xref: /linux/arch/alpha/kernel/perf_event.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  * Hardware performance events for the Alpha.
3  *
4  * We implement HW counts on the EV67 and subsequent CPUs only.
5  *
6  * (C) 2010 Michael J. Cree
7  *
8  * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
9  * ARM code, which are copyright by their respective authors.
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/kprobes.h>
14 #include <linux/kernel.h>
15 #include <linux/kdebug.h>
16 #include <linux/mutex.h>
17 
18 #include <asm/hwrpb.h>
19 #include <asm/atomic.h>
20 #include <asm/irq.h>
21 #include <asm/irq_regs.h>
22 #include <asm/pal.h>
23 #include <asm/wrperfmon.h>
24 #include <asm/hw_irq.h>
25 
26 
27 /* The maximum number of PMCs on any Alpha CPU whatsoever. */
28 #define MAX_HWEVENTS 3
29 #define PMC_NO_INDEX -1
30 
31 /* For tracking PMCs and the hw events they monitor on each CPU. */
32 struct cpu_hw_events {
33 	int			enabled;
34 	/* Number of events scheduled; also number entries valid in arrays below. */
35 	int			n_events;
36 	/* Number events added since last hw_perf_disable(). */
37 	int			n_added;
38 	/* Events currently scheduled. */
39 	struct perf_event	*event[MAX_HWEVENTS];
40 	/* Event type of each scheduled event. */
41 	unsigned long		evtype[MAX_HWEVENTS];
42 	/* Current index of each scheduled event; if not yet determined
43 	 * contains PMC_NO_INDEX.
44 	 */
45 	int			current_idx[MAX_HWEVENTS];
46 	/* The active PMCs' config for easy use with wrperfmon(). */
47 	unsigned long		config;
48 	/* The active counters' indices for easy use with wrperfmon(). */
49 	unsigned long		idx_mask;
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
52 
53 
54 
55 /*
56  * A structure to hold the description of the PMCs available on a particular
57  * type of Alpha CPU.
58  */
59 struct alpha_pmu_t {
60 	/* Mapping of the perf system hw event types to indigenous event types */
61 	const int *event_map;
62 	/* The number of entries in the event_map */
63 	int  max_events;
64 	/* The number of PMCs on this Alpha */
65 	int  num_pmcs;
66 	/*
67 	 * All PMC counters reside in the IBOX register PCTR.  This is the
68 	 * LSB of the counter.
69 	 */
70 	int  pmc_count_shift[MAX_HWEVENTS];
71 	/*
72 	 * The mask that isolates the PMC bits when the LSB of the counter
73 	 * is shifted to bit 0.
74 	 */
75 	unsigned long pmc_count_mask[MAX_HWEVENTS];
76 	/* The maximum period the PMC can count. */
77 	unsigned long pmc_max_period[MAX_HWEVENTS];
78 	/*
79 	 * The maximum value that may be written to the counter due to
80 	 * hardware restrictions is pmc_max_period - pmc_left.
81 	 */
82 	long pmc_left[3];
83 	 /* Subroutine for allocation of PMCs.  Enforces constraints. */
84 	int (*check_constraints)(struct perf_event **, unsigned long *, int);
85 };
86 
87 /*
88  * The Alpha CPU PMU description currently in operation.  This is set during
89  * the boot process to the specific CPU of the machine.
90  */
91 static const struct alpha_pmu_t *alpha_pmu;
92 
93 
94 #define HW_OP_UNSUPPORTED -1
95 
96 /*
97  * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
98  * follow. Since they are identical we refer to them collectively as the
99  * EV67 henceforth.
100  */
101 
102 /*
103  * EV67 PMC event types
104  *
105  * There is no one-to-one mapping of the possible hw event types to the
106  * actual codes that are used to program the PMCs hence we introduce our
107  * own hw event type identifiers.
108  */
109 enum ev67_pmc_event_type {
110 	EV67_CYCLES = 1,
111 	EV67_INSTRUCTIONS,
112 	EV67_BCACHEMISS,
113 	EV67_MBOXREPLAY,
114 	EV67_LAST_ET
115 };
116 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
117 
118 
119 /* Mapping of the hw event types to the perf tool interface */
120 static const int ev67_perfmon_event_map[] = {
121 	[PERF_COUNT_HW_CPU_CYCLES]	 = EV67_CYCLES,
122 	[PERF_COUNT_HW_INSTRUCTIONS]	 = EV67_INSTRUCTIONS,
123 	[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
124 	[PERF_COUNT_HW_CACHE_MISSES]	 = EV67_BCACHEMISS,
125 };
126 
127 struct ev67_mapping_t {
128 	int config;
129 	int idx;
130 };
131 
132 /*
133  * The mapping used for one event only - these must be in same order as enum
134  * ev67_pmc_event_type definition.
135  */
136 static const struct ev67_mapping_t ev67_mapping[] = {
137 	{EV67_PCTR_INSTR_CYCLES, 1},	 /* EV67_CYCLES, */
138 	{EV67_PCTR_INSTR_CYCLES, 0},	 /* EV67_INSTRUCTIONS */
139 	{EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
140 	{EV67_PCTR_CYCLES_MBOX, 1}	 /* EV67_MBOXREPLAY */
141 };
142 
143 
144 /*
145  * Check that a group of events can be simultaneously scheduled on to the
146  * EV67 PMU.  Also allocate counter indices and config.
147  */
148 static int ev67_check_constraints(struct perf_event **event,
149 				unsigned long *evtype, int n_ev)
150 {
151 	int idx0;
152 	unsigned long config;
153 
154 	idx0 = ev67_mapping[evtype[0]-1].idx;
155 	config = ev67_mapping[evtype[0]-1].config;
156 	if (n_ev == 1)
157 		goto success;
158 
159 	BUG_ON(n_ev != 2);
160 
161 	if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
162 		/* MBOX replay traps must be on PMC 1 */
163 		idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
164 		/* Only cycles can accompany MBOX replay traps */
165 		if (evtype[idx0] == EV67_CYCLES) {
166 			config = EV67_PCTR_CYCLES_MBOX;
167 			goto success;
168 		}
169 	}
170 
171 	if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
172 		/* Bcache misses must be on PMC 1 */
173 		idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
174 		/* Only instructions can accompany Bcache misses */
175 		if (evtype[idx0] == EV67_INSTRUCTIONS) {
176 			config = EV67_PCTR_INSTR_BCACHEMISS;
177 			goto success;
178 		}
179 	}
180 
181 	if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
182 		/* Instructions must be on PMC 0 */
183 		idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
184 		/* By this point only cycles can accompany instructions */
185 		if (evtype[idx0^1] == EV67_CYCLES) {
186 			config = EV67_PCTR_INSTR_CYCLES;
187 			goto success;
188 		}
189 	}
190 
191 	/* Otherwise, darn it, there is a conflict.  */
192 	return -1;
193 
194 success:
195 	event[0]->hw.idx = idx0;
196 	event[0]->hw.config_base = config;
197 	if (n_ev == 2) {
198 		event[1]->hw.idx = idx0 ^ 1;
199 		event[1]->hw.config_base = config;
200 	}
201 	return 0;
202 }
203 
204 
205 static const struct alpha_pmu_t ev67_pmu = {
206 	.event_map = ev67_perfmon_event_map,
207 	.max_events = ARRAY_SIZE(ev67_perfmon_event_map),
208 	.num_pmcs = 2,
209 	.pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
210 	.pmc_count_mask = {EV67_PCTR_0_COUNT_MASK,  EV67_PCTR_1_COUNT_MASK,  0},
211 	.pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
212 	.pmc_left = {16, 4, 0},
213 	.check_constraints = ev67_check_constraints
214 };
215 
216 
217 
218 /*
219  * Helper routines to ensure that we read/write only the correct PMC bits
220  * when calling the wrperfmon PALcall.
221  */
222 static inline void alpha_write_pmc(int idx, unsigned long val)
223 {
224 	val &= alpha_pmu->pmc_count_mask[idx];
225 	val <<= alpha_pmu->pmc_count_shift[idx];
226 	val |= (1<<idx);
227 	wrperfmon(PERFMON_CMD_WRITE, val);
228 }
229 
230 static inline unsigned long alpha_read_pmc(int idx)
231 {
232 	unsigned long val;
233 
234 	val = wrperfmon(PERFMON_CMD_READ, 0);
235 	val >>= alpha_pmu->pmc_count_shift[idx];
236 	val &= alpha_pmu->pmc_count_mask[idx];
237 	return val;
238 }
239 
240 /* Set a new period to sample over */
241 static int alpha_perf_event_set_period(struct perf_event *event,
242 				struct hw_perf_event *hwc, int idx)
243 {
244 	long left = atomic64_read(&hwc->period_left);
245 	long period = hwc->sample_period;
246 	int ret = 0;
247 
248 	if (unlikely(left <= -period)) {
249 		left = period;
250 		atomic64_set(&hwc->period_left, left);
251 		hwc->last_period = period;
252 		ret = 1;
253 	}
254 
255 	if (unlikely(left <= 0)) {
256 		left += period;
257 		atomic64_set(&hwc->period_left, left);
258 		hwc->last_period = period;
259 		ret = 1;
260 	}
261 
262 	/*
263 	 * Hardware restrictions require that the counters must not be
264 	 * written with values that are too close to the maximum period.
265 	 */
266 	if (unlikely(left < alpha_pmu->pmc_left[idx]))
267 		left = alpha_pmu->pmc_left[idx];
268 
269 	if (left > (long)alpha_pmu->pmc_max_period[idx])
270 		left = alpha_pmu->pmc_max_period[idx];
271 
272 	atomic64_set(&hwc->prev_count, (unsigned long)(-left));
273 
274 	alpha_write_pmc(idx, (unsigned long)(-left));
275 
276 	perf_event_update_userpage(event);
277 
278 	return ret;
279 }
280 
281 
282 /*
283  * Calculates the count (the 'delta') since the last time the PMC was read.
284  *
285  * As the PMCs' full period can easily be exceeded within the perf system
286  * sampling period we cannot use any high order bits as a guard bit in the
287  * PMCs to detect overflow as is done by other architectures.  The code here
288  * calculates the delta on the basis that there is no overflow when ovf is
289  * zero.  The value passed via ovf by the interrupt handler corrects for
290  * overflow.
291  *
292  * This can be racey on rare occasions -- a call to this routine can occur
293  * with an overflowed counter just before the PMI service routine is called.
294  * The check for delta negative hopefully always rectifies this situation.
295  */
296 static unsigned long alpha_perf_event_update(struct perf_event *event,
297 					struct hw_perf_event *hwc, int idx, long ovf)
298 {
299 	long prev_raw_count, new_raw_count;
300 	long delta;
301 
302 again:
303 	prev_raw_count = atomic64_read(&hwc->prev_count);
304 	new_raw_count = alpha_read_pmc(idx);
305 
306 	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
307 			     new_raw_count) != prev_raw_count)
308 		goto again;
309 
310 	delta = (new_raw_count  - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
311 
312 	/* It is possible on very rare occasions that the PMC has overflowed
313 	 * but the interrupt is yet to come.  Detect and fix this situation.
314 	 */
315 	if (unlikely(delta < 0)) {
316 		delta += alpha_pmu->pmc_max_period[idx] + 1;
317 	}
318 
319 	atomic64_add(delta, &event->count);
320 	atomic64_sub(delta, &hwc->period_left);
321 
322 	return new_raw_count;
323 }
324 
325 
326 /*
327  * Collect all HW events into the array event[].
328  */
329 static int collect_events(struct perf_event *group, int max_count,
330 			  struct perf_event *event[], unsigned long *evtype,
331 			  int *current_idx)
332 {
333 	struct perf_event *pe;
334 	int n = 0;
335 
336 	if (!is_software_event(group)) {
337 		if (n >= max_count)
338 			return -1;
339 		event[n] = group;
340 		evtype[n] = group->hw.event_base;
341 		current_idx[n++] = PMC_NO_INDEX;
342 	}
343 	list_for_each_entry(pe, &group->sibling_list, group_entry) {
344 		if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
345 			if (n >= max_count)
346 				return -1;
347 			event[n] = pe;
348 			evtype[n] = pe->hw.event_base;
349 			current_idx[n++] = PMC_NO_INDEX;
350 		}
351 	}
352 	return n;
353 }
354 
355 
356 
357 /*
358  * Check that a group of events can be simultaneously scheduled on to the PMU.
359  */
360 static int alpha_check_constraints(struct perf_event **events,
361 				   unsigned long *evtypes, int n_ev)
362 {
363 
364 	/* No HW events is possible from hw_perf_group_sched_in(). */
365 	if (n_ev == 0)
366 		return 0;
367 
368 	if (n_ev > alpha_pmu->num_pmcs)
369 		return -1;
370 
371 	return alpha_pmu->check_constraints(events, evtypes, n_ev);
372 }
373 
374 
375 /*
376  * If new events have been scheduled then update cpuc with the new
377  * configuration.  This may involve shifting cycle counts from one PMC to
378  * another.
379  */
380 static void maybe_change_configuration(struct cpu_hw_events *cpuc)
381 {
382 	int j;
383 
384 	if (cpuc->n_added == 0)
385 		return;
386 
387 	/* Find counters that are moving to another PMC and update */
388 	for (j = 0; j < cpuc->n_events; j++) {
389 		struct perf_event *pe = cpuc->event[j];
390 
391 		if (cpuc->current_idx[j] != PMC_NO_INDEX &&
392 			cpuc->current_idx[j] != pe->hw.idx) {
393 			alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
394 			cpuc->current_idx[j] = PMC_NO_INDEX;
395 		}
396 	}
397 
398 	/* Assign to counters all unassigned events. */
399 	cpuc->idx_mask = 0;
400 	for (j = 0; j < cpuc->n_events; j++) {
401 		struct perf_event *pe = cpuc->event[j];
402 		struct hw_perf_event *hwc = &pe->hw;
403 		int idx = hwc->idx;
404 
405 		if (cpuc->current_idx[j] != PMC_NO_INDEX) {
406 			cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
407 			continue;
408 		}
409 
410 		alpha_perf_event_set_period(pe, hwc, idx);
411 		cpuc->current_idx[j] = idx;
412 		cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
413 	}
414 	cpuc->config = cpuc->event[0]->hw.config_base;
415 }
416 
417 
418 
419 /* Schedule perf HW event on to PMU.
420  *  - this function is called from outside this module via the pmu struct
421  *    returned from perf event initialisation.
422  */
423 static int alpha_pmu_enable(struct perf_event *event)
424 {
425 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
426 	int n0;
427 	int ret;
428 	unsigned long flags;
429 
430 	/*
431 	 * The Sparc code has the IRQ disable first followed by the perf
432 	 * disable, however this can lead to an overflowed counter with the
433 	 * PMI disabled on rare occasions.  The alpha_perf_event_update()
434 	 * routine should detect this situation by noting a negative delta,
435 	 * nevertheless we disable the PMCs first to enable a potential
436 	 * final PMI to occur before we disable interrupts.
437 	 */
438 	perf_disable();
439 	local_irq_save(flags);
440 
441 	/* Default to error to be returned */
442 	ret = -EAGAIN;
443 
444 	/* Insert event on to PMU and if successful modify ret to valid return */
445 	n0 = cpuc->n_events;
446 	if (n0 < alpha_pmu->num_pmcs) {
447 		cpuc->event[n0] = event;
448 		cpuc->evtype[n0] = event->hw.event_base;
449 		cpuc->current_idx[n0] = PMC_NO_INDEX;
450 
451 		if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
452 			cpuc->n_events++;
453 			cpuc->n_added++;
454 			ret = 0;
455 		}
456 	}
457 
458 	local_irq_restore(flags);
459 	perf_enable();
460 
461 	return ret;
462 }
463 
464 
465 
466 /* Disable performance monitoring unit
467  *  - this function is called from outside this module via the pmu struct
468  *    returned from perf event initialisation.
469  */
470 static void alpha_pmu_disable(struct perf_event *event)
471 {
472 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
473 	struct hw_perf_event *hwc = &event->hw;
474 	unsigned long flags;
475 	int j;
476 
477 	perf_disable();
478 	local_irq_save(flags);
479 
480 	for (j = 0; j < cpuc->n_events; j++) {
481 		if (event == cpuc->event[j]) {
482 			int idx = cpuc->current_idx[j];
483 
484 			/* Shift remaining entries down into the existing
485 			 * slot.
486 			 */
487 			while (++j < cpuc->n_events) {
488 				cpuc->event[j - 1] = cpuc->event[j];
489 				cpuc->evtype[j - 1] = cpuc->evtype[j];
490 				cpuc->current_idx[j - 1] =
491 					cpuc->current_idx[j];
492 			}
493 
494 			/* Absorb the final count and turn off the event. */
495 			alpha_perf_event_update(event, hwc, idx, 0);
496 			perf_event_update_userpage(event);
497 
498 			cpuc->idx_mask &= ~(1UL<<idx);
499 			cpuc->n_events--;
500 			break;
501 		}
502 	}
503 
504 	local_irq_restore(flags);
505 	perf_enable();
506 }
507 
508 
509 static void alpha_pmu_read(struct perf_event *event)
510 {
511 	struct hw_perf_event *hwc = &event->hw;
512 
513 	alpha_perf_event_update(event, hwc, hwc->idx, 0);
514 }
515 
516 
517 static void alpha_pmu_unthrottle(struct perf_event *event)
518 {
519 	struct hw_perf_event *hwc = &event->hw;
520 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
521 
522 	cpuc->idx_mask |= 1UL<<hwc->idx;
523 	wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
524 }
525 
526 
527 /*
528  * Check that CPU performance counters are supported.
529  * - currently support EV67 and later CPUs.
530  * - actually some later revisions of the EV6 have the same PMC model as the
531  *     EV67 but we don't do suffiently deep CPU detection to detect them.
532  *     Bad luck to the very few people who might have one, I guess.
533  */
534 static int supported_cpu(void)
535 {
536 	struct percpu_struct *cpu;
537 	unsigned long cputype;
538 
539 	/* Get cpu type from HW */
540 	cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
541 	cputype = cpu->type & 0xffffffff;
542 	/* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
543 	return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
544 }
545 
546 
547 
548 static void hw_perf_event_destroy(struct perf_event *event)
549 {
550 	/* Nothing to be done! */
551 	return;
552 }
553 
554 
555 
556 static int __hw_perf_event_init(struct perf_event *event)
557 {
558 	struct perf_event_attr *attr = &event->attr;
559 	struct hw_perf_event *hwc = &event->hw;
560 	struct perf_event *evts[MAX_HWEVENTS];
561 	unsigned long evtypes[MAX_HWEVENTS];
562 	int idx_rubbish_bin[MAX_HWEVENTS];
563 	int ev;
564 	int n;
565 
566 	/* We only support a limited range of HARDWARE event types with one
567 	 * only programmable via a RAW event type.
568 	 */
569 	if (attr->type == PERF_TYPE_HARDWARE) {
570 		if (attr->config >= alpha_pmu->max_events)
571 			return -EINVAL;
572 		ev = alpha_pmu->event_map[attr->config];
573 	} else if (attr->type == PERF_TYPE_HW_CACHE) {
574 		return -EOPNOTSUPP;
575 	} else if (attr->type == PERF_TYPE_RAW) {
576 		ev = attr->config & 0xff;
577 	} else {
578 		return -EOPNOTSUPP;
579 	}
580 
581 	if (ev < 0) {
582 		return ev;
583 	}
584 
585 	/* The EV67 does not support mode exclusion */
586 	if (attr->exclude_kernel || attr->exclude_user
587 			|| attr->exclude_hv || attr->exclude_idle) {
588 		return -EPERM;
589 	}
590 
591 	/*
592 	 * We place the event type in event_base here and leave calculation
593 	 * of the codes to programme the PMU for alpha_pmu_enable() because
594 	 * it is only then we will know what HW events are actually
595 	 * scheduled on to the PMU.  At that point the code to programme the
596 	 * PMU is put into config_base and the PMC to use is placed into
597 	 * idx.  We initialise idx (below) to PMC_NO_INDEX to indicate that
598 	 * it is yet to be determined.
599 	 */
600 	hwc->event_base = ev;
601 
602 	/* Collect events in a group together suitable for calling
603 	 * alpha_check_constraints() to verify that the group as a whole can
604 	 * be scheduled on to the PMU.
605 	 */
606 	n = 0;
607 	if (event->group_leader != event) {
608 		n = collect_events(event->group_leader,
609 				alpha_pmu->num_pmcs - 1,
610 				evts, evtypes, idx_rubbish_bin);
611 		if (n < 0)
612 			return -EINVAL;
613 	}
614 	evtypes[n] = hwc->event_base;
615 	evts[n] = event;
616 
617 	if (alpha_check_constraints(evts, evtypes, n + 1))
618 		return -EINVAL;
619 
620 	/* Indicate that PMU config and idx are yet to be determined. */
621 	hwc->config_base = 0;
622 	hwc->idx = PMC_NO_INDEX;
623 
624 	event->destroy = hw_perf_event_destroy;
625 
626 	/*
627 	 * Most architectures reserve the PMU for their use at this point.
628 	 * As there is no existing mechanism to arbitrate usage and there
629 	 * appears to be no other user of the Alpha PMU we just assume
630 	 * that we can just use it, hence a NO-OP here.
631 	 *
632 	 * Maybe an alpha_reserve_pmu() routine should be implemented but is
633 	 * anything else ever going to use it?
634 	 */
635 
636 	if (!hwc->sample_period) {
637 		hwc->sample_period = alpha_pmu->pmc_max_period[0];
638 		hwc->last_period = hwc->sample_period;
639 		atomic64_set(&hwc->period_left, hwc->sample_period);
640 	}
641 
642 	return 0;
643 }
644 
645 static const struct pmu pmu = {
646 	.enable		= alpha_pmu_enable,
647 	.disable	= alpha_pmu_disable,
648 	.read		= alpha_pmu_read,
649 	.unthrottle	= alpha_pmu_unthrottle,
650 };
651 
652 
653 /*
654  * Main entry point to initialise a HW performance event.
655  */
656 const struct pmu *hw_perf_event_init(struct perf_event *event)
657 {
658 	int err;
659 
660 	if (!alpha_pmu)
661 		return ERR_PTR(-ENODEV);
662 
663 	/* Do the real initialisation work. */
664 	err = __hw_perf_event_init(event);
665 
666 	if (err)
667 		return ERR_PTR(err);
668 
669 	return &pmu;
670 }
671 
672 
673 
674 /*
675  * Main entry point - enable HW performance counters.
676  */
677 void hw_perf_enable(void)
678 {
679 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
680 
681 	if (cpuc->enabled)
682 		return;
683 
684 	cpuc->enabled = 1;
685 	barrier();
686 
687 	if (cpuc->n_events > 0) {
688 		/* Update cpuc with information from any new scheduled events. */
689 		maybe_change_configuration(cpuc);
690 
691 		/* Start counting the desired events. */
692 		wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
693 		wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
694 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
695 	}
696 }
697 
698 
699 /*
700  * Main entry point - disable HW performance counters.
701  */
702 
703 void hw_perf_disable(void)
704 {
705 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
706 
707 	if (!cpuc->enabled)
708 		return;
709 
710 	cpuc->enabled = 0;
711 	cpuc->n_added = 0;
712 
713 	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
714 }
715 
716 
717 /*
718  * Main entry point - don't know when this is called but it
719  * obviously dumps debug info.
720  */
721 void perf_event_print_debug(void)
722 {
723 	unsigned long flags;
724 	unsigned long pcr;
725 	int pcr0, pcr1;
726 	int cpu;
727 
728 	if (!supported_cpu())
729 		return;
730 
731 	local_irq_save(flags);
732 
733 	cpu = smp_processor_id();
734 
735 	pcr = wrperfmon(PERFMON_CMD_READ, 0);
736 	pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
737 	pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
738 
739 	pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
740 
741 	local_irq_restore(flags);
742 }
743 
744 
745 /*
746  * Performance Monitoring Interrupt Service Routine called when a PMC
747  * overflows.  The PMC that overflowed is passed in la_ptr.
748  */
749 static void alpha_perf_event_irq_handler(unsigned long la_ptr,
750 					struct pt_regs *regs)
751 {
752 	struct cpu_hw_events *cpuc;
753 	struct perf_sample_data data;
754 	struct perf_event *event;
755 	struct hw_perf_event *hwc;
756 	int idx, j;
757 
758 	__get_cpu_var(irq_pmi_count)++;
759 	cpuc = &__get_cpu_var(cpu_hw_events);
760 
761 	/* Completely counting through the PMC's period to trigger a new PMC
762 	 * overflow interrupt while in this interrupt routine is utterly
763 	 * disastrous!  The EV6 and EV67 counters are sufficiently large to
764 	 * prevent this but to be really sure disable the PMCs.
765 	 */
766 	wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
767 
768 	/* la_ptr is the counter that overflowed. */
769 	if (unlikely(la_ptr >= perf_max_events)) {
770 		/* This should never occur! */
771 		irq_err_count++;
772 		pr_warning("PMI: silly index %ld\n", la_ptr);
773 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
774 		return;
775 	}
776 
777 	idx = la_ptr;
778 
779 	perf_sample_data_init(&data, 0);
780 	for (j = 0; j < cpuc->n_events; j++) {
781 		if (cpuc->current_idx[j] == idx)
782 			break;
783 	}
784 
785 	if (unlikely(j == cpuc->n_events)) {
786 		/* This can occur if the event is disabled right on a PMC overflow. */
787 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
788 		return;
789 	}
790 
791 	event = cpuc->event[j];
792 
793 	if (unlikely(!event)) {
794 		/* This should never occur! */
795 		irq_err_count++;
796 		pr_warning("PMI: No event at index %d!\n", idx);
797 		wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
798 		return;
799 	}
800 
801 	hwc = &event->hw;
802 	alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
803 	data.period = event->hw.last_period;
804 
805 	if (alpha_perf_event_set_period(event, hwc, idx)) {
806 		if (perf_event_overflow(event, 1, &data, regs)) {
807 			/* Interrupts coming too quickly; "throttle" the
808 			 * counter, i.e., disable it for a little while.
809 			 */
810 			cpuc->idx_mask &= ~(1UL<<idx);
811 		}
812 	}
813 	wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
814 
815 	return;
816 }
817 
818 
819 
820 /*
821  * Init call to initialise performance events at kernel startup.
822  */
823 void __init init_hw_perf_events(void)
824 {
825 	pr_info("Performance events: ");
826 
827 	if (!supported_cpu()) {
828 		pr_cont("No support for your CPU.\n");
829 		return;
830 	}
831 
832 	pr_cont("Supported CPU type!\n");
833 
834 	/* Override performance counter IRQ vector */
835 
836 	perf_irq = alpha_perf_event_irq_handler;
837 
838 	/* And set up PMU specification */
839 	alpha_pmu = &ev67_pmu;
840 	perf_max_events = alpha_pmu->num_pmcs;
841 }
842 
843