1 /* 2 * Hardware performance events for the Alpha. 3 * 4 * We implement HW counts on the EV67 and subsequent CPUs only. 5 * 6 * (C) 2010 Michael J. Cree 7 * 8 * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and 9 * ARM code, which are copyright by their respective authors. 10 */ 11 12 #include <linux/perf_event.h> 13 #include <linux/kprobes.h> 14 #include <linux/kernel.h> 15 #include <linux/kdebug.h> 16 #include <linux/mutex.h> 17 18 #include <asm/hwrpb.h> 19 #include <asm/atomic.h> 20 #include <asm/irq.h> 21 #include <asm/irq_regs.h> 22 #include <asm/pal.h> 23 #include <asm/wrperfmon.h> 24 #include <asm/hw_irq.h> 25 26 27 /* The maximum number of PMCs on any Alpha CPU whatsoever. */ 28 #define MAX_HWEVENTS 3 29 #define PMC_NO_INDEX -1 30 31 /* For tracking PMCs and the hw events they monitor on each CPU. */ 32 struct cpu_hw_events { 33 int enabled; 34 /* Number of events scheduled; also number entries valid in arrays below. */ 35 int n_events; 36 /* Number events added since last hw_perf_disable(). */ 37 int n_added; 38 /* Events currently scheduled. */ 39 struct perf_event *event[MAX_HWEVENTS]; 40 /* Event type of each scheduled event. */ 41 unsigned long evtype[MAX_HWEVENTS]; 42 /* Current index of each scheduled event; if not yet determined 43 * contains PMC_NO_INDEX. 44 */ 45 int current_idx[MAX_HWEVENTS]; 46 /* The active PMCs' config for easy use with wrperfmon(). */ 47 unsigned long config; 48 /* The active counters' indices for easy use with wrperfmon(). */ 49 unsigned long idx_mask; 50 }; 51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 52 53 54 55 /* 56 * A structure to hold the description of the PMCs available on a particular 57 * type of Alpha CPU. 58 */ 59 struct alpha_pmu_t { 60 /* Mapping of the perf system hw event types to indigenous event types */ 61 const int *event_map; 62 /* The number of entries in the event_map */ 63 int max_events; 64 /* The number of PMCs on this Alpha */ 65 int num_pmcs; 66 /* 67 * All PMC counters reside in the IBOX register PCTR. This is the 68 * LSB of the counter. 69 */ 70 int pmc_count_shift[MAX_HWEVENTS]; 71 /* 72 * The mask that isolates the PMC bits when the LSB of the counter 73 * is shifted to bit 0. 74 */ 75 unsigned long pmc_count_mask[MAX_HWEVENTS]; 76 /* The maximum period the PMC can count. */ 77 unsigned long pmc_max_period[MAX_HWEVENTS]; 78 /* 79 * The maximum value that may be written to the counter due to 80 * hardware restrictions is pmc_max_period - pmc_left. 81 */ 82 long pmc_left[3]; 83 /* Subroutine for allocation of PMCs. Enforces constraints. */ 84 int (*check_constraints)(struct perf_event **, unsigned long *, int); 85 }; 86 87 /* 88 * The Alpha CPU PMU description currently in operation. This is set during 89 * the boot process to the specific CPU of the machine. 90 */ 91 static const struct alpha_pmu_t *alpha_pmu; 92 93 94 #define HW_OP_UNSUPPORTED -1 95 96 /* 97 * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs 98 * follow. Since they are identical we refer to them collectively as the 99 * EV67 henceforth. 100 */ 101 102 /* 103 * EV67 PMC event types 104 * 105 * There is no one-to-one mapping of the possible hw event types to the 106 * actual codes that are used to program the PMCs hence we introduce our 107 * own hw event type identifiers. 108 */ 109 enum ev67_pmc_event_type { 110 EV67_CYCLES = 1, 111 EV67_INSTRUCTIONS, 112 EV67_BCACHEMISS, 113 EV67_MBOXREPLAY, 114 EV67_LAST_ET 115 }; 116 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES) 117 118 119 /* Mapping of the hw event types to the perf tool interface */ 120 static const int ev67_perfmon_event_map[] = { 121 [PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES, 122 [PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS, 123 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, 124 [PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS, 125 }; 126 127 struct ev67_mapping_t { 128 int config; 129 int idx; 130 }; 131 132 /* 133 * The mapping used for one event only - these must be in same order as enum 134 * ev67_pmc_event_type definition. 135 */ 136 static const struct ev67_mapping_t ev67_mapping[] = { 137 {EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */ 138 {EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */ 139 {EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */ 140 {EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */ 141 }; 142 143 144 /* 145 * Check that a group of events can be simultaneously scheduled on to the 146 * EV67 PMU. Also allocate counter indices and config. 147 */ 148 static int ev67_check_constraints(struct perf_event **event, 149 unsigned long *evtype, int n_ev) 150 { 151 int idx0; 152 unsigned long config; 153 154 idx0 = ev67_mapping[evtype[0]-1].idx; 155 config = ev67_mapping[evtype[0]-1].config; 156 if (n_ev == 1) 157 goto success; 158 159 BUG_ON(n_ev != 2); 160 161 if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) { 162 /* MBOX replay traps must be on PMC 1 */ 163 idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0; 164 /* Only cycles can accompany MBOX replay traps */ 165 if (evtype[idx0] == EV67_CYCLES) { 166 config = EV67_PCTR_CYCLES_MBOX; 167 goto success; 168 } 169 } 170 171 if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) { 172 /* Bcache misses must be on PMC 1 */ 173 idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0; 174 /* Only instructions can accompany Bcache misses */ 175 if (evtype[idx0] == EV67_INSTRUCTIONS) { 176 config = EV67_PCTR_INSTR_BCACHEMISS; 177 goto success; 178 } 179 } 180 181 if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) { 182 /* Instructions must be on PMC 0 */ 183 idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1; 184 /* By this point only cycles can accompany instructions */ 185 if (evtype[idx0^1] == EV67_CYCLES) { 186 config = EV67_PCTR_INSTR_CYCLES; 187 goto success; 188 } 189 } 190 191 /* Otherwise, darn it, there is a conflict. */ 192 return -1; 193 194 success: 195 event[0]->hw.idx = idx0; 196 event[0]->hw.config_base = config; 197 if (n_ev == 2) { 198 event[1]->hw.idx = idx0 ^ 1; 199 event[1]->hw.config_base = config; 200 } 201 return 0; 202 } 203 204 205 static const struct alpha_pmu_t ev67_pmu = { 206 .event_map = ev67_perfmon_event_map, 207 .max_events = ARRAY_SIZE(ev67_perfmon_event_map), 208 .num_pmcs = 2, 209 .pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0}, 210 .pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0}, 211 .pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0}, 212 .pmc_left = {16, 4, 0}, 213 .check_constraints = ev67_check_constraints 214 }; 215 216 217 218 /* 219 * Helper routines to ensure that we read/write only the correct PMC bits 220 * when calling the wrperfmon PALcall. 221 */ 222 static inline void alpha_write_pmc(int idx, unsigned long val) 223 { 224 val &= alpha_pmu->pmc_count_mask[idx]; 225 val <<= alpha_pmu->pmc_count_shift[idx]; 226 val |= (1<<idx); 227 wrperfmon(PERFMON_CMD_WRITE, val); 228 } 229 230 static inline unsigned long alpha_read_pmc(int idx) 231 { 232 unsigned long val; 233 234 val = wrperfmon(PERFMON_CMD_READ, 0); 235 val >>= alpha_pmu->pmc_count_shift[idx]; 236 val &= alpha_pmu->pmc_count_mask[idx]; 237 return val; 238 } 239 240 /* Set a new period to sample over */ 241 static int alpha_perf_event_set_period(struct perf_event *event, 242 struct hw_perf_event *hwc, int idx) 243 { 244 long left = local64_read(&hwc->period_left); 245 long period = hwc->sample_period; 246 int ret = 0; 247 248 if (unlikely(left <= -period)) { 249 left = period; 250 local64_set(&hwc->period_left, left); 251 hwc->last_period = period; 252 ret = 1; 253 } 254 255 if (unlikely(left <= 0)) { 256 left += period; 257 local64_set(&hwc->period_left, left); 258 hwc->last_period = period; 259 ret = 1; 260 } 261 262 /* 263 * Hardware restrictions require that the counters must not be 264 * written with values that are too close to the maximum period. 265 */ 266 if (unlikely(left < alpha_pmu->pmc_left[idx])) 267 left = alpha_pmu->pmc_left[idx]; 268 269 if (left > (long)alpha_pmu->pmc_max_period[idx]) 270 left = alpha_pmu->pmc_max_period[idx]; 271 272 local64_set(&hwc->prev_count, (unsigned long)(-left)); 273 274 alpha_write_pmc(idx, (unsigned long)(-left)); 275 276 perf_event_update_userpage(event); 277 278 return ret; 279 } 280 281 282 /* 283 * Calculates the count (the 'delta') since the last time the PMC was read. 284 * 285 * As the PMCs' full period can easily be exceeded within the perf system 286 * sampling period we cannot use any high order bits as a guard bit in the 287 * PMCs to detect overflow as is done by other architectures. The code here 288 * calculates the delta on the basis that there is no overflow when ovf is 289 * zero. The value passed via ovf by the interrupt handler corrects for 290 * overflow. 291 * 292 * This can be racey on rare occasions -- a call to this routine can occur 293 * with an overflowed counter just before the PMI service routine is called. 294 * The check for delta negative hopefully always rectifies this situation. 295 */ 296 static unsigned long alpha_perf_event_update(struct perf_event *event, 297 struct hw_perf_event *hwc, int idx, long ovf) 298 { 299 long prev_raw_count, new_raw_count; 300 long delta; 301 302 again: 303 prev_raw_count = local64_read(&hwc->prev_count); 304 new_raw_count = alpha_read_pmc(idx); 305 306 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 307 new_raw_count) != prev_raw_count) 308 goto again; 309 310 delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf; 311 312 /* It is possible on very rare occasions that the PMC has overflowed 313 * but the interrupt is yet to come. Detect and fix this situation. 314 */ 315 if (unlikely(delta < 0)) { 316 delta += alpha_pmu->pmc_max_period[idx] + 1; 317 } 318 319 local64_add(delta, &event->count); 320 local64_sub(delta, &hwc->period_left); 321 322 return new_raw_count; 323 } 324 325 326 /* 327 * Collect all HW events into the array event[]. 328 */ 329 static int collect_events(struct perf_event *group, int max_count, 330 struct perf_event *event[], unsigned long *evtype, 331 int *current_idx) 332 { 333 struct perf_event *pe; 334 int n = 0; 335 336 if (!is_software_event(group)) { 337 if (n >= max_count) 338 return -1; 339 event[n] = group; 340 evtype[n] = group->hw.event_base; 341 current_idx[n++] = PMC_NO_INDEX; 342 } 343 list_for_each_entry(pe, &group->sibling_list, group_entry) { 344 if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) { 345 if (n >= max_count) 346 return -1; 347 event[n] = pe; 348 evtype[n] = pe->hw.event_base; 349 current_idx[n++] = PMC_NO_INDEX; 350 } 351 } 352 return n; 353 } 354 355 356 357 /* 358 * Check that a group of events can be simultaneously scheduled on to the PMU. 359 */ 360 static int alpha_check_constraints(struct perf_event **events, 361 unsigned long *evtypes, int n_ev) 362 { 363 364 /* No HW events is possible from hw_perf_group_sched_in(). */ 365 if (n_ev == 0) 366 return 0; 367 368 if (n_ev > alpha_pmu->num_pmcs) 369 return -1; 370 371 return alpha_pmu->check_constraints(events, evtypes, n_ev); 372 } 373 374 375 /* 376 * If new events have been scheduled then update cpuc with the new 377 * configuration. This may involve shifting cycle counts from one PMC to 378 * another. 379 */ 380 static void maybe_change_configuration(struct cpu_hw_events *cpuc) 381 { 382 int j; 383 384 if (cpuc->n_added == 0) 385 return; 386 387 /* Find counters that are moving to another PMC and update */ 388 for (j = 0; j < cpuc->n_events; j++) { 389 struct perf_event *pe = cpuc->event[j]; 390 391 if (cpuc->current_idx[j] != PMC_NO_INDEX && 392 cpuc->current_idx[j] != pe->hw.idx) { 393 alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0); 394 cpuc->current_idx[j] = PMC_NO_INDEX; 395 } 396 } 397 398 /* Assign to counters all unassigned events. */ 399 cpuc->idx_mask = 0; 400 for (j = 0; j < cpuc->n_events; j++) { 401 struct perf_event *pe = cpuc->event[j]; 402 struct hw_perf_event *hwc = &pe->hw; 403 int idx = hwc->idx; 404 405 if (cpuc->current_idx[j] == PMC_NO_INDEX) { 406 alpha_perf_event_set_period(pe, hwc, idx); 407 cpuc->current_idx[j] = idx; 408 } 409 410 if (!(hwc->state & PERF_HES_STOPPED)) 411 cpuc->idx_mask |= (1<<cpuc->current_idx[j]); 412 } 413 cpuc->config = cpuc->event[0]->hw.config_base; 414 } 415 416 417 418 /* Schedule perf HW event on to PMU. 419 * - this function is called from outside this module via the pmu struct 420 * returned from perf event initialisation. 421 */ 422 static int alpha_pmu_add(struct perf_event *event, int flags) 423 { 424 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 425 struct hw_perf_event *hwc = &event->hw; 426 int n0; 427 int ret; 428 unsigned long irq_flags; 429 430 /* 431 * The Sparc code has the IRQ disable first followed by the perf 432 * disable, however this can lead to an overflowed counter with the 433 * PMI disabled on rare occasions. The alpha_perf_event_update() 434 * routine should detect this situation by noting a negative delta, 435 * nevertheless we disable the PMCs first to enable a potential 436 * final PMI to occur before we disable interrupts. 437 */ 438 perf_pmu_disable(event->pmu); 439 local_irq_save(irq_flags); 440 441 /* Default to error to be returned */ 442 ret = -EAGAIN; 443 444 /* Insert event on to PMU and if successful modify ret to valid return */ 445 n0 = cpuc->n_events; 446 if (n0 < alpha_pmu->num_pmcs) { 447 cpuc->event[n0] = event; 448 cpuc->evtype[n0] = event->hw.event_base; 449 cpuc->current_idx[n0] = PMC_NO_INDEX; 450 451 if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) { 452 cpuc->n_events++; 453 cpuc->n_added++; 454 ret = 0; 455 } 456 } 457 458 hwc->state = PERF_HES_UPTODATE; 459 if (!(flags & PERF_EF_START)) 460 hwc->state |= PERF_HES_STOPPED; 461 462 local_irq_restore(irq_flags); 463 perf_pmu_enable(event->pmu); 464 465 return ret; 466 } 467 468 469 470 /* Disable performance monitoring unit 471 * - this function is called from outside this module via the pmu struct 472 * returned from perf event initialisation. 473 */ 474 static void alpha_pmu_del(struct perf_event *event, int flags) 475 { 476 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 477 struct hw_perf_event *hwc = &event->hw; 478 unsigned long irq_flags; 479 int j; 480 481 perf_pmu_disable(event->pmu); 482 local_irq_save(irq_flags); 483 484 for (j = 0; j < cpuc->n_events; j++) { 485 if (event == cpuc->event[j]) { 486 int idx = cpuc->current_idx[j]; 487 488 /* Shift remaining entries down into the existing 489 * slot. 490 */ 491 while (++j < cpuc->n_events) { 492 cpuc->event[j - 1] = cpuc->event[j]; 493 cpuc->evtype[j - 1] = cpuc->evtype[j]; 494 cpuc->current_idx[j - 1] = 495 cpuc->current_idx[j]; 496 } 497 498 /* Absorb the final count and turn off the event. */ 499 alpha_perf_event_update(event, hwc, idx, 0); 500 perf_event_update_userpage(event); 501 502 cpuc->idx_mask &= ~(1UL<<idx); 503 cpuc->n_events--; 504 break; 505 } 506 } 507 508 local_irq_restore(irq_flags); 509 perf_pmu_enable(event->pmu); 510 } 511 512 513 static void alpha_pmu_read(struct perf_event *event) 514 { 515 struct hw_perf_event *hwc = &event->hw; 516 517 alpha_perf_event_update(event, hwc, hwc->idx, 0); 518 } 519 520 521 static void alpha_pmu_stop(struct perf_event *event, int flags) 522 { 523 struct hw_perf_event *hwc = &event->hw; 524 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 525 526 if (!(hwc->state & PERF_HES_STOPPED)) { 527 cpuc->idx_mask &= ~(1UL<<hwc->idx); 528 hwc->state |= PERF_HES_STOPPED; 529 } 530 531 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 532 alpha_perf_event_update(event, hwc, hwc->idx, 0); 533 hwc->state |= PERF_HES_UPTODATE; 534 } 535 536 if (cpuc->enabled) 537 wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx)); 538 } 539 540 541 static void alpha_pmu_start(struct perf_event *event, int flags) 542 { 543 struct hw_perf_event *hwc = &event->hw; 544 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 545 546 if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) 547 return; 548 549 if (flags & PERF_EF_RELOAD) { 550 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 551 alpha_perf_event_set_period(event, hwc, hwc->idx); 552 } 553 554 hwc->state = 0; 555 556 cpuc->idx_mask |= 1UL<<hwc->idx; 557 if (cpuc->enabled) 558 wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx)); 559 } 560 561 562 /* 563 * Check that CPU performance counters are supported. 564 * - currently support EV67 and later CPUs. 565 * - actually some later revisions of the EV6 have the same PMC model as the 566 * EV67 but we don't do suffiently deep CPU detection to detect them. 567 * Bad luck to the very few people who might have one, I guess. 568 */ 569 static int supported_cpu(void) 570 { 571 struct percpu_struct *cpu; 572 unsigned long cputype; 573 574 /* Get cpu type from HW */ 575 cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset); 576 cputype = cpu->type & 0xffffffff; 577 /* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */ 578 return (cputype >= EV67_CPU) && (cputype <= EV69_CPU); 579 } 580 581 582 583 static void hw_perf_event_destroy(struct perf_event *event) 584 { 585 /* Nothing to be done! */ 586 return; 587 } 588 589 590 591 static int __hw_perf_event_init(struct perf_event *event) 592 { 593 struct perf_event_attr *attr = &event->attr; 594 struct hw_perf_event *hwc = &event->hw; 595 struct perf_event *evts[MAX_HWEVENTS]; 596 unsigned long evtypes[MAX_HWEVENTS]; 597 int idx_rubbish_bin[MAX_HWEVENTS]; 598 int ev; 599 int n; 600 601 /* We only support a limited range of HARDWARE event types with one 602 * only programmable via a RAW event type. 603 */ 604 if (attr->type == PERF_TYPE_HARDWARE) { 605 if (attr->config >= alpha_pmu->max_events) 606 return -EINVAL; 607 ev = alpha_pmu->event_map[attr->config]; 608 } else if (attr->type == PERF_TYPE_HW_CACHE) { 609 return -EOPNOTSUPP; 610 } else if (attr->type == PERF_TYPE_RAW) { 611 ev = attr->config & 0xff; 612 } else { 613 return -EOPNOTSUPP; 614 } 615 616 if (ev < 0) { 617 return ev; 618 } 619 620 /* The EV67 does not support mode exclusion */ 621 if (attr->exclude_kernel || attr->exclude_user 622 || attr->exclude_hv || attr->exclude_idle) { 623 return -EPERM; 624 } 625 626 /* 627 * We place the event type in event_base here and leave calculation 628 * of the codes to programme the PMU for alpha_pmu_enable() because 629 * it is only then we will know what HW events are actually 630 * scheduled on to the PMU. At that point the code to programme the 631 * PMU is put into config_base and the PMC to use is placed into 632 * idx. We initialise idx (below) to PMC_NO_INDEX to indicate that 633 * it is yet to be determined. 634 */ 635 hwc->event_base = ev; 636 637 /* Collect events in a group together suitable for calling 638 * alpha_check_constraints() to verify that the group as a whole can 639 * be scheduled on to the PMU. 640 */ 641 n = 0; 642 if (event->group_leader != event) { 643 n = collect_events(event->group_leader, 644 alpha_pmu->num_pmcs - 1, 645 evts, evtypes, idx_rubbish_bin); 646 if (n < 0) 647 return -EINVAL; 648 } 649 evtypes[n] = hwc->event_base; 650 evts[n] = event; 651 652 if (alpha_check_constraints(evts, evtypes, n + 1)) 653 return -EINVAL; 654 655 /* Indicate that PMU config and idx are yet to be determined. */ 656 hwc->config_base = 0; 657 hwc->idx = PMC_NO_INDEX; 658 659 event->destroy = hw_perf_event_destroy; 660 661 /* 662 * Most architectures reserve the PMU for their use at this point. 663 * As there is no existing mechanism to arbitrate usage and there 664 * appears to be no other user of the Alpha PMU we just assume 665 * that we can just use it, hence a NO-OP here. 666 * 667 * Maybe an alpha_reserve_pmu() routine should be implemented but is 668 * anything else ever going to use it? 669 */ 670 671 if (!hwc->sample_period) { 672 hwc->sample_period = alpha_pmu->pmc_max_period[0]; 673 hwc->last_period = hwc->sample_period; 674 local64_set(&hwc->period_left, hwc->sample_period); 675 } 676 677 return 0; 678 } 679 680 /* 681 * Main entry point to initialise a HW performance event. 682 */ 683 static int alpha_pmu_event_init(struct perf_event *event) 684 { 685 int err; 686 687 switch (event->attr.type) { 688 case PERF_TYPE_RAW: 689 case PERF_TYPE_HARDWARE: 690 case PERF_TYPE_HW_CACHE: 691 break; 692 693 default: 694 return -ENOENT; 695 } 696 697 if (!alpha_pmu) 698 return -ENODEV; 699 700 /* Do the real initialisation work. */ 701 err = __hw_perf_event_init(event); 702 703 return err; 704 } 705 706 /* 707 * Main entry point - enable HW performance counters. 708 */ 709 static void alpha_pmu_enable(struct pmu *pmu) 710 { 711 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 712 713 if (cpuc->enabled) 714 return; 715 716 cpuc->enabled = 1; 717 barrier(); 718 719 if (cpuc->n_events > 0) { 720 /* Update cpuc with information from any new scheduled events. */ 721 maybe_change_configuration(cpuc); 722 723 /* Start counting the desired events. */ 724 wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE); 725 wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config); 726 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 727 } 728 } 729 730 731 /* 732 * Main entry point - disable HW performance counters. 733 */ 734 735 static void alpha_pmu_disable(struct pmu *pmu) 736 { 737 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 738 739 if (!cpuc->enabled) 740 return; 741 742 cpuc->enabled = 0; 743 cpuc->n_added = 0; 744 745 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); 746 } 747 748 static struct pmu pmu = { 749 .pmu_enable = alpha_pmu_enable, 750 .pmu_disable = alpha_pmu_disable, 751 .event_init = alpha_pmu_event_init, 752 .add = alpha_pmu_add, 753 .del = alpha_pmu_del, 754 .start = alpha_pmu_start, 755 .stop = alpha_pmu_stop, 756 .read = alpha_pmu_read, 757 }; 758 759 760 /* 761 * Main entry point - don't know when this is called but it 762 * obviously dumps debug info. 763 */ 764 void perf_event_print_debug(void) 765 { 766 unsigned long flags; 767 unsigned long pcr; 768 int pcr0, pcr1; 769 int cpu; 770 771 if (!supported_cpu()) 772 return; 773 774 local_irq_save(flags); 775 776 cpu = smp_processor_id(); 777 778 pcr = wrperfmon(PERFMON_CMD_READ, 0); 779 pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0]; 780 pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1]; 781 782 pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1); 783 784 local_irq_restore(flags); 785 } 786 787 788 /* 789 * Performance Monitoring Interrupt Service Routine called when a PMC 790 * overflows. The PMC that overflowed is passed in la_ptr. 791 */ 792 static void alpha_perf_event_irq_handler(unsigned long la_ptr, 793 struct pt_regs *regs) 794 { 795 struct cpu_hw_events *cpuc; 796 struct perf_sample_data data; 797 struct perf_event *event; 798 struct hw_perf_event *hwc; 799 int idx, j; 800 801 __get_cpu_var(irq_pmi_count)++; 802 cpuc = &__get_cpu_var(cpu_hw_events); 803 804 /* Completely counting through the PMC's period to trigger a new PMC 805 * overflow interrupt while in this interrupt routine is utterly 806 * disastrous! The EV6 and EV67 counters are sufficiently large to 807 * prevent this but to be really sure disable the PMCs. 808 */ 809 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); 810 811 /* la_ptr is the counter that overflowed. */ 812 if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) { 813 /* This should never occur! */ 814 irq_err_count++; 815 pr_warning("PMI: silly index %ld\n", la_ptr); 816 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 817 return; 818 } 819 820 idx = la_ptr; 821 822 perf_sample_data_init(&data, 0); 823 for (j = 0; j < cpuc->n_events; j++) { 824 if (cpuc->current_idx[j] == idx) 825 break; 826 } 827 828 if (unlikely(j == cpuc->n_events)) { 829 /* This can occur if the event is disabled right on a PMC overflow. */ 830 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 831 return; 832 } 833 834 event = cpuc->event[j]; 835 836 if (unlikely(!event)) { 837 /* This should never occur! */ 838 irq_err_count++; 839 pr_warning("PMI: No event at index %d!\n", idx); 840 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 841 return; 842 } 843 844 hwc = &event->hw; 845 alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1); 846 data.period = event->hw.last_period; 847 848 if (alpha_perf_event_set_period(event, hwc, idx)) { 849 if (perf_event_overflow(event, 1, &data, regs)) { 850 /* Interrupts coming too quickly; "throttle" the 851 * counter, i.e., disable it for a little while. 852 */ 853 alpha_pmu_stop(event, 0); 854 } 855 } 856 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); 857 858 return; 859 } 860 861 862 863 /* 864 * Init call to initialise performance events at kernel startup. 865 */ 866 void __init init_hw_perf_events(void) 867 { 868 pr_info("Performance events: "); 869 870 if (!supported_cpu()) { 871 pr_cont("No support for your CPU.\n"); 872 return; 873 } 874 875 pr_cont("Supported CPU type!\n"); 876 877 /* Override performance counter IRQ vector */ 878 879 perf_irq = alpha_perf_event_irq_handler; 880 881 /* And set up PMU specification */ 882 alpha_pmu = &ev67_pmu; 883 884 perf_pmu_register(&pmu); 885 } 886 887