1 /* 2 * Hardware performance events for the Alpha. 3 * 4 * We implement HW counts on the EV67 and subsequent CPUs only. 5 * 6 * (C) 2010 Michael J. Cree 7 * 8 * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and 9 * ARM code, which are copyright by their respective authors. 10 */ 11 12 #include <linux/perf_event.h> 13 #include <linux/kprobes.h> 14 #include <linux/kernel.h> 15 #include <linux/kdebug.h> 16 #include <linux/mutex.h> 17 #include <linux/init.h> 18 19 #include <asm/hwrpb.h> 20 #include <linux/atomic.h> 21 #include <asm/irq.h> 22 #include <asm/irq_regs.h> 23 #include <asm/pal.h> 24 #include <asm/wrperfmon.h> 25 #include <asm/hw_irq.h> 26 27 28 /* The maximum number of PMCs on any Alpha CPU whatsoever. */ 29 #define MAX_HWEVENTS 3 30 #define PMC_NO_INDEX -1 31 32 /* For tracking PMCs and the hw events they monitor on each CPU. */ 33 struct cpu_hw_events { 34 int enabled; 35 /* Number of events scheduled; also number entries valid in arrays below. */ 36 int n_events; 37 /* Number events added since last hw_perf_disable(). */ 38 int n_added; 39 /* Events currently scheduled. */ 40 struct perf_event *event[MAX_HWEVENTS]; 41 /* Event type of each scheduled event. */ 42 unsigned long evtype[MAX_HWEVENTS]; 43 /* Current index of each scheduled event; if not yet determined 44 * contains PMC_NO_INDEX. 45 */ 46 int current_idx[MAX_HWEVENTS]; 47 /* The active PMCs' config for easy use with wrperfmon(). */ 48 unsigned long config; 49 /* The active counters' indices for easy use with wrperfmon(). */ 50 unsigned long idx_mask; 51 }; 52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 53 54 55 56 /* 57 * A structure to hold the description of the PMCs available on a particular 58 * type of Alpha CPU. 59 */ 60 struct alpha_pmu_t { 61 /* Mapping of the perf system hw event types to indigenous event types */ 62 const int *event_map; 63 /* The number of entries in the event_map */ 64 int max_events; 65 /* The number of PMCs on this Alpha */ 66 int num_pmcs; 67 /* 68 * All PMC counters reside in the IBOX register PCTR. This is the 69 * LSB of the counter. 70 */ 71 int pmc_count_shift[MAX_HWEVENTS]; 72 /* 73 * The mask that isolates the PMC bits when the LSB of the counter 74 * is shifted to bit 0. 75 */ 76 unsigned long pmc_count_mask[MAX_HWEVENTS]; 77 /* The maximum period the PMC can count. */ 78 unsigned long pmc_max_period[MAX_HWEVENTS]; 79 /* 80 * The maximum value that may be written to the counter due to 81 * hardware restrictions is pmc_max_period - pmc_left. 82 */ 83 long pmc_left[3]; 84 /* Subroutine for allocation of PMCs. Enforces constraints. */ 85 int (*check_constraints)(struct perf_event **, unsigned long *, int); 86 }; 87 88 /* 89 * The Alpha CPU PMU description currently in operation. This is set during 90 * the boot process to the specific CPU of the machine. 91 */ 92 static const struct alpha_pmu_t *alpha_pmu; 93 94 95 #define HW_OP_UNSUPPORTED -1 96 97 /* 98 * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs 99 * follow. Since they are identical we refer to them collectively as the 100 * EV67 henceforth. 101 */ 102 103 /* 104 * EV67 PMC event types 105 * 106 * There is no one-to-one mapping of the possible hw event types to the 107 * actual codes that are used to program the PMCs hence we introduce our 108 * own hw event type identifiers. 109 */ 110 enum ev67_pmc_event_type { 111 EV67_CYCLES = 1, 112 EV67_INSTRUCTIONS, 113 EV67_BCACHEMISS, 114 EV67_MBOXREPLAY, 115 EV67_LAST_ET 116 }; 117 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES) 118 119 120 /* Mapping of the hw event types to the perf tool interface */ 121 static const int ev67_perfmon_event_map[] = { 122 [PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES, 123 [PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS, 124 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, 125 [PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS, 126 }; 127 128 struct ev67_mapping_t { 129 int config; 130 int idx; 131 }; 132 133 /* 134 * The mapping used for one event only - these must be in same order as enum 135 * ev67_pmc_event_type definition. 136 */ 137 static const struct ev67_mapping_t ev67_mapping[] = { 138 {EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */ 139 {EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */ 140 {EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */ 141 {EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */ 142 }; 143 144 145 /* 146 * Check that a group of events can be simultaneously scheduled on to the 147 * EV67 PMU. Also allocate counter indices and config. 148 */ 149 static int ev67_check_constraints(struct perf_event **event, 150 unsigned long *evtype, int n_ev) 151 { 152 int idx0; 153 unsigned long config; 154 155 idx0 = ev67_mapping[evtype[0]-1].idx; 156 config = ev67_mapping[evtype[0]-1].config; 157 if (n_ev == 1) 158 goto success; 159 160 BUG_ON(n_ev != 2); 161 162 if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) { 163 /* MBOX replay traps must be on PMC 1 */ 164 idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0; 165 /* Only cycles can accompany MBOX replay traps */ 166 if (evtype[idx0] == EV67_CYCLES) { 167 config = EV67_PCTR_CYCLES_MBOX; 168 goto success; 169 } 170 } 171 172 if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) { 173 /* Bcache misses must be on PMC 1 */ 174 idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0; 175 /* Only instructions can accompany Bcache misses */ 176 if (evtype[idx0] == EV67_INSTRUCTIONS) { 177 config = EV67_PCTR_INSTR_BCACHEMISS; 178 goto success; 179 } 180 } 181 182 if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) { 183 /* Instructions must be on PMC 0 */ 184 idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1; 185 /* By this point only cycles can accompany instructions */ 186 if (evtype[idx0^1] == EV67_CYCLES) { 187 config = EV67_PCTR_INSTR_CYCLES; 188 goto success; 189 } 190 } 191 192 /* Otherwise, darn it, there is a conflict. */ 193 return -1; 194 195 success: 196 event[0]->hw.idx = idx0; 197 event[0]->hw.config_base = config; 198 if (n_ev == 2) { 199 event[1]->hw.idx = idx0 ^ 1; 200 event[1]->hw.config_base = config; 201 } 202 return 0; 203 } 204 205 206 static const struct alpha_pmu_t ev67_pmu = { 207 .event_map = ev67_perfmon_event_map, 208 .max_events = ARRAY_SIZE(ev67_perfmon_event_map), 209 .num_pmcs = 2, 210 .pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0}, 211 .pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0}, 212 .pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0}, 213 .pmc_left = {16, 4, 0}, 214 .check_constraints = ev67_check_constraints 215 }; 216 217 218 219 /* 220 * Helper routines to ensure that we read/write only the correct PMC bits 221 * when calling the wrperfmon PALcall. 222 */ 223 static inline void alpha_write_pmc(int idx, unsigned long val) 224 { 225 val &= alpha_pmu->pmc_count_mask[idx]; 226 val <<= alpha_pmu->pmc_count_shift[idx]; 227 val |= (1<<idx); 228 wrperfmon(PERFMON_CMD_WRITE, val); 229 } 230 231 static inline unsigned long alpha_read_pmc(int idx) 232 { 233 unsigned long val; 234 235 val = wrperfmon(PERFMON_CMD_READ, 0); 236 val >>= alpha_pmu->pmc_count_shift[idx]; 237 val &= alpha_pmu->pmc_count_mask[idx]; 238 return val; 239 } 240 241 /* Set a new period to sample over */ 242 static int alpha_perf_event_set_period(struct perf_event *event, 243 struct hw_perf_event *hwc, int idx) 244 { 245 long left = local64_read(&hwc->period_left); 246 long period = hwc->sample_period; 247 int ret = 0; 248 249 if (unlikely(left <= -period)) { 250 left = period; 251 local64_set(&hwc->period_left, left); 252 hwc->last_period = period; 253 ret = 1; 254 } 255 256 if (unlikely(left <= 0)) { 257 left += period; 258 local64_set(&hwc->period_left, left); 259 hwc->last_period = period; 260 ret = 1; 261 } 262 263 /* 264 * Hardware restrictions require that the counters must not be 265 * written with values that are too close to the maximum period. 266 */ 267 if (unlikely(left < alpha_pmu->pmc_left[idx])) 268 left = alpha_pmu->pmc_left[idx]; 269 270 if (left > (long)alpha_pmu->pmc_max_period[idx]) 271 left = alpha_pmu->pmc_max_period[idx]; 272 273 local64_set(&hwc->prev_count, (unsigned long)(-left)); 274 275 alpha_write_pmc(idx, (unsigned long)(-left)); 276 277 perf_event_update_userpage(event); 278 279 return ret; 280 } 281 282 283 /* 284 * Calculates the count (the 'delta') since the last time the PMC was read. 285 * 286 * As the PMCs' full period can easily be exceeded within the perf system 287 * sampling period we cannot use any high order bits as a guard bit in the 288 * PMCs to detect overflow as is done by other architectures. The code here 289 * calculates the delta on the basis that there is no overflow when ovf is 290 * zero. The value passed via ovf by the interrupt handler corrects for 291 * overflow. 292 * 293 * This can be racey on rare occasions -- a call to this routine can occur 294 * with an overflowed counter just before the PMI service routine is called. 295 * The check for delta negative hopefully always rectifies this situation. 296 */ 297 static unsigned long alpha_perf_event_update(struct perf_event *event, 298 struct hw_perf_event *hwc, int idx, long ovf) 299 { 300 long prev_raw_count, new_raw_count; 301 long delta; 302 303 again: 304 prev_raw_count = local64_read(&hwc->prev_count); 305 new_raw_count = alpha_read_pmc(idx); 306 307 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 308 new_raw_count) != prev_raw_count) 309 goto again; 310 311 delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf; 312 313 /* It is possible on very rare occasions that the PMC has overflowed 314 * but the interrupt is yet to come. Detect and fix this situation. 315 */ 316 if (unlikely(delta < 0)) { 317 delta += alpha_pmu->pmc_max_period[idx] + 1; 318 } 319 320 local64_add(delta, &event->count); 321 local64_sub(delta, &hwc->period_left); 322 323 return new_raw_count; 324 } 325 326 327 /* 328 * Collect all HW events into the array event[]. 329 */ 330 static int collect_events(struct perf_event *group, int max_count, 331 struct perf_event *event[], unsigned long *evtype, 332 int *current_idx) 333 { 334 struct perf_event *pe; 335 int n = 0; 336 337 if (!is_software_event(group)) { 338 if (n >= max_count) 339 return -1; 340 event[n] = group; 341 evtype[n] = group->hw.event_base; 342 current_idx[n++] = PMC_NO_INDEX; 343 } 344 list_for_each_entry(pe, &group->sibling_list, group_entry) { 345 if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) { 346 if (n >= max_count) 347 return -1; 348 event[n] = pe; 349 evtype[n] = pe->hw.event_base; 350 current_idx[n++] = PMC_NO_INDEX; 351 } 352 } 353 return n; 354 } 355 356 357 358 /* 359 * Check that a group of events can be simultaneously scheduled on to the PMU. 360 */ 361 static int alpha_check_constraints(struct perf_event **events, 362 unsigned long *evtypes, int n_ev) 363 { 364 365 /* No HW events is possible from hw_perf_group_sched_in(). */ 366 if (n_ev == 0) 367 return 0; 368 369 if (n_ev > alpha_pmu->num_pmcs) 370 return -1; 371 372 return alpha_pmu->check_constraints(events, evtypes, n_ev); 373 } 374 375 376 /* 377 * If new events have been scheduled then update cpuc with the new 378 * configuration. This may involve shifting cycle counts from one PMC to 379 * another. 380 */ 381 static void maybe_change_configuration(struct cpu_hw_events *cpuc) 382 { 383 int j; 384 385 if (cpuc->n_added == 0) 386 return; 387 388 /* Find counters that are moving to another PMC and update */ 389 for (j = 0; j < cpuc->n_events; j++) { 390 struct perf_event *pe = cpuc->event[j]; 391 392 if (cpuc->current_idx[j] != PMC_NO_INDEX && 393 cpuc->current_idx[j] != pe->hw.idx) { 394 alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0); 395 cpuc->current_idx[j] = PMC_NO_INDEX; 396 } 397 } 398 399 /* Assign to counters all unassigned events. */ 400 cpuc->idx_mask = 0; 401 for (j = 0; j < cpuc->n_events; j++) { 402 struct perf_event *pe = cpuc->event[j]; 403 struct hw_perf_event *hwc = &pe->hw; 404 int idx = hwc->idx; 405 406 if (cpuc->current_idx[j] == PMC_NO_INDEX) { 407 alpha_perf_event_set_period(pe, hwc, idx); 408 cpuc->current_idx[j] = idx; 409 } 410 411 if (!(hwc->state & PERF_HES_STOPPED)) 412 cpuc->idx_mask |= (1<<cpuc->current_idx[j]); 413 } 414 cpuc->config = cpuc->event[0]->hw.config_base; 415 } 416 417 418 419 /* Schedule perf HW event on to PMU. 420 * - this function is called from outside this module via the pmu struct 421 * returned from perf event initialisation. 422 */ 423 static int alpha_pmu_add(struct perf_event *event, int flags) 424 { 425 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 426 struct hw_perf_event *hwc = &event->hw; 427 int n0; 428 int ret; 429 unsigned long irq_flags; 430 431 /* 432 * The Sparc code has the IRQ disable first followed by the perf 433 * disable, however this can lead to an overflowed counter with the 434 * PMI disabled on rare occasions. The alpha_perf_event_update() 435 * routine should detect this situation by noting a negative delta, 436 * nevertheless we disable the PMCs first to enable a potential 437 * final PMI to occur before we disable interrupts. 438 */ 439 perf_pmu_disable(event->pmu); 440 local_irq_save(irq_flags); 441 442 /* Default to error to be returned */ 443 ret = -EAGAIN; 444 445 /* Insert event on to PMU and if successful modify ret to valid return */ 446 n0 = cpuc->n_events; 447 if (n0 < alpha_pmu->num_pmcs) { 448 cpuc->event[n0] = event; 449 cpuc->evtype[n0] = event->hw.event_base; 450 cpuc->current_idx[n0] = PMC_NO_INDEX; 451 452 if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) { 453 cpuc->n_events++; 454 cpuc->n_added++; 455 ret = 0; 456 } 457 } 458 459 hwc->state = PERF_HES_UPTODATE; 460 if (!(flags & PERF_EF_START)) 461 hwc->state |= PERF_HES_STOPPED; 462 463 local_irq_restore(irq_flags); 464 perf_pmu_enable(event->pmu); 465 466 return ret; 467 } 468 469 470 471 /* Disable performance monitoring unit 472 * - this function is called from outside this module via the pmu struct 473 * returned from perf event initialisation. 474 */ 475 static void alpha_pmu_del(struct perf_event *event, int flags) 476 { 477 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 478 struct hw_perf_event *hwc = &event->hw; 479 unsigned long irq_flags; 480 int j; 481 482 perf_pmu_disable(event->pmu); 483 local_irq_save(irq_flags); 484 485 for (j = 0; j < cpuc->n_events; j++) { 486 if (event == cpuc->event[j]) { 487 int idx = cpuc->current_idx[j]; 488 489 /* Shift remaining entries down into the existing 490 * slot. 491 */ 492 while (++j < cpuc->n_events) { 493 cpuc->event[j - 1] = cpuc->event[j]; 494 cpuc->evtype[j - 1] = cpuc->evtype[j]; 495 cpuc->current_idx[j - 1] = 496 cpuc->current_idx[j]; 497 } 498 499 /* Absorb the final count and turn off the event. */ 500 alpha_perf_event_update(event, hwc, idx, 0); 501 perf_event_update_userpage(event); 502 503 cpuc->idx_mask &= ~(1UL<<idx); 504 cpuc->n_events--; 505 break; 506 } 507 } 508 509 local_irq_restore(irq_flags); 510 perf_pmu_enable(event->pmu); 511 } 512 513 514 static void alpha_pmu_read(struct perf_event *event) 515 { 516 struct hw_perf_event *hwc = &event->hw; 517 518 alpha_perf_event_update(event, hwc, hwc->idx, 0); 519 } 520 521 522 static void alpha_pmu_stop(struct perf_event *event, int flags) 523 { 524 struct hw_perf_event *hwc = &event->hw; 525 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 526 527 if (!(hwc->state & PERF_HES_STOPPED)) { 528 cpuc->idx_mask &= ~(1UL<<hwc->idx); 529 hwc->state |= PERF_HES_STOPPED; 530 } 531 532 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 533 alpha_perf_event_update(event, hwc, hwc->idx, 0); 534 hwc->state |= PERF_HES_UPTODATE; 535 } 536 537 if (cpuc->enabled) 538 wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx)); 539 } 540 541 542 static void alpha_pmu_start(struct perf_event *event, int flags) 543 { 544 struct hw_perf_event *hwc = &event->hw; 545 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 546 547 if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) 548 return; 549 550 if (flags & PERF_EF_RELOAD) { 551 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 552 alpha_perf_event_set_period(event, hwc, hwc->idx); 553 } 554 555 hwc->state = 0; 556 557 cpuc->idx_mask |= 1UL<<hwc->idx; 558 if (cpuc->enabled) 559 wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx)); 560 } 561 562 563 /* 564 * Check that CPU performance counters are supported. 565 * - currently support EV67 and later CPUs. 566 * - actually some later revisions of the EV6 have the same PMC model as the 567 * EV67 but we don't do suffiently deep CPU detection to detect them. 568 * Bad luck to the very few people who might have one, I guess. 569 */ 570 static int supported_cpu(void) 571 { 572 struct percpu_struct *cpu; 573 unsigned long cputype; 574 575 /* Get cpu type from HW */ 576 cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset); 577 cputype = cpu->type & 0xffffffff; 578 /* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */ 579 return (cputype >= EV67_CPU) && (cputype <= EV69_CPU); 580 } 581 582 583 584 static void hw_perf_event_destroy(struct perf_event *event) 585 { 586 /* Nothing to be done! */ 587 return; 588 } 589 590 591 592 static int __hw_perf_event_init(struct perf_event *event) 593 { 594 struct perf_event_attr *attr = &event->attr; 595 struct hw_perf_event *hwc = &event->hw; 596 struct perf_event *evts[MAX_HWEVENTS]; 597 unsigned long evtypes[MAX_HWEVENTS]; 598 int idx_rubbish_bin[MAX_HWEVENTS]; 599 int ev; 600 int n; 601 602 /* We only support a limited range of HARDWARE event types with one 603 * only programmable via a RAW event type. 604 */ 605 if (attr->type == PERF_TYPE_HARDWARE) { 606 if (attr->config >= alpha_pmu->max_events) 607 return -EINVAL; 608 ev = alpha_pmu->event_map[attr->config]; 609 } else if (attr->type == PERF_TYPE_HW_CACHE) { 610 return -EOPNOTSUPP; 611 } else if (attr->type == PERF_TYPE_RAW) { 612 ev = attr->config & 0xff; 613 } else { 614 return -EOPNOTSUPP; 615 } 616 617 if (ev < 0) { 618 return ev; 619 } 620 621 /* The EV67 does not support mode exclusion */ 622 if (attr->exclude_kernel || attr->exclude_user 623 || attr->exclude_hv || attr->exclude_idle) { 624 return -EPERM; 625 } 626 627 /* 628 * We place the event type in event_base here and leave calculation 629 * of the codes to programme the PMU for alpha_pmu_enable() because 630 * it is only then we will know what HW events are actually 631 * scheduled on to the PMU. At that point the code to programme the 632 * PMU is put into config_base and the PMC to use is placed into 633 * idx. We initialise idx (below) to PMC_NO_INDEX to indicate that 634 * it is yet to be determined. 635 */ 636 hwc->event_base = ev; 637 638 /* Collect events in a group together suitable for calling 639 * alpha_check_constraints() to verify that the group as a whole can 640 * be scheduled on to the PMU. 641 */ 642 n = 0; 643 if (event->group_leader != event) { 644 n = collect_events(event->group_leader, 645 alpha_pmu->num_pmcs - 1, 646 evts, evtypes, idx_rubbish_bin); 647 if (n < 0) 648 return -EINVAL; 649 } 650 evtypes[n] = hwc->event_base; 651 evts[n] = event; 652 653 if (alpha_check_constraints(evts, evtypes, n + 1)) 654 return -EINVAL; 655 656 /* Indicate that PMU config and idx are yet to be determined. */ 657 hwc->config_base = 0; 658 hwc->idx = PMC_NO_INDEX; 659 660 event->destroy = hw_perf_event_destroy; 661 662 /* 663 * Most architectures reserve the PMU for their use at this point. 664 * As there is no existing mechanism to arbitrate usage and there 665 * appears to be no other user of the Alpha PMU we just assume 666 * that we can just use it, hence a NO-OP here. 667 * 668 * Maybe an alpha_reserve_pmu() routine should be implemented but is 669 * anything else ever going to use it? 670 */ 671 672 if (!hwc->sample_period) { 673 hwc->sample_period = alpha_pmu->pmc_max_period[0]; 674 hwc->last_period = hwc->sample_period; 675 local64_set(&hwc->period_left, hwc->sample_period); 676 } 677 678 return 0; 679 } 680 681 /* 682 * Main entry point to initialise a HW performance event. 683 */ 684 static int alpha_pmu_event_init(struct perf_event *event) 685 { 686 int err; 687 688 /* does not support taken branch sampling */ 689 if (has_branch_stack(event)) 690 return -EOPNOTSUPP; 691 692 switch (event->attr.type) { 693 case PERF_TYPE_RAW: 694 case PERF_TYPE_HARDWARE: 695 case PERF_TYPE_HW_CACHE: 696 break; 697 698 default: 699 return -ENOENT; 700 } 701 702 if (!alpha_pmu) 703 return -ENODEV; 704 705 /* Do the real initialisation work. */ 706 err = __hw_perf_event_init(event); 707 708 return err; 709 } 710 711 /* 712 * Main entry point - enable HW performance counters. 713 */ 714 static void alpha_pmu_enable(struct pmu *pmu) 715 { 716 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 717 718 if (cpuc->enabled) 719 return; 720 721 cpuc->enabled = 1; 722 barrier(); 723 724 if (cpuc->n_events > 0) { 725 /* Update cpuc with information from any new scheduled events. */ 726 maybe_change_configuration(cpuc); 727 728 /* Start counting the desired events. */ 729 wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE); 730 wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config); 731 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 732 } 733 } 734 735 736 /* 737 * Main entry point - disable HW performance counters. 738 */ 739 740 static void alpha_pmu_disable(struct pmu *pmu) 741 { 742 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 743 744 if (!cpuc->enabled) 745 return; 746 747 cpuc->enabled = 0; 748 cpuc->n_added = 0; 749 750 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); 751 } 752 753 static struct pmu pmu = { 754 .pmu_enable = alpha_pmu_enable, 755 .pmu_disable = alpha_pmu_disable, 756 .event_init = alpha_pmu_event_init, 757 .add = alpha_pmu_add, 758 .del = alpha_pmu_del, 759 .start = alpha_pmu_start, 760 .stop = alpha_pmu_stop, 761 .read = alpha_pmu_read, 762 }; 763 764 765 /* 766 * Main entry point - don't know when this is called but it 767 * obviously dumps debug info. 768 */ 769 void perf_event_print_debug(void) 770 { 771 unsigned long flags; 772 unsigned long pcr; 773 int pcr0, pcr1; 774 int cpu; 775 776 if (!supported_cpu()) 777 return; 778 779 local_irq_save(flags); 780 781 cpu = smp_processor_id(); 782 783 pcr = wrperfmon(PERFMON_CMD_READ, 0); 784 pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0]; 785 pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1]; 786 787 pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1); 788 789 local_irq_restore(flags); 790 } 791 792 793 /* 794 * Performance Monitoring Interrupt Service Routine called when a PMC 795 * overflows. The PMC that overflowed is passed in la_ptr. 796 */ 797 static void alpha_perf_event_irq_handler(unsigned long la_ptr, 798 struct pt_regs *regs) 799 { 800 struct cpu_hw_events *cpuc; 801 struct perf_sample_data data; 802 struct perf_event *event; 803 struct hw_perf_event *hwc; 804 int idx, j; 805 806 __get_cpu_var(irq_pmi_count)++; 807 cpuc = &__get_cpu_var(cpu_hw_events); 808 809 /* Completely counting through the PMC's period to trigger a new PMC 810 * overflow interrupt while in this interrupt routine is utterly 811 * disastrous! The EV6 and EV67 counters are sufficiently large to 812 * prevent this but to be really sure disable the PMCs. 813 */ 814 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); 815 816 /* la_ptr is the counter that overflowed. */ 817 if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) { 818 /* This should never occur! */ 819 irq_err_count++; 820 pr_warning("PMI: silly index %ld\n", la_ptr); 821 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 822 return; 823 } 824 825 idx = la_ptr; 826 827 for (j = 0; j < cpuc->n_events; j++) { 828 if (cpuc->current_idx[j] == idx) 829 break; 830 } 831 832 if (unlikely(j == cpuc->n_events)) { 833 /* This can occur if the event is disabled right on a PMC overflow. */ 834 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 835 return; 836 } 837 838 event = cpuc->event[j]; 839 840 if (unlikely(!event)) { 841 /* This should never occur! */ 842 irq_err_count++; 843 pr_warning("PMI: No event at index %d!\n", idx); 844 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 845 return; 846 } 847 848 hwc = &event->hw; 849 alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1); 850 perf_sample_data_init(&data, 0, hwc->last_period); 851 852 if (alpha_perf_event_set_period(event, hwc, idx)) { 853 if (perf_event_overflow(event, &data, regs)) { 854 /* Interrupts coming too quickly; "throttle" the 855 * counter, i.e., disable it for a little while. 856 */ 857 alpha_pmu_stop(event, 0); 858 } 859 } 860 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 861 862 return; 863 } 864 865 866 867 /* 868 * Init call to initialise performance events at kernel startup. 869 */ 870 int __init init_hw_perf_events(void) 871 { 872 pr_info("Performance events: "); 873 874 if (!supported_cpu()) { 875 pr_cont("No support for your CPU.\n"); 876 return 0; 877 } 878 879 pr_cont("Supported CPU type!\n"); 880 881 /* Override performance counter IRQ vector */ 882 883 perf_irq = alpha_perf_event_irq_handler; 884 885 /* And set up PMU specification */ 886 alpha_pmu = &ev67_pmu; 887 888 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 889 890 return 0; 891 } 892 early_initcall(init_hw_perf_events); 893