xref: /linux/arch/alpha/include/asm/dma.h (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * include/asm-alpha/dma.h
4  *
5  * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
6  * use ISA-compatible dma.  The only extension is support for high-page
7  * registers that allow to set the top 8 bits of a 32-bit DMA address.
8  * This register should be written last when setting up a DMA address
9  * as this will also enable DMA across 64 KB boundaries.
10  */
11 
12 /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
13  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
14  * Written by Hennus Bergman, 1992.
15  * High DMA channel support & info by Hannu Savolainen
16  * and John Boyd, Nov. 1992.
17  */
18 
19 #ifndef _ASM_DMA_H
20 #define _ASM_DMA_H
21 
22 #include <linux/spinlock.h>
23 #include <asm/io.h>
24 
25 #define dma_outb	outb
26 #define dma_inb		inb
27 
28 /*
29  * NOTES about DMA transfers:
30  *
31  *  controller 1: channels 0-3, byte operations, ports 00-1F
32  *  controller 2: channels 4-7, word operations, ports C0-DF
33  *
34  *  - ALL registers are 8 bits only, regardless of transfer size
35  *  - channel 4 is not used - cascades 1 into 2.
36  *  - channels 0-3 are byte - addresses/counts are for physical bytes
37  *  - channels 5-7 are word - addresses/counts are for physical words
38  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
39  *  - transfer count loaded to registers is 1 less than actual count
40  *  - controller 2 offsets are all even (2x offsets for controller 1)
41  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
42  *  - page registers for 0-3 use bit 0, represent 64K pages
43  *
44  * DMA transfers are limited to the lower 16MB of _physical_ memory.
45  * Note that addresses loaded into registers must be _physical_ addresses,
46  * not logical addresses (which may differ if paging is active).
47  *
48  *  Address mapping for channels 0-3:
49  *
50  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
51  *    |  ...  |   |  ... |   |  ... |
52  *    |  ...  |   |  ... |   |  ... |
53  *    |  ...  |   |  ... |   |  ... |
54  *   P7  ...  P0  A7 ... A0  A7 ... A0
55  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
56  *
57  *  Address mapping for channels 5-7:
58  *
59  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
60  *    |  ...  |   \   \   ... \  \  \  ... \  \
61  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
62  *    |  ...  |     \   \   ... \  \  \  ... \
63  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
64  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
65  *
66  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
67  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
68  * the hardware level, so odd-byte transfers aren't possible).
69  *
70  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
71  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
72  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
73  *
74  */
75 
76 #define MAX_DMA_CHANNELS	8
77 
78 /*
79   ISA DMA limitations on Alpha platforms,
80 
81   These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
82   just a wiring limit.
83 */
84 
85 /* The maximum address for ISA DMA transfer on RUFFIAN,
86    due to an hardware SIO limitation, is 16MB.
87 */
88 #define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS	0x01000000UL
89 
90 /* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
91    due to an hardware SIO chip limitation, is 2GB.
92 */
93 #define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS		0x80000000UL
94 #define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS		0x80000000UL
95 
96 /*
97   Maximum address for all the others is the complete 32-bit bus
98   address space.
99 */
100 #define ALPHA_MAX_ISA_DMA_ADDRESS		0x100000000UL
101 
102 #ifdef CONFIG_ALPHA_GENERIC
103 # define MAX_ISA_DMA_ADDRESS		(alpha_mv.max_isa_dma_address)
104 #else
105 # if defined(CONFIG_ALPHA_RUFFIAN)
106 #  define MAX_ISA_DMA_ADDRESS		ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
107 # elif defined(CONFIG_ALPHA_SABLE)
108 #  define MAX_ISA_DMA_ADDRESS		ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
109 # elif defined(CONFIG_ALPHA_ALCOR)
110 #  define MAX_ISA_DMA_ADDRESS		ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
111 # else
112 #  define MAX_ISA_DMA_ADDRESS		ALPHA_MAX_ISA_DMA_ADDRESS
113 # endif
114 #endif
115 
116 /* If we have the iommu, we don't have any address limitations on DMA.
117    Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
118    like i386. */
119 #define MAX_DMA_ADDRESS		(alpha_mv.mv_pci_tbi ?	\
120 				 ~0UL : IDENT_ADDR + 0x01000000)
121 
122 /* 8237 DMA controllers */
123 #define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
124 #define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
125 
126 /* DMA controller registers */
127 #define DMA1_CMD_REG		0x08	/* command register (w) */
128 #define DMA1_STAT_REG		0x08	/* status register (r) */
129 #define DMA1_REQ_REG            0x09    /* request register (w) */
130 #define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
131 #define DMA1_MODE_REG		0x0B	/* mode register (w) */
132 #define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
133 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
134 #define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
135 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
136 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
137 #define DMA1_EXT_MODE_REG	(0x400 | DMA1_MODE_REG)
138 
139 #define DMA2_CMD_REG		0xD0	/* command register (w) */
140 #define DMA2_STAT_REG		0xD0	/* status register (r) */
141 #define DMA2_REQ_REG            0xD2    /* request register (w) */
142 #define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
143 #define DMA2_MODE_REG		0xD6	/* mode register (w) */
144 #define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
145 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
146 #define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
147 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
148 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
149 #define DMA2_EXT_MODE_REG	(0x400 | DMA2_MODE_REG)
150 
151 #define DMA_ADDR_0              0x00    /* DMA address registers */
152 #define DMA_ADDR_1              0x02
153 #define DMA_ADDR_2              0x04
154 #define DMA_ADDR_3              0x06
155 #define DMA_ADDR_4              0xC0
156 #define DMA_ADDR_5              0xC4
157 #define DMA_ADDR_6              0xC8
158 #define DMA_ADDR_7              0xCC
159 
160 #define DMA_CNT_0               0x01    /* DMA count registers */
161 #define DMA_CNT_1               0x03
162 #define DMA_CNT_2               0x05
163 #define DMA_CNT_3               0x07
164 #define DMA_CNT_4               0xC2
165 #define DMA_CNT_5               0xC6
166 #define DMA_CNT_6               0xCA
167 #define DMA_CNT_7               0xCE
168 
169 #define DMA_PAGE_0              0x87    /* DMA page registers */
170 #define DMA_PAGE_1              0x83
171 #define DMA_PAGE_2              0x81
172 #define DMA_PAGE_3              0x82
173 #define DMA_PAGE_5              0x8B
174 #define DMA_PAGE_6              0x89
175 #define DMA_PAGE_7              0x8A
176 
177 #define DMA_HIPAGE_0		(0x400 | DMA_PAGE_0)
178 #define DMA_HIPAGE_1		(0x400 | DMA_PAGE_1)
179 #define DMA_HIPAGE_2		(0x400 | DMA_PAGE_2)
180 #define DMA_HIPAGE_3		(0x400 | DMA_PAGE_3)
181 #define DMA_HIPAGE_4		(0x400 | DMA_PAGE_4)
182 #define DMA_HIPAGE_5		(0x400 | DMA_PAGE_5)
183 #define DMA_HIPAGE_6		(0x400 | DMA_PAGE_6)
184 #define DMA_HIPAGE_7		(0x400 | DMA_PAGE_7)
185 
186 #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
187 #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
188 #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
189 
190 #define DMA_AUTOINIT	0x10
191 
192 extern spinlock_t  dma_spin_lock;
193 
194 static __inline__ unsigned long claim_dma_lock(void)
195 {
196 	unsigned long flags;
197 	spin_lock_irqsave(&dma_spin_lock, flags);
198 	return flags;
199 }
200 
201 static __inline__ void release_dma_lock(unsigned long flags)
202 {
203 	spin_unlock_irqrestore(&dma_spin_lock, flags);
204 }
205 
206 /* enable/disable a specific DMA channel */
207 static __inline__ void enable_dma(unsigned int dmanr)
208 {
209 	if (dmanr<=3)
210 		dma_outb(dmanr,  DMA1_MASK_REG);
211 	else
212 		dma_outb(dmanr & 3,  DMA2_MASK_REG);
213 }
214 
215 static __inline__ void disable_dma(unsigned int dmanr)
216 {
217 	if (dmanr<=3)
218 		dma_outb(dmanr | 4,  DMA1_MASK_REG);
219 	else
220 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
221 }
222 
223 /* Clear the 'DMA Pointer Flip Flop'.
224  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
225  * Use this once to initialize the FF to a known state.
226  * After that, keep track of it. :-)
227  * --- In order to do that, the DMA routines below should ---
228  * --- only be used while interrupts are disabled! ---
229  */
230 static __inline__ void clear_dma_ff(unsigned int dmanr)
231 {
232 	if (dmanr<=3)
233 		dma_outb(0,  DMA1_CLEAR_FF_REG);
234 	else
235 		dma_outb(0,  DMA2_CLEAR_FF_REG);
236 }
237 
238 /* set mode (above) for a specific DMA channel */
239 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
240 {
241 	if (dmanr<=3)
242 		dma_outb(mode | dmanr,  DMA1_MODE_REG);
243 	else
244 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
245 }
246 
247 /* set extended mode for a specific DMA channel */
248 static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
249 {
250 	if (dmanr<=3)
251 		dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
252 	else
253 		dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
254 }
255 
256 /* Set only the page register bits of the transfer address.
257  * This is used for successive transfers when we know the contents of
258  * the lower 16 bits of the DMA current address register.
259  */
260 static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
261 {
262 	switch(dmanr) {
263 		case 0:
264 			dma_outb(pagenr, DMA_PAGE_0);
265 			dma_outb((pagenr >> 8), DMA_HIPAGE_0);
266 			break;
267 		case 1:
268 			dma_outb(pagenr, DMA_PAGE_1);
269 			dma_outb((pagenr >> 8), DMA_HIPAGE_1);
270 			break;
271 		case 2:
272 			dma_outb(pagenr, DMA_PAGE_2);
273 			dma_outb((pagenr >> 8), DMA_HIPAGE_2);
274 			break;
275 		case 3:
276 			dma_outb(pagenr, DMA_PAGE_3);
277 			dma_outb((pagenr >> 8), DMA_HIPAGE_3);
278 			break;
279 		case 5:
280 			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
281 			dma_outb((pagenr >> 8), DMA_HIPAGE_5);
282 			break;
283 		case 6:
284 			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
285 			dma_outb((pagenr >> 8), DMA_HIPAGE_6);
286 			break;
287 		case 7:
288 			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
289 			dma_outb((pagenr >> 8), DMA_HIPAGE_7);
290 			break;
291 	}
292 }
293 
294 
295 /* Set transfer address & page bits for specific DMA channel.
296  * Assumes dma flipflop is clear.
297  */
298 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
299 {
300 	if (dmanr <= 3)  {
301 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
302             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
303 	}  else  {
304 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
305 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
306 	}
307 	set_dma_page(dmanr, a>>16);	/* set hipage last to enable 32-bit mode */
308 }
309 
310 
311 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
312  * a specific DMA channel.
313  * You must ensure the parameters are valid.
314  * NOTE: from a manual: "the number of transfers is one more
315  * than the initial word count"! This is taken into account.
316  * Assumes dma flip-flop is clear.
317  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
318  */
319 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
320 {
321         count--;
322 	if (dmanr <= 3)  {
323 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
324 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
325         } else {
326 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
327 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
328         }
329 }
330 
331 
332 /* Get DMA residue count. After a DMA transfer, this
333  * should return zero. Reading this while a DMA transfer is
334  * still in progress will return unpredictable results.
335  * If called before the channel has been used, it may return 1.
336  * Otherwise, it returns the number of _bytes_ left to transfer.
337  *
338  * Assumes DMA flip-flop is clear.
339  */
340 static __inline__ int get_dma_residue(unsigned int dmanr)
341 {
342 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
343 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
344 
345 	/* using short to get 16-bit wrap around */
346 	unsigned short count;
347 
348 	count = 1 + dma_inb(io_port);
349 	count += dma_inb(io_port) << 8;
350 
351 	return (dmanr<=3)? count : (count<<1);
352 }
353 
354 
355 /* These are in kernel/dma.c: */
356 extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
357 extern void free_dma(unsigned int dmanr);	/* release it again */
358 #define KERNEL_HAVE_CHECK_DMA
359 extern int check_dma(unsigned int dmanr);
360 
361 #endif /* _ASM_DMA_H */
362