1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Hardware performance events for the Alpha. 4 * 5 * We implement HW counts on the EV67 and subsequent CPUs only. 6 * 7 * (C) 2010 Michael J. Cree 8 * 9 * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and 10 * ARM code, which are copyright by their respective authors. 11 */ 12 13 #include <linux/perf_event.h> 14 #include <linux/kprobes.h> 15 #include <linux/kernel.h> 16 #include <linux/kdebug.h> 17 #include <linux/mutex.h> 18 #include <linux/init.h> 19 20 #include <asm/hwrpb.h> 21 #include <linux/atomic.h> 22 #include <asm/irq.h> 23 #include <asm/irq_regs.h> 24 #include <asm/pal.h> 25 #include <asm/wrperfmon.h> 26 #include <asm/hw_irq.h> 27 28 29 /* The maximum number of PMCs on any Alpha CPU whatsoever. */ 30 #define MAX_HWEVENTS 3 31 #define PMC_NO_INDEX -1 32 33 /* For tracking PMCs and the hw events they monitor on each CPU. */ 34 struct cpu_hw_events { 35 int enabled; 36 /* Number of events scheduled; also number entries valid in arrays below. */ 37 int n_events; 38 /* Number events added since last hw_perf_disable(). */ 39 int n_added; 40 /* Events currently scheduled. */ 41 struct perf_event *event[MAX_HWEVENTS]; 42 /* Event type of each scheduled event. */ 43 unsigned long evtype[MAX_HWEVENTS]; 44 /* Current index of each scheduled event; if not yet determined 45 * contains PMC_NO_INDEX. 46 */ 47 int current_idx[MAX_HWEVENTS]; 48 /* The active PMCs' config for easy use with wrperfmon(). */ 49 unsigned long config; 50 /* The active counters' indices for easy use with wrperfmon(). */ 51 unsigned long idx_mask; 52 }; 53 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 54 55 56 57 /* 58 * A structure to hold the description of the PMCs available on a particular 59 * type of Alpha CPU. 60 */ 61 struct alpha_pmu_t { 62 /* Mapping of the perf system hw event types to indigenous event types */ 63 const int *event_map; 64 /* The number of entries in the event_map */ 65 int max_events; 66 /* The number of PMCs on this Alpha */ 67 int num_pmcs; 68 /* 69 * All PMC counters reside in the IBOX register PCTR. This is the 70 * LSB of the counter. 71 */ 72 int pmc_count_shift[MAX_HWEVENTS]; 73 /* 74 * The mask that isolates the PMC bits when the LSB of the counter 75 * is shifted to bit 0. 76 */ 77 unsigned long pmc_count_mask[MAX_HWEVENTS]; 78 /* The maximum period the PMC can count. */ 79 unsigned long pmc_max_period[MAX_HWEVENTS]; 80 /* 81 * The maximum value that may be written to the counter due to 82 * hardware restrictions is pmc_max_period - pmc_left. 83 */ 84 long pmc_left[3]; 85 /* Subroutine for allocation of PMCs. Enforces constraints. */ 86 int (*check_constraints)(struct perf_event **, unsigned long *, int); 87 /* Subroutine for checking validity of a raw event for this PMU. */ 88 int (*raw_event_valid)(u64 config); 89 }; 90 91 /* 92 * The Alpha CPU PMU description currently in operation. This is set during 93 * the boot process to the specific CPU of the machine. 94 */ 95 static const struct alpha_pmu_t *alpha_pmu; 96 97 98 #define HW_OP_UNSUPPORTED -1 99 100 /* 101 * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs 102 * follow. Since they are identical we refer to them collectively as the 103 * EV67 henceforth. 104 */ 105 106 /* 107 * EV67 PMC event types 108 * 109 * There is no one-to-one mapping of the possible hw event types to the 110 * actual codes that are used to program the PMCs hence we introduce our 111 * own hw event type identifiers. 112 */ 113 enum ev67_pmc_event_type { 114 EV67_CYCLES = 1, 115 EV67_INSTRUCTIONS, 116 EV67_BCACHEMISS, 117 EV67_MBOXREPLAY, 118 EV67_LAST_ET 119 }; 120 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES) 121 122 123 /* Mapping of the hw event types to the perf tool interface */ 124 static const int ev67_perfmon_event_map[] = { 125 [PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES, 126 [PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS, 127 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, 128 [PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS, 129 }; 130 131 struct ev67_mapping_t { 132 int config; 133 int idx; 134 }; 135 136 /* 137 * The mapping used for one event only - these must be in same order as enum 138 * ev67_pmc_event_type definition. 139 */ 140 static const struct ev67_mapping_t ev67_mapping[] = { 141 {EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */ 142 {EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */ 143 {EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */ 144 {EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */ 145 }; 146 147 148 /* 149 * Check that a group of events can be simultaneously scheduled on to the 150 * EV67 PMU. Also allocate counter indices and config. 151 */ 152 static int ev67_check_constraints(struct perf_event **event, 153 unsigned long *evtype, int n_ev) 154 { 155 int idx0; 156 unsigned long config; 157 158 idx0 = ev67_mapping[evtype[0]-1].idx; 159 config = ev67_mapping[evtype[0]-1].config; 160 if (n_ev == 1) 161 goto success; 162 163 BUG_ON(n_ev != 2); 164 165 if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) { 166 /* MBOX replay traps must be on PMC 1 */ 167 idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0; 168 /* Only cycles can accompany MBOX replay traps */ 169 if (evtype[idx0] == EV67_CYCLES) { 170 config = EV67_PCTR_CYCLES_MBOX; 171 goto success; 172 } 173 } 174 175 if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) { 176 /* Bcache misses must be on PMC 1 */ 177 idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0; 178 /* Only instructions can accompany Bcache misses */ 179 if (evtype[idx0] == EV67_INSTRUCTIONS) { 180 config = EV67_PCTR_INSTR_BCACHEMISS; 181 goto success; 182 } 183 } 184 185 if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) { 186 /* Instructions must be on PMC 0 */ 187 idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1; 188 /* By this point only cycles can accompany instructions */ 189 if (evtype[idx0^1] == EV67_CYCLES) { 190 config = EV67_PCTR_INSTR_CYCLES; 191 goto success; 192 } 193 } 194 195 /* Otherwise, darn it, there is a conflict. */ 196 return -1; 197 198 success: 199 event[0]->hw.idx = idx0; 200 event[0]->hw.config_base = config; 201 if (n_ev == 2) { 202 event[1]->hw.idx = idx0 ^ 1; 203 event[1]->hw.config_base = config; 204 } 205 return 0; 206 } 207 208 209 static int ev67_raw_event_valid(u64 config) 210 { 211 return config >= EV67_CYCLES && config < EV67_LAST_ET; 212 }; 213 214 215 static const struct alpha_pmu_t ev67_pmu = { 216 .event_map = ev67_perfmon_event_map, 217 .max_events = ARRAY_SIZE(ev67_perfmon_event_map), 218 .num_pmcs = 2, 219 .pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0}, 220 .pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0}, 221 .pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0}, 222 .pmc_left = {16, 4, 0}, 223 .check_constraints = ev67_check_constraints, 224 .raw_event_valid = ev67_raw_event_valid, 225 }; 226 227 228 229 /* 230 * Helper routines to ensure that we read/write only the correct PMC bits 231 * when calling the wrperfmon PALcall. 232 */ 233 static inline void alpha_write_pmc(int idx, unsigned long val) 234 { 235 val &= alpha_pmu->pmc_count_mask[idx]; 236 val <<= alpha_pmu->pmc_count_shift[idx]; 237 val |= (1<<idx); 238 wrperfmon(PERFMON_CMD_WRITE, val); 239 } 240 241 static inline unsigned long alpha_read_pmc(int idx) 242 { 243 unsigned long val; 244 245 val = wrperfmon(PERFMON_CMD_READ, 0); 246 val >>= alpha_pmu->pmc_count_shift[idx]; 247 val &= alpha_pmu->pmc_count_mask[idx]; 248 return val; 249 } 250 251 /* Set a new period to sample over */ 252 static int alpha_perf_event_set_period(struct perf_event *event, 253 struct hw_perf_event *hwc, int idx) 254 { 255 long left = local64_read(&hwc->period_left); 256 long period = hwc->sample_period; 257 int ret = 0; 258 259 if (unlikely(left <= -period)) { 260 left = period; 261 local64_set(&hwc->period_left, left); 262 hwc->last_period = period; 263 ret = 1; 264 } 265 266 if (unlikely(left <= 0)) { 267 left += period; 268 local64_set(&hwc->period_left, left); 269 hwc->last_period = period; 270 ret = 1; 271 } 272 273 /* 274 * Hardware restrictions require that the counters must not be 275 * written with values that are too close to the maximum period. 276 */ 277 if (unlikely(left < alpha_pmu->pmc_left[idx])) 278 left = alpha_pmu->pmc_left[idx]; 279 280 if (left > (long)alpha_pmu->pmc_max_period[idx]) 281 left = alpha_pmu->pmc_max_period[idx]; 282 283 local64_set(&hwc->prev_count, (unsigned long)(-left)); 284 285 alpha_write_pmc(idx, (unsigned long)(-left)); 286 287 perf_event_update_userpage(event); 288 289 return ret; 290 } 291 292 293 /* 294 * Calculates the count (the 'delta') since the last time the PMC was read. 295 * 296 * As the PMCs' full period can easily be exceeded within the perf system 297 * sampling period we cannot use any high order bits as a guard bit in the 298 * PMCs to detect overflow as is done by other architectures. The code here 299 * calculates the delta on the basis that there is no overflow when ovf is 300 * zero. The value passed via ovf by the interrupt handler corrects for 301 * overflow. 302 * 303 * This can be racey on rare occasions -- a call to this routine can occur 304 * with an overflowed counter just before the PMI service routine is called. 305 * The check for delta negative hopefully always rectifies this situation. 306 */ 307 static unsigned long alpha_perf_event_update(struct perf_event *event, 308 struct hw_perf_event *hwc, int idx, long ovf) 309 { 310 long prev_raw_count, new_raw_count; 311 long delta; 312 313 again: 314 prev_raw_count = local64_read(&hwc->prev_count); 315 new_raw_count = alpha_read_pmc(idx); 316 317 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 318 new_raw_count) != prev_raw_count) 319 goto again; 320 321 delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf; 322 323 /* It is possible on very rare occasions that the PMC has overflowed 324 * but the interrupt is yet to come. Detect and fix this situation. 325 */ 326 if (unlikely(delta < 0)) { 327 delta += alpha_pmu->pmc_max_period[idx] + 1; 328 } 329 330 local64_add(delta, &event->count); 331 local64_sub(delta, &hwc->period_left); 332 333 return new_raw_count; 334 } 335 336 337 /* 338 * Collect all HW events into the array event[]. 339 */ 340 static int collect_events(struct perf_event *group, int max_count, 341 struct perf_event *event[], unsigned long *evtype, 342 int *current_idx) 343 { 344 struct perf_event *pe; 345 int n = 0; 346 347 if (!is_software_event(group)) { 348 if (n >= max_count) 349 return -1; 350 event[n] = group; 351 evtype[n] = group->hw.event_base; 352 current_idx[n++] = PMC_NO_INDEX; 353 } 354 for_each_sibling_event(pe, group) { 355 if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) { 356 if (n >= max_count) 357 return -1; 358 event[n] = pe; 359 evtype[n] = pe->hw.event_base; 360 current_idx[n++] = PMC_NO_INDEX; 361 } 362 } 363 return n; 364 } 365 366 367 368 /* 369 * Check that a group of events can be simultaneously scheduled on to the PMU. 370 */ 371 static int alpha_check_constraints(struct perf_event **events, 372 unsigned long *evtypes, int n_ev) 373 { 374 375 /* No HW events is possible from hw_perf_group_sched_in(). */ 376 if (n_ev == 0) 377 return 0; 378 379 if (n_ev > alpha_pmu->num_pmcs) 380 return -1; 381 382 return alpha_pmu->check_constraints(events, evtypes, n_ev); 383 } 384 385 386 /* 387 * If new events have been scheduled then update cpuc with the new 388 * configuration. This may involve shifting cycle counts from one PMC to 389 * another. 390 */ 391 static void maybe_change_configuration(struct cpu_hw_events *cpuc) 392 { 393 int j; 394 395 if (cpuc->n_added == 0) 396 return; 397 398 /* Find counters that are moving to another PMC and update */ 399 for (j = 0; j < cpuc->n_events; j++) { 400 struct perf_event *pe = cpuc->event[j]; 401 402 if (cpuc->current_idx[j] != PMC_NO_INDEX && 403 cpuc->current_idx[j] != pe->hw.idx) { 404 alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0); 405 cpuc->current_idx[j] = PMC_NO_INDEX; 406 } 407 } 408 409 /* Assign to counters all unassigned events. */ 410 cpuc->idx_mask = 0; 411 for (j = 0; j < cpuc->n_events; j++) { 412 struct perf_event *pe = cpuc->event[j]; 413 struct hw_perf_event *hwc = &pe->hw; 414 int idx = hwc->idx; 415 416 if (cpuc->current_idx[j] == PMC_NO_INDEX) { 417 alpha_perf_event_set_period(pe, hwc, idx); 418 cpuc->current_idx[j] = idx; 419 } 420 421 if (!(hwc->state & PERF_HES_STOPPED)) 422 cpuc->idx_mask |= (1<<cpuc->current_idx[j]); 423 } 424 cpuc->config = cpuc->event[0]->hw.config_base; 425 } 426 427 428 429 /* Schedule perf HW event on to PMU. 430 * - this function is called from outside this module via the pmu struct 431 * returned from perf event initialisation. 432 */ 433 static int alpha_pmu_add(struct perf_event *event, int flags) 434 { 435 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 436 struct hw_perf_event *hwc = &event->hw; 437 int n0; 438 int ret; 439 unsigned long irq_flags; 440 441 /* 442 * The Sparc code has the IRQ disable first followed by the perf 443 * disable, however this can lead to an overflowed counter with the 444 * PMI disabled on rare occasions. The alpha_perf_event_update() 445 * routine should detect this situation by noting a negative delta, 446 * nevertheless we disable the PMCs first to enable a potential 447 * final PMI to occur before we disable interrupts. 448 */ 449 perf_pmu_disable(event->pmu); 450 local_irq_save(irq_flags); 451 452 /* Default to error to be returned */ 453 ret = -EAGAIN; 454 455 /* Insert event on to PMU and if successful modify ret to valid return */ 456 n0 = cpuc->n_events; 457 if (n0 < alpha_pmu->num_pmcs) { 458 cpuc->event[n0] = event; 459 cpuc->evtype[n0] = event->hw.event_base; 460 cpuc->current_idx[n0] = PMC_NO_INDEX; 461 462 if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) { 463 cpuc->n_events++; 464 cpuc->n_added++; 465 ret = 0; 466 } 467 } 468 469 hwc->state = PERF_HES_UPTODATE; 470 if (!(flags & PERF_EF_START)) 471 hwc->state |= PERF_HES_STOPPED; 472 473 local_irq_restore(irq_flags); 474 perf_pmu_enable(event->pmu); 475 476 return ret; 477 } 478 479 480 481 /* Disable performance monitoring unit 482 * - this function is called from outside this module via the pmu struct 483 * returned from perf event initialisation. 484 */ 485 static void alpha_pmu_del(struct perf_event *event, int flags) 486 { 487 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 488 struct hw_perf_event *hwc = &event->hw; 489 unsigned long irq_flags; 490 int j; 491 492 perf_pmu_disable(event->pmu); 493 local_irq_save(irq_flags); 494 495 for (j = 0; j < cpuc->n_events; j++) { 496 if (event == cpuc->event[j]) { 497 int idx = cpuc->current_idx[j]; 498 499 /* Shift remaining entries down into the existing 500 * slot. 501 */ 502 while (++j < cpuc->n_events) { 503 cpuc->event[j - 1] = cpuc->event[j]; 504 cpuc->evtype[j - 1] = cpuc->evtype[j]; 505 cpuc->current_idx[j - 1] = 506 cpuc->current_idx[j]; 507 } 508 509 /* Absorb the final count and turn off the event. */ 510 alpha_perf_event_update(event, hwc, idx, 0); 511 perf_event_update_userpage(event); 512 513 cpuc->idx_mask &= ~(1UL<<idx); 514 cpuc->n_events--; 515 break; 516 } 517 } 518 519 local_irq_restore(irq_flags); 520 perf_pmu_enable(event->pmu); 521 } 522 523 524 static void alpha_pmu_read(struct perf_event *event) 525 { 526 struct hw_perf_event *hwc = &event->hw; 527 528 alpha_perf_event_update(event, hwc, hwc->idx, 0); 529 } 530 531 532 static void alpha_pmu_stop(struct perf_event *event, int flags) 533 { 534 struct hw_perf_event *hwc = &event->hw; 535 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 536 537 if (!(hwc->state & PERF_HES_STOPPED)) { 538 cpuc->idx_mask &= ~(1UL<<hwc->idx); 539 hwc->state |= PERF_HES_STOPPED; 540 } 541 542 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 543 alpha_perf_event_update(event, hwc, hwc->idx, 0); 544 hwc->state |= PERF_HES_UPTODATE; 545 } 546 547 if (cpuc->enabled) 548 wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx)); 549 } 550 551 552 static void alpha_pmu_start(struct perf_event *event, int flags) 553 { 554 struct hw_perf_event *hwc = &event->hw; 555 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 556 557 if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) 558 return; 559 560 if (flags & PERF_EF_RELOAD) { 561 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 562 alpha_perf_event_set_period(event, hwc, hwc->idx); 563 } 564 565 hwc->state = 0; 566 567 cpuc->idx_mask |= 1UL<<hwc->idx; 568 if (cpuc->enabled) 569 wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx)); 570 } 571 572 573 /* 574 * Check that CPU performance counters are supported. 575 * - currently support EV67 and later CPUs. 576 * - actually some later revisions of the EV6 have the same PMC model as the 577 * EV67 but we don't do sufficiently deep CPU detection to detect them. 578 * Bad luck to the very few people who might have one, I guess. 579 */ 580 static int supported_cpu(void) 581 { 582 struct percpu_struct *cpu; 583 unsigned long cputype; 584 585 /* Get cpu type from HW */ 586 cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset); 587 cputype = cpu->type & 0xffffffff; 588 /* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */ 589 return (cputype >= EV67_CPU) && (cputype <= EV69_CPU); 590 } 591 592 593 594 static void hw_perf_event_destroy(struct perf_event *event) 595 { 596 /* Nothing to be done! */ 597 return; 598 } 599 600 601 602 static int __hw_perf_event_init(struct perf_event *event) 603 { 604 struct perf_event_attr *attr = &event->attr; 605 struct hw_perf_event *hwc = &event->hw; 606 struct perf_event *evts[MAX_HWEVENTS]; 607 unsigned long evtypes[MAX_HWEVENTS]; 608 int idx_rubbish_bin[MAX_HWEVENTS]; 609 int ev; 610 int n; 611 612 /* We only support a limited range of HARDWARE event types with one 613 * only programmable via a RAW event type. 614 */ 615 if (attr->type == PERF_TYPE_HARDWARE) { 616 if (attr->config >= alpha_pmu->max_events) 617 return -EINVAL; 618 ev = alpha_pmu->event_map[attr->config]; 619 } else if (attr->type == PERF_TYPE_HW_CACHE) { 620 return -EOPNOTSUPP; 621 } else if (attr->type == PERF_TYPE_RAW) { 622 if (!alpha_pmu->raw_event_valid(attr->config)) 623 return -EINVAL; 624 ev = attr->config; 625 } else { 626 return -EOPNOTSUPP; 627 } 628 629 if (ev < 0) { 630 return ev; 631 } 632 633 /* 634 * We place the event type in event_base here and leave calculation 635 * of the codes to programme the PMU for alpha_pmu_enable() because 636 * it is only then we will know what HW events are actually 637 * scheduled on to the PMU. At that point the code to programme the 638 * PMU is put into config_base and the PMC to use is placed into 639 * idx. We initialise idx (below) to PMC_NO_INDEX to indicate that 640 * it is yet to be determined. 641 */ 642 hwc->event_base = ev; 643 644 /* Collect events in a group together suitable for calling 645 * alpha_check_constraints() to verify that the group as a whole can 646 * be scheduled on to the PMU. 647 */ 648 n = 0; 649 if (event->group_leader != event) { 650 n = collect_events(event->group_leader, 651 alpha_pmu->num_pmcs - 1, 652 evts, evtypes, idx_rubbish_bin); 653 if (n < 0) 654 return -EINVAL; 655 } 656 evtypes[n] = hwc->event_base; 657 evts[n] = event; 658 659 if (alpha_check_constraints(evts, evtypes, n + 1)) 660 return -EINVAL; 661 662 /* Indicate that PMU config and idx are yet to be determined. */ 663 hwc->config_base = 0; 664 hwc->idx = PMC_NO_INDEX; 665 666 event->destroy = hw_perf_event_destroy; 667 668 /* 669 * Most architectures reserve the PMU for their use at this point. 670 * As there is no existing mechanism to arbitrate usage and there 671 * appears to be no other user of the Alpha PMU we just assume 672 * that we can just use it, hence a NO-OP here. 673 * 674 * Maybe an alpha_reserve_pmu() routine should be implemented but is 675 * anything else ever going to use it? 676 */ 677 678 if (!hwc->sample_period) { 679 hwc->sample_period = alpha_pmu->pmc_max_period[0]; 680 hwc->last_period = hwc->sample_period; 681 local64_set(&hwc->period_left, hwc->sample_period); 682 } 683 684 return 0; 685 } 686 687 /* 688 * Main entry point to initialise a HW performance event. 689 */ 690 static int alpha_pmu_event_init(struct perf_event *event) 691 { 692 /* does not support taken branch sampling */ 693 if (has_branch_stack(event)) 694 return -EOPNOTSUPP; 695 696 switch (event->attr.type) { 697 case PERF_TYPE_RAW: 698 case PERF_TYPE_HARDWARE: 699 case PERF_TYPE_HW_CACHE: 700 break; 701 702 default: 703 return -ENOENT; 704 } 705 706 if (!alpha_pmu) 707 return -ENODEV; 708 709 /* Do the real initialisation work. */ 710 return __hw_perf_event_init(event); 711 } 712 713 /* 714 * Main entry point - enable HW performance counters. 715 */ 716 static void alpha_pmu_enable(struct pmu *pmu) 717 { 718 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 719 720 if (cpuc->enabled) 721 return; 722 723 cpuc->enabled = 1; 724 barrier(); 725 726 if (cpuc->n_events > 0) { 727 /* Update cpuc with information from any new scheduled events. */ 728 maybe_change_configuration(cpuc); 729 730 /* Start counting the desired events. */ 731 wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE); 732 wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config); 733 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 734 } 735 } 736 737 738 /* 739 * Main entry point - disable HW performance counters. 740 */ 741 742 static void alpha_pmu_disable(struct pmu *pmu) 743 { 744 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 745 746 if (!cpuc->enabled) 747 return; 748 749 cpuc->enabled = 0; 750 cpuc->n_added = 0; 751 752 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); 753 } 754 755 static struct pmu pmu = { 756 .pmu_enable = alpha_pmu_enable, 757 .pmu_disable = alpha_pmu_disable, 758 .event_init = alpha_pmu_event_init, 759 .add = alpha_pmu_add, 760 .del = alpha_pmu_del, 761 .start = alpha_pmu_start, 762 .stop = alpha_pmu_stop, 763 .read = alpha_pmu_read, 764 .capabilities = PERF_PMU_CAP_NO_EXCLUDE, 765 }; 766 767 768 /* 769 * Main entry point - don't know when this is called but it 770 * obviously dumps debug info. 771 */ 772 void perf_event_print_debug(void) 773 { 774 unsigned long flags; 775 unsigned long pcr; 776 int pcr0, pcr1; 777 int cpu; 778 779 if (!supported_cpu()) 780 return; 781 782 local_irq_save(flags); 783 784 cpu = smp_processor_id(); 785 786 pcr = wrperfmon(PERFMON_CMD_READ, 0); 787 pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0]; 788 pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1]; 789 790 pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1); 791 792 local_irq_restore(flags); 793 } 794 795 796 /* 797 * Performance Monitoring Interrupt Service Routine called when a PMC 798 * overflows. The PMC that overflowed is passed in la_ptr. 799 */ 800 static void alpha_perf_event_irq_handler(unsigned long la_ptr, 801 struct pt_regs *regs) 802 { 803 struct cpu_hw_events *cpuc; 804 struct perf_sample_data data; 805 struct perf_event *event; 806 struct hw_perf_event *hwc; 807 int idx, j; 808 809 __this_cpu_inc(irq_pmi_count); 810 cpuc = this_cpu_ptr(&cpu_hw_events); 811 812 /* Completely counting through the PMC's period to trigger a new PMC 813 * overflow interrupt while in this interrupt routine is utterly 814 * disastrous! The EV6 and EV67 counters are sufficiently large to 815 * prevent this but to be really sure disable the PMCs. 816 */ 817 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); 818 819 /* la_ptr is the counter that overflowed. */ 820 if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) { 821 /* This should never occur! */ 822 irq_err_count++; 823 pr_warn("PMI: silly index %ld\n", la_ptr); 824 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 825 return; 826 } 827 828 idx = la_ptr; 829 830 for (j = 0; j < cpuc->n_events; j++) { 831 if (cpuc->current_idx[j] == idx) 832 break; 833 } 834 835 if (unlikely(j == cpuc->n_events)) { 836 /* This can occur if the event is disabled right on a PMC overflow. */ 837 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 838 return; 839 } 840 841 event = cpuc->event[j]; 842 843 if (unlikely(!event)) { 844 /* This should never occur! */ 845 irq_err_count++; 846 pr_warn("PMI: No event at index %d!\n", idx); 847 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 848 return; 849 } 850 851 hwc = &event->hw; 852 alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1); 853 perf_sample_data_init(&data, 0, hwc->last_period); 854 855 if (alpha_perf_event_set_period(event, hwc, idx)) { 856 if (perf_event_overflow(event, &data, regs)) { 857 /* Interrupts coming too quickly; "throttle" the 858 * counter, i.e., disable it for a little while. 859 */ 860 alpha_pmu_stop(event, 0); 861 } 862 } 863 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 864 865 return; 866 } 867 868 869 870 /* 871 * Init call to initialise performance events at kernel startup. 872 */ 873 static int __init init_hw_perf_events(void) 874 { 875 pr_info("Performance events: "); 876 877 if (!supported_cpu()) { 878 pr_cont("No support for your CPU.\n"); 879 return 0; 880 } 881 882 pr_cont("Supported CPU type!\n"); 883 884 /* Override performance counter IRQ vector */ 885 886 perf_irq = alpha_perf_event_irq_handler; 887 888 /* And set up PMU specification */ 889 alpha_pmu = &ev67_pmu; 890 891 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 892 893 return 0; 894 } 895 early_initcall(init_hw_perf_events); 896