pt_regs *pt;
442 	struct switch_stack *sw;
443 
444 	ti = task->thread_info;
445 	pt = (struct pt_regs *)((unsigned long)ti + 2*PAGE_SIZE) - 1;
446 	sw = (struct switch_stack *)pt - 1;
447 
448 	memcpy(dest, sw->fp, 32 * 8);
449 
450 	return 1;
451 }
452 
453 /*
454  * sys_execve() executes a new program.
455  */
456 asmlinkage int
457 do_sys_execve(char __user *ufilename, char __user * __user *argv,
458 	      char __user * __user *envp, struct pt_regs *regs)
459 {
460 	int error;
461 	char *filename;
462 
463 	filename = getname(ufilename);
464 	error = PTR_ERR(filename);
465 	if (IS_ERR(filename))
466 		goto out;
467 	error = do_execve(filename, argv, envp, regs);
468 	putname(filename);
469 out:
470 	return error;
471 }
472 
473 /*
474  * Return saved PC of a blocked thread.  This assumes the frame
475  * pointer is the 6th saved long on the kernel stack and that the
476  * saved return address is the first long in the frame.  This all
477  * holds provided the thread blocked through a call to schedule() ($15
478  * is the frame pointer in schedule() and $15 is saved at offset 48 by
479  * entry.S:do_switch_stack).
480  *
481  * Under heavy swap load I've seen this lose in an ugly way.  So do
482  * some extra sanity checking on the ranges we expect these pointers
483  * to be in so that we can fail gracefully.  This is just for ps after
484  * all.  -- r~
485  */
486 
487 unsigned long
488 thread_saved_pc(task_t *t)
489 {
490 	unsigned long base = (unsigned long)t->thread_info;
491 	unsigned long fp, sp = t->thread_info->pcb.ksp;
492 
493 	if (sp > base && sp+6*8 < base + 16*1024) {
494 		fp = ((unsigned long*)sp)[6];
495 		if (fp > sp && fp < base + 16*1024)
496 			return *(unsigned long *)fp;
497 	}
498 
499 	return 0;
500 }
501 
502 unsigned long
503 get_wchan(struct task_struct *p)
504 {
505 	unsigned long schedule_frame;
506 	unsigned long pc;
507 	if (!p || p == current || p->state == TASK_RUNNING)
508 		return 0;
509 	/*
510 	 * This one depends on the frame size of schedule().  Do a
511 	 * "disass schedule" in gdb to find the frame size.  Also, the
512 	 * code assumes that sleep_on() follows immediately after
513 	 * interruptible_sleep_on() and that add_timer() follows
514 	 * immediately after interruptible_sleep().  Ugly, isn't it?
515 	 * Maybe adding a wchan field to task_struct would be better,
516 	 * after all...
517 	 */
518 
519 	pc = thread_saved_pc(p);
520 	if (in_sched_functions(pc)) {
521 		schedule_frame = ((unsigned long *)p->thread_info->pcb.ksp)[6];
522 		return ((unsigned long *)schedule_frame)[12];
523 	}
524 	return pc;
525 }
526