1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ALPHA_PGTABLE_H 3 #define _ALPHA_PGTABLE_H 4 5 #include <asm-generic/pgtable-nopud.h> 6 7 /* 8 * This file contains the functions and defines necessary to modify and use 9 * the Alpha page table tree. 10 * 11 * This hopefully works with any standard Alpha page-size, as defined 12 * in <asm/page.h> (currently 8192). 13 */ 14 #include <linux/mmzone.h> 15 16 #include <asm/page.h> 17 #include <asm/processor.h> /* For TASK_SIZE */ 18 #include <asm/machvec.h> 19 #include <asm/setup.h> 20 21 struct mm_struct; 22 struct vm_area_struct; 23 24 /* Certain architectures need to do special things when PTEs 25 * within a page table are directly modified. Thus, the following 26 * hook is made available. 27 */ 28 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) 29 30 /* PMD_SHIFT determines the size of the area a second-level page table can map */ 31 #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) 32 #define PMD_SIZE (1UL << PMD_SHIFT) 33 #define PMD_MASK (~(PMD_SIZE-1)) 34 35 /* PGDIR_SHIFT determines what a third-level page table entry can map */ 36 #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) 37 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 38 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 39 40 /* 41 * Entries per page directory level: the Alpha is three-level, with 42 * all levels having a one-page page table. 43 */ 44 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3)) 45 #define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3)) 46 #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3)) 47 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 48 49 /* Number of pointers that fit on a page: this will go away. */ 50 #define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3)) 51 52 #ifdef CONFIG_ALPHA_LARGE_VMALLOC 53 #define VMALLOC_START 0xfffffe0000000000 54 #else 55 #define VMALLOC_START (-2*PGDIR_SIZE) 56 #endif 57 #define VMALLOC_END (-PGDIR_SIZE) 58 59 /* 60 * OSF/1 PAL-code-imposed page table bits 61 */ 62 #define _PAGE_VALID 0x0001 63 #define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */ 64 #define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */ 65 #define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */ 66 #define _PAGE_ASM 0x0010 67 #define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */ 68 #define _PAGE_URE 0x0200 /* xxx */ 69 #define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */ 70 #define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */ 71 72 /* .. and these are ours ... */ 73 #define _PAGE_DIRTY 0x20000 74 #define _PAGE_ACCESSED 0x40000 75 76 /* We borrow bit 39 to store the exclusive marker in swap PTEs. */ 77 #define _PAGE_SWP_EXCLUSIVE 0x8000000000UL 78 79 /* 80 * NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly 81 * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it. 82 * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use 83 * the KRE/URE bits to watch for it. That way we don't need to overload the 84 * KWE/UWE bits with both handling dirty and accessed. 85 * 86 * Note that the kernel uses the accessed bit just to check whether to page 87 * out a page or not, so it doesn't have to be exact anyway. 88 */ 89 90 #define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE) 91 #define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE) 92 93 #define _PFN_MASK 0xFFFFFFFF00000000UL 94 95 #define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS) 96 #define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS) 97 98 /* 99 * All the normal masks have the "page accessed" bits on, as any time they are used, 100 * the page is accessed. They are cleared only by the page-out routines 101 */ 102 #define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE) 103 #define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS) 104 #define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) 105 #define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) 106 #define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE) 107 108 #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x)) 109 110 #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW)) 111 #define _PAGE_S(x) _PAGE_NORMAL(x) 112 113 /* 114 * The hardware can handle write-only mappings, but as the Alpha 115 * architecture does byte-wide writes with a read-modify-write 116 * sequence, it's not practical to have write-without-read privs. 117 * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in 118 * arch/alpha/mm/fault.c) 119 */ 120 /* xwr */ 121 122 /* 123 * pgprot_noncached() is only for infiniband pci support, and a real 124 * implementation for RAM would be more complicated. 125 */ 126 #define pgprot_noncached(prot) (prot) 127 128 /* 129 * BAD_PAGETABLE is used when we need a bogus page-table, while 130 * BAD_PAGE is used for a bogus page. 131 * 132 * ZERO_PAGE is a global shared page that is always zero: used 133 * for zero-mapped memory areas etc.. 134 */ 135 extern pte_t __bad_page(void); 136 extern pmd_t * __bad_pagetable(void); 137 138 extern unsigned long __zero_page(void); 139 140 #define BAD_PAGETABLE __bad_pagetable() 141 #define BAD_PAGE __bad_page() 142 #define ZERO_PAGE(vaddr) (virt_to_page(ZERO_PGE)) 143 144 /* number of bits that fit into a memory pointer */ 145 #define BITS_PER_PTR (8*sizeof(unsigned long)) 146 147 /* to align the pointer to a pointer address */ 148 #define PTR_MASK (~(sizeof(void*)-1)) 149 150 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ 151 #define SIZEOF_PTR_LOG2 3 152 153 /* to find an entry in a page-table */ 154 #define PAGE_PTR(address) \ 155 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) 156 157 /* 158 * On certain platforms whose physical address space can overlap KSEG, 159 * namely EV6 and above, we must re-twiddle the physaddr to restore the 160 * correct high-order bits. 161 * 162 * This is extremely confusing until you realize that this is actually 163 * just working around a userspace bug. The X server was intending to 164 * provide the physical address but instead provided the KSEG address. 165 * Or tried to, except it's not representable. 166 * 167 * On Tsunami there's nothing meaningful at 0x40000000000, so this is 168 * a safe thing to do. Come the first core logic that does put something 169 * in this area -- memory or whathaveyou -- then this hack will have 170 * to go away. So be prepared! 171 */ 172 173 #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG) 174 #error "EV6-only feature in a generic kernel" 175 #endif 176 #if defined(CONFIG_ALPHA_GENERIC) || \ 177 (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG)) 178 #define KSEG_PFN (0xc0000000000UL >> PAGE_SHIFT) 179 #define PHYS_TWIDDLE(pfn) \ 180 ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \ 181 ? ((pfn) ^= KSEG_PFN) : (pfn)) 182 #else 183 #define PHYS_TWIDDLE(pfn) (pfn) 184 #endif 185 186 /* 187 * Conversion functions: convert a page and protection to a page entry, 188 * and a page entry and page directory to the page they refer to. 189 */ 190 #define page_to_pa(page) (page_to_pfn(page) << PAGE_SHIFT) 191 #define PFN_PTE_SHIFT 32 192 #define pte_pfn(pte) (pte_val(pte) >> PFN_PTE_SHIFT) 193 194 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 195 #define mk_pte(page, pgprot) \ 196 ({ \ 197 pte_t pte; \ 198 \ 199 pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot); \ 200 pte; \ 201 }) 202 203 extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot) 204 { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; } 205 206 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 207 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 208 209 extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) 210 { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } 211 212 extern inline void pud_set(pud_t * pudp, pmd_t * pmdp) 213 { pud_val(*pudp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } 214 215 216 extern inline unsigned long 217 pmd_page_vaddr(pmd_t pmd) 218 { 219 return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET; 220 } 221 222 #define pmd_pfn(pmd) (pmd_val(pmd) >> 32) 223 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> 32)) 224 #define pud_page(pud) (pfn_to_page(pud_val(pud) >> 32)) 225 226 extern inline pmd_t *pud_pgtable(pud_t pgd) 227 { 228 return (pmd_t *)(PAGE_OFFSET + ((pud_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT))); 229 } 230 231 extern inline int pte_none(pte_t pte) { return !pte_val(pte); } 232 extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; } 233 extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 234 { 235 pte_val(*ptep) = 0; 236 } 237 238 extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); } 239 extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; } 240 extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; } 241 extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; } 242 243 extern inline int pud_none(pud_t pud) { return !pud_val(pud); } 244 extern inline int pud_bad(pud_t pud) { return (pud_val(pud) & ~_PFN_MASK) != _PAGE_TABLE; } 245 extern inline int pud_present(pud_t pud) { return pud_val(pud) & _PAGE_VALID; } 246 extern inline void pud_clear(pud_t * pudp) { pud_val(*pudp) = 0; } 247 248 /* 249 * The following only work if pte_present() is true. 250 * Undefined behaviour if not.. 251 */ 252 extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); } 253 extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 254 extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 255 256 extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; } 257 extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; } 258 extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; } 259 extern inline pte_t pte_mkwrite_novma(pte_t pte){ pte_val(pte) &= ~_PAGE_FOW; return pte; } 260 extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; } 261 extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; } 262 263 /* 264 * The smp_rmb() in the following functions are required to order the load of 265 * *dir (the pointer in the top level page table) with any subsequent load of 266 * the returned pmd_t *ret (ret is data dependent on *dir). 267 * 268 * If this ordering is not enforced, the CPU might load an older value of 269 * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for 270 * more details. 271 * 272 * Note that we never change the mm->pgd pointer after the task is running, so 273 * pgd_offset does not require such a barrier. 274 */ 275 276 /* Find an entry in the second-level page table.. */ 277 extern inline pmd_t * pmd_offset(pud_t * dir, unsigned long address) 278 { 279 pmd_t *ret = pud_pgtable(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1)); 280 smp_rmb(); /* see above */ 281 return ret; 282 } 283 #define pmd_offset pmd_offset 284 285 /* Find an entry in the third-level page table.. */ 286 extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address) 287 { 288 pte_t *ret = (pte_t *) pmd_page_vaddr(*dir) 289 + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1)); 290 smp_rmb(); /* see above */ 291 return ret; 292 } 293 #define pte_offset_kernel pte_offset_kernel 294 295 extern pgd_t swapper_pg_dir[1024]; 296 297 /* 298 * The Alpha doesn't have any external MMU info: the kernel page 299 * tables contain all the necessary information. 300 */ 301 extern inline void update_mmu_cache(struct vm_area_struct * vma, 302 unsigned long address, pte_t *ptep) 303 { 304 } 305 306 static inline void update_mmu_cache_range(struct vm_fault *vmf, 307 struct vm_area_struct *vma, unsigned long address, 308 pte_t *ptep, unsigned int nr) 309 { 310 } 311 312 /* 313 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 314 * are !pte_none() && !pte_present(). 315 * 316 * Format of swap PTEs: 317 * 318 * 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 319 * 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 320 * <------------------- offset ------------------> E <--- type --> 321 * 322 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 323 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 324 * <--------------------------- zeroes --------------------------> 325 * 326 * E is the exclusive marker that is not stored in swap entries. 327 */ 328 extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 329 { pte_t pte; pte_val(pte) = ((type & 0x7f) << 32) | (offset << 40); return pte; } 330 331 #define __swp_type(x) (((x).val >> 32) & 0x7f) 332 #define __swp_offset(x) ((x).val >> 40) 333 #define __swp_entry(type, off) ((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) }) 334 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 335 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 336 337 static inline int pte_swp_exclusive(pte_t pte) 338 { 339 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 340 } 341 342 static inline pte_t pte_swp_mkexclusive(pte_t pte) 343 { 344 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; 345 return pte; 346 } 347 348 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 349 { 350 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; 351 return pte; 352 } 353 354 #define pte_ERROR(e) \ 355 printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 356 #define pmd_ERROR(e) \ 357 printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 358 #define pgd_ERROR(e) \ 359 printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 360 361 extern void paging_init(void); 362 363 /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT. */ 364 #define HAVE_ARCH_UNMAPPED_AREA 365 366 #endif /* _ALPHA_PGTABLE_H */ 367