xref: /linux/arch/alpha/include/asm/pgtable.h (revision e65e175b07bef5974045cc42238de99057669ca7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ALPHA_PGTABLE_H
3 #define _ALPHA_PGTABLE_H
4 
5 #include <asm-generic/pgtable-nopud.h>
6 
7 /*
8  * This file contains the functions and defines necessary to modify and use
9  * the Alpha page table tree.
10  *
11  * This hopefully works with any standard Alpha page-size, as defined
12  * in <asm/page.h> (currently 8192).
13  */
14 #include <linux/mmzone.h>
15 
16 #include <asm/page.h>
17 #include <asm/processor.h>	/* For TASK_SIZE */
18 #include <asm/machvec.h>
19 #include <asm/setup.h>
20 
21 struct mm_struct;
22 struct vm_area_struct;
23 
24 /* Certain architectures need to do special things when PTEs
25  * within a page table are directly modified.  Thus, the following
26  * hook is made available.
27  */
28 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
29 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
30 
31 /* PMD_SHIFT determines the size of the area a second-level page table can map */
32 #define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-3))
33 #define PMD_SIZE	(1UL << PMD_SHIFT)
34 #define PMD_MASK	(~(PMD_SIZE-1))
35 
36 /* PGDIR_SHIFT determines what a third-level page table entry can map */
37 #define PGDIR_SHIFT	(PAGE_SHIFT + 2*(PAGE_SHIFT-3))
38 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
39 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
40 
41 /*
42  * Entries per page directory level:  the Alpha is three-level, with
43  * all levels having a one-page page table.
44  */
45 #define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-3))
46 #define PTRS_PER_PMD	(1UL << (PAGE_SHIFT-3))
47 #define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-3))
48 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
49 
50 /* Number of pointers that fit on a page:  this will go away. */
51 #define PTRS_PER_PAGE	(1UL << (PAGE_SHIFT-3))
52 
53 #ifdef CONFIG_ALPHA_LARGE_VMALLOC
54 #define VMALLOC_START		0xfffffe0000000000
55 #else
56 #define VMALLOC_START		(-2*PGDIR_SIZE)
57 #endif
58 #define VMALLOC_END		(-PGDIR_SIZE)
59 
60 /*
61  * OSF/1 PAL-code-imposed page table bits
62  */
63 #define _PAGE_VALID	0x0001
64 #define _PAGE_FOR	0x0002	/* used for page protection (fault on read) */
65 #define _PAGE_FOW	0x0004	/* used for page protection (fault on write) */
66 #define _PAGE_FOE	0x0008	/* used for page protection (fault on exec) */
67 #define _PAGE_ASM	0x0010
68 #define _PAGE_KRE	0x0100	/* xxx - see below on the "accessed" bit */
69 #define _PAGE_URE	0x0200	/* xxx */
70 #define _PAGE_KWE	0x1000	/* used to do the dirty bit in software */
71 #define _PAGE_UWE	0x2000	/* used to do the dirty bit in software */
72 
73 /* .. and these are ours ... */
74 #define _PAGE_DIRTY	0x20000
75 #define _PAGE_ACCESSED	0x40000
76 
77 /*
78  * NOTE! The "accessed" bit isn't necessarily exact:  it can be kept exactly
79  * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it.
80  * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use
81  * the KRE/URE bits to watch for it. That way we don't need to overload the
82  * KWE/UWE bits with both handling dirty and accessed.
83  *
84  * Note that the kernel uses the accessed bit just to check whether to page
85  * out a page or not, so it doesn't have to be exact anyway.
86  */
87 
88 #define __DIRTY_BITS	(_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE)
89 #define __ACCESS_BITS	(_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE)
90 
91 #define _PFN_MASK	0xFFFFFFFF00000000UL
92 
93 #define _PAGE_TABLE	(_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS)
94 #define _PAGE_CHG_MASK	(_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS)
95 
96 /*
97  * All the normal masks have the "page accessed" bits on, as any time they are used,
98  * the page is accessed. They are cleared only by the page-out routines
99  */
100 #define PAGE_NONE	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE)
101 #define PAGE_SHARED	__pgprot(_PAGE_VALID | __ACCESS_BITS)
102 #define PAGE_COPY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
103 #define PAGE_READONLY	__pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
104 #define PAGE_KERNEL	__pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE)
105 
106 #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x))
107 
108 #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW))
109 #define _PAGE_S(x) _PAGE_NORMAL(x)
110 
111 /*
112  * The hardware can handle write-only mappings, but as the Alpha
113  * architecture does byte-wide writes with a read-modify-write
114  * sequence, it's not practical to have write-without-read privs.
115  * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in
116  * arch/alpha/mm/fault.c)
117  */
118 	/* xwr */
119 
120 /*
121  * pgprot_noncached() is only for infiniband pci support, and a real
122  * implementation for RAM would be more complicated.
123  */
124 #define pgprot_noncached(prot)	(prot)
125 
126 /*
127  * BAD_PAGETABLE is used when we need a bogus page-table, while
128  * BAD_PAGE is used for a bogus page.
129  *
130  * ZERO_PAGE is a global shared page that is always zero:  used
131  * for zero-mapped memory areas etc..
132  */
133 extern pte_t __bad_page(void);
134 extern pmd_t * __bad_pagetable(void);
135 
136 extern unsigned long __zero_page(void);
137 
138 #define BAD_PAGETABLE	__bad_pagetable()
139 #define BAD_PAGE	__bad_page()
140 #define ZERO_PAGE(vaddr)	(virt_to_page(ZERO_PGE))
141 
142 /* number of bits that fit into a memory pointer */
143 #define BITS_PER_PTR			(8*sizeof(unsigned long))
144 
145 /* to align the pointer to a pointer address */
146 #define PTR_MASK			(~(sizeof(void*)-1))
147 
148 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
149 #define SIZEOF_PTR_LOG2			3
150 
151 /* to find an entry in a page-table */
152 #define PAGE_PTR(address)		\
153   ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
154 
155 /*
156  * On certain platforms whose physical address space can overlap KSEG,
157  * namely EV6 and above, we must re-twiddle the physaddr to restore the
158  * correct high-order bits.
159  *
160  * This is extremely confusing until you realize that this is actually
161  * just working around a userspace bug.  The X server was intending to
162  * provide the physical address but instead provided the KSEG address.
163  * Or tried to, except it's not representable.
164  *
165  * On Tsunami there's nothing meaningful at 0x40000000000, so this is
166  * a safe thing to do.  Come the first core logic that does put something
167  * in this area -- memory or whathaveyou -- then this hack will have
168  * to go away.  So be prepared!
169  */
170 
171 #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG)
172 #error "EV6-only feature in a generic kernel"
173 #endif
174 #if defined(CONFIG_ALPHA_GENERIC) || \
175     (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG))
176 #define KSEG_PFN	(0xc0000000000UL >> PAGE_SHIFT)
177 #define PHYS_TWIDDLE(pfn) \
178   ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \
179   ? ((pfn) ^= KSEG_PFN) : (pfn))
180 #else
181 #define PHYS_TWIDDLE(pfn) (pfn)
182 #endif
183 
184 /*
185  * Conversion functions:  convert a page and protection to a page entry,
186  * and a page entry and page directory to the page they refer to.
187  */
188 #define page_to_pa(page)	(page_to_pfn(page) << PAGE_SHIFT)
189 #define pte_pfn(pte)	(pte_val(pte) >> 32)
190 
191 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
192 #define mk_pte(page, pgprot)						\
193 ({									\
194 	pte_t pte;							\
195 									\
196 	pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot);	\
197 	pte;								\
198 })
199 
200 extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot)
201 { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; }
202 
203 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
204 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
205 
206 extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
207 { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
208 
209 extern inline void pud_set(pud_t * pudp, pmd_t * pmdp)
210 { pud_val(*pudp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
211 
212 
213 extern inline unsigned long
214 pmd_page_vaddr(pmd_t pmd)
215 {
216 	return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET;
217 }
218 
219 #define pmd_pfn(pmd)	(pmd_val(pmd) >> 32)
220 #define pmd_page(pmd)	(pfn_to_page(pmd_val(pmd) >> 32))
221 #define pud_page(pud)	(pfn_to_page(pud_val(pud) >> 32))
222 
223 extern inline pmd_t *pud_pgtable(pud_t pgd)
224 {
225 	return (pmd_t *)(PAGE_OFFSET + ((pud_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)));
226 }
227 
228 extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); }
229 extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_VALID; }
230 extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
231 {
232 	pte_val(*ptep) = 0;
233 }
234 
235 extern inline int pmd_none(pmd_t pmd)		{ return !pmd_val(pmd); }
236 extern inline int pmd_bad(pmd_t pmd)		{ return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; }
237 extern inline int pmd_present(pmd_t pmd)	{ return pmd_val(pmd) & _PAGE_VALID; }
238 extern inline void pmd_clear(pmd_t * pmdp)	{ pmd_val(*pmdp) = 0; }
239 
240 extern inline int pud_none(pud_t pud)		{ return !pud_val(pud); }
241 extern inline int pud_bad(pud_t pud)		{ return (pud_val(pud) & ~_PFN_MASK) != _PAGE_TABLE; }
242 extern inline int pud_present(pud_t pud)	{ return pud_val(pud) & _PAGE_VALID; }
243 extern inline void pud_clear(pud_t * pudp)	{ pud_val(*pudp) = 0; }
244 
245 /*
246  * The following only work if pte_present() is true.
247  * Undefined behaviour if not..
248  */
249 extern inline int pte_write(pte_t pte)		{ return !(pte_val(pte) & _PAGE_FOW); }
250 extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
251 extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
252 
253 extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) |= _PAGE_FOW; return pte; }
254 extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~(__DIRTY_BITS); return pte; }
255 extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~(__ACCESS_BITS); return pte; }
256 extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) &= ~_PAGE_FOW; return pte; }
257 extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= __DIRTY_BITS; return pte; }
258 extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= __ACCESS_BITS; return pte; }
259 
260 /*
261  * The smp_rmb() in the following functions are required to order the load of
262  * *dir (the pointer in the top level page table) with any subsequent load of
263  * the returned pmd_t *ret (ret is data dependent on *dir).
264  *
265  * If this ordering is not enforced, the CPU might load an older value of
266  * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for
267  * more details.
268  *
269  * Note that we never change the mm->pgd pointer after the task is running, so
270  * pgd_offset does not require such a barrier.
271  */
272 
273 /* Find an entry in the second-level page table.. */
274 extern inline pmd_t * pmd_offset(pud_t * dir, unsigned long address)
275 {
276 	pmd_t *ret = pud_pgtable(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1));
277 	smp_rmb(); /* see above */
278 	return ret;
279 }
280 #define pmd_offset pmd_offset
281 
282 /* Find an entry in the third-level page table.. */
283 extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address)
284 {
285 	pte_t *ret = (pte_t *) pmd_page_vaddr(*dir)
286 		+ ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1));
287 	smp_rmb(); /* see above */
288 	return ret;
289 }
290 #define pte_offset_kernel pte_offset_kernel
291 
292 extern pgd_t swapper_pg_dir[1024];
293 
294 /*
295  * The Alpha doesn't have any external MMU info:  the kernel page
296  * tables contain all the necessary information.
297  */
298 extern inline void update_mmu_cache(struct vm_area_struct * vma,
299 	unsigned long address, pte_t *ptep)
300 {
301 }
302 
303 /*
304  * Non-present pages:  high 24 bits are offset, next 8 bits type,
305  * low 32 bits zero.
306  */
307 extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
308 { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
309 
310 #define __swp_type(x)		(((x).val >> 32) & 0xff)
311 #define __swp_offset(x)		((x).val >> 40)
312 #define __swp_entry(type, off)	((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) })
313 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
314 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
315 
316 #define pte_ERROR(e) \
317 	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
318 #define pmd_ERROR(e) \
319 	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
320 #define pgd_ERROR(e) \
321 	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
322 
323 extern void paging_init(void);
324 
325 /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT.  */
326 #define HAVE_ARCH_UNMAPPED_AREA
327 
328 #endif /* _ALPHA_PGTABLE_H */
329