1# SPDX-License-Identifier: GPL-2.0 2# 3# General architecture dependent options 4# 5 6# 7# Note: arch/$(SRCARCH)/Kconfig needs to be included first so that it can 8# override the default values in this file. 9# 10source "arch/$(SRCARCH)/Kconfig" 11 12config ARCH_CONFIGURES_CPU_MITIGATIONS 13 bool 14 15if !ARCH_CONFIGURES_CPU_MITIGATIONS 16config CPU_MITIGATIONS 17 def_bool y 18endif 19 20# 21# Selected by architectures that need custom DMA operations for e.g. legacy 22# IOMMUs not handled by dma-iommu. Drivers must never select this symbol. 23# 24config ARCH_HAS_DMA_OPS 25 depends on HAS_DMA 26 select DMA_OPS_HELPERS 27 bool 28 29menu "General architecture-dependent options" 30 31config ARCH_HAS_SUBPAGE_FAULTS 32 bool 33 help 34 Select if the architecture can check permissions at sub-page 35 granularity (e.g. arm64 MTE). The probe_user_*() functions 36 must be implemented. 37 38config HOTPLUG_SMT 39 bool 40 41config SMT_NUM_THREADS_DYNAMIC 42 bool 43 44# Selected by HOTPLUG_CORE_SYNC_DEAD or HOTPLUG_CORE_SYNC_FULL 45config HOTPLUG_CORE_SYNC 46 bool 47 48# Basic CPU dead synchronization selected by architecture 49config HOTPLUG_CORE_SYNC_DEAD 50 bool 51 select HOTPLUG_CORE_SYNC 52 53# Full CPU synchronization with alive state selected by architecture 54config HOTPLUG_CORE_SYNC_FULL 55 bool 56 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 57 select HOTPLUG_CORE_SYNC 58 59config HOTPLUG_SPLIT_STARTUP 60 bool 61 select HOTPLUG_CORE_SYNC_FULL 62 63config HOTPLUG_PARALLEL 64 bool 65 select HOTPLUG_SPLIT_STARTUP 66 67config GENERIC_ENTRY 68 bool 69 70config KPROBES 71 bool "Kprobes" 72 depends on HAVE_KPROBES 73 select KALLSYMS 74 select EXECMEM 75 select NEED_TASKS_RCU 76 help 77 Kprobes allows you to trap at almost any kernel address and 78 execute a callback function. register_kprobe() establishes 79 a probepoint and specifies the callback. Kprobes is useful 80 for kernel debugging, non-intrusive instrumentation and testing. 81 If in doubt, say "N". 82 83config JUMP_LABEL 84 bool "Optimize very unlikely/likely branches" 85 depends on HAVE_ARCH_JUMP_LABEL 86 select OBJTOOL if HAVE_JUMP_LABEL_HACK 87 help 88 This option enables a transparent branch optimization that 89 makes certain almost-always-true or almost-always-false branch 90 conditions even cheaper to execute within the kernel. 91 92 Certain performance-sensitive kernel code, such as trace points, 93 scheduler functionality, networking code and KVM have such 94 branches and include support for this optimization technique. 95 96 If it is detected that the compiler has support for "asm goto", 97 the kernel will compile such branches with just a nop 98 instruction. When the condition flag is toggled to true, the 99 nop will be converted to a jump instruction to execute the 100 conditional block of instructions. 101 102 This technique lowers overhead and stress on the branch prediction 103 of the processor and generally makes the kernel faster. The update 104 of the condition is slower, but those are always very rare. 105 106 ( On 32-bit x86, the necessary options added to the compiler 107 flags may increase the size of the kernel slightly. ) 108 109config STATIC_KEYS_SELFTEST 110 bool "Static key selftest" 111 depends on JUMP_LABEL 112 help 113 Boot time self-test of the branch patching code. 114 115config STATIC_CALL_SELFTEST 116 bool "Static call selftest" 117 depends on HAVE_STATIC_CALL 118 help 119 Boot time self-test of the call patching code. 120 121config OPTPROBES 122 def_bool y 123 depends on KPROBES && HAVE_OPTPROBES 124 select NEED_TASKS_RCU 125 126config KPROBES_ON_FTRACE 127 def_bool y 128 depends on KPROBES && HAVE_KPROBES_ON_FTRACE 129 depends on DYNAMIC_FTRACE_WITH_REGS 130 help 131 If function tracer is enabled and the arch supports full 132 passing of pt_regs to function tracing, then kprobes can 133 optimize on top of function tracing. 134 135config UPROBES 136 def_bool n 137 depends on ARCH_SUPPORTS_UPROBES 138 help 139 Uprobes is the user-space counterpart to kprobes: they 140 enable instrumentation applications (such as 'perf probe') 141 to establish unintrusive probes in user-space binaries and 142 libraries, by executing handler functions when the probes 143 are hit by user-space applications. 144 145 ( These probes come in the form of single-byte breakpoints, 146 managed by the kernel and kept transparent to the probed 147 application. ) 148 149config HAVE_64BIT_ALIGNED_ACCESS 150 def_bool 64BIT && !HAVE_EFFICIENT_UNALIGNED_ACCESS 151 help 152 Some architectures require 64 bit accesses to be 64 bit 153 aligned, which also requires structs containing 64 bit values 154 to be 64 bit aligned too. This includes some 32 bit 155 architectures which can do 64 bit accesses, as well as 64 bit 156 architectures without unaligned access. 157 158 This symbol should be selected by an architecture if 64 bit 159 accesses are required to be 64 bit aligned in this way even 160 though it is not a 64 bit architecture. 161 162 See Documentation/core-api/unaligned-memory-access.rst for 163 more information on the topic of unaligned memory accesses. 164 165config HAVE_EFFICIENT_UNALIGNED_ACCESS 166 bool 167 help 168 Some architectures are unable to perform unaligned accesses 169 without the use of get_unaligned/put_unaligned. Others are 170 unable to perform such accesses efficiently (e.g. trap on 171 unaligned access and require fixing it up in the exception 172 handler.) 173 174 This symbol should be selected by an architecture if it can 175 perform unaligned accesses efficiently to allow different 176 code paths to be selected for these cases. Some network 177 drivers, for example, could opt to not fix up alignment 178 problems with received packets if doing so would not help 179 much. 180 181 See Documentation/core-api/unaligned-memory-access.rst for more 182 information on the topic of unaligned memory accesses. 183 184config ARCH_USE_BUILTIN_BSWAP 185 bool 186 help 187 Modern versions of GCC (since 4.4) have builtin functions 188 for handling byte-swapping. Using these, instead of the old 189 inline assembler that the architecture code provides in the 190 __arch_bswapXX() macros, allows the compiler to see what's 191 happening and offers more opportunity for optimisation. In 192 particular, the compiler will be able to combine the byteswap 193 with a nearby load or store and use load-and-swap or 194 store-and-swap instructions if the architecture has them. It 195 should almost *never* result in code which is worse than the 196 hand-coded assembler in <asm/swab.h>. But just in case it 197 does, the use of the builtins is optional. 198 199 Any architecture with load-and-swap or store-and-swap 200 instructions should set this. And it shouldn't hurt to set it 201 on architectures that don't have such instructions. 202 203config KRETPROBES 204 def_bool y 205 depends on KPROBES && (HAVE_KRETPROBES || HAVE_RETHOOK) 206 207config KRETPROBE_ON_RETHOOK 208 def_bool y 209 depends on HAVE_RETHOOK 210 depends on KRETPROBES 211 select RETHOOK 212 213config USER_RETURN_NOTIFIER 214 bool 215 depends on HAVE_USER_RETURN_NOTIFIER 216 help 217 Provide a kernel-internal notification when a cpu is about to 218 switch to user mode. 219 220config HAVE_IOREMAP_PROT 221 bool 222 223config HAVE_KPROBES 224 bool 225 226config HAVE_KRETPROBES 227 bool 228 229config HAVE_OPTPROBES 230 bool 231 232config HAVE_KPROBES_ON_FTRACE 233 bool 234 235config ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 236 bool 237 help 238 Since kretprobes modifies return address on the stack, the 239 stacktrace may see the kretprobe trampoline address instead 240 of correct one. If the architecture stacktrace code and 241 unwinder can adjust such entries, select this configuration. 242 243config HAVE_FUNCTION_ERROR_INJECTION 244 bool 245 246config HAVE_NMI 247 bool 248 249config HAVE_FUNCTION_DESCRIPTORS 250 bool 251 252config TRACE_IRQFLAGS_SUPPORT 253 bool 254 255config TRACE_IRQFLAGS_NMI_SUPPORT 256 bool 257 258# 259# An arch should select this if it provides all these things: 260# 261# task_pt_regs() in asm/processor.h or asm/ptrace.h 262# arch_has_single_step() if there is hardware single-step support 263# arch_has_block_step() if there is hardware block-step support 264# asm/syscall.h supplying asm-generic/syscall.h interface 265# linux/regset.h user_regset interfaces 266# CORE_DUMP_USE_REGSET #define'd in linux/elf.h 267# TIF_SYSCALL_TRACE calls ptrace_report_syscall_{entry,exit} 268# TIF_NOTIFY_RESUME calls resume_user_mode_work() 269# 270config HAVE_ARCH_TRACEHOOK 271 bool 272 273config HAVE_DMA_CONTIGUOUS 274 bool 275 276config GENERIC_SMP_IDLE_THREAD 277 bool 278 279config GENERIC_IDLE_POLL_SETUP 280 bool 281 282config ARCH_HAS_FORTIFY_SOURCE 283 bool 284 help 285 An architecture should select this when it can successfully 286 build and run with CONFIG_FORTIFY_SOURCE. 287 288# 289# Select if the arch provides a historic keepinit alias for the retain_initrd 290# command line option 291# 292config ARCH_HAS_KEEPINITRD 293 bool 294 295# Select if arch has all set_memory_ro/rw/x/nx() functions in asm/cacheflush.h 296config ARCH_HAS_SET_MEMORY 297 bool 298 299# Select if arch has all set_direct_map_invalid/default() functions 300config ARCH_HAS_SET_DIRECT_MAP 301 bool 302 303# 304# Select if the architecture provides the arch_dma_set_uncached symbol to 305# either provide an uncached segment alias for a DMA allocation, or 306# to remap the page tables in place. 307# 308config ARCH_HAS_DMA_SET_UNCACHED 309 bool 310 311# 312# Select if the architectures provides the arch_dma_clear_uncached symbol 313# to undo an in-place page table remap for uncached access. 314# 315config ARCH_HAS_DMA_CLEAR_UNCACHED 316 bool 317 318config ARCH_HAS_CPU_FINALIZE_INIT 319 bool 320 321# The architecture has a per-task state that includes the mm's PASID 322config ARCH_HAS_CPU_PASID 323 bool 324 select IOMMU_MM_DATA 325 326config HAVE_ARCH_THREAD_STRUCT_WHITELIST 327 bool 328 help 329 An architecture should select this to provide hardened usercopy 330 knowledge about what region of the thread_struct should be 331 whitelisted for copying to userspace. Normally this is only the 332 FPU registers. Specifically, arch_thread_struct_whitelist() 333 should be implemented. Without this, the entire thread_struct 334 field in task_struct will be left whitelisted. 335 336# Select if arch wants to size task_struct dynamically via arch_task_struct_size: 337config ARCH_WANTS_DYNAMIC_TASK_STRUCT 338 bool 339 340config ARCH_WANTS_NO_INSTR 341 bool 342 help 343 An architecture should select this if the noinstr macro is being used on 344 functions to denote that the toolchain should avoid instrumenting such 345 functions and is required for correctness. 346 347config ARCH_32BIT_OFF_T 348 bool 349 depends on !64BIT 350 help 351 All new 32-bit architectures should have 64-bit off_t type on 352 userspace side which corresponds to the loff_t kernel type. This 353 is the requirement for modern ABIs. Some existing architectures 354 still support 32-bit off_t. This option is enabled for all such 355 architectures explicitly. 356 357# Selected by 64 bit architectures which have a 32 bit f_tinode in struct ustat 358config ARCH_32BIT_USTAT_F_TINODE 359 bool 360 361config HAVE_ASM_MODVERSIONS 362 bool 363 help 364 This symbol should be selected by an architecture if it provides 365 <asm/asm-prototypes.h> to support the module versioning for symbols 366 exported from assembly code. 367 368config HAVE_REGS_AND_STACK_ACCESS_API 369 bool 370 help 371 This symbol should be selected by an architecture if it supports 372 the API needed to access registers and stack entries from pt_regs, 373 declared in asm/ptrace.h 374 For example the kprobes-based event tracer needs this API. 375 376config HAVE_RSEQ 377 bool 378 depends on HAVE_REGS_AND_STACK_ACCESS_API 379 help 380 This symbol should be selected by an architecture if it 381 supports an implementation of restartable sequences. 382 383config HAVE_RUST 384 bool 385 help 386 This symbol should be selected by an architecture if it 387 supports Rust. 388 389config HAVE_FUNCTION_ARG_ACCESS_API 390 bool 391 help 392 This symbol should be selected by an architecture if it supports 393 the API needed to access function arguments from pt_regs, 394 declared in asm/ptrace.h 395 396config HAVE_HW_BREAKPOINT 397 bool 398 depends on PERF_EVENTS 399 400config HAVE_MIXED_BREAKPOINTS_REGS 401 bool 402 depends on HAVE_HW_BREAKPOINT 403 help 404 Depending on the arch implementation of hardware breakpoints, 405 some of them have separate registers for data and instruction 406 breakpoints addresses, others have mixed registers to store 407 them but define the access type in a control register. 408 Select this option if your arch implements breakpoints under the 409 latter fashion. 410 411config HAVE_USER_RETURN_NOTIFIER 412 bool 413 414config HAVE_PERF_EVENTS_NMI 415 bool 416 help 417 System hardware can generate an NMI using the perf event 418 subsystem. Also has support for calculating CPU cycle events 419 to determine how many clock cycles in a given period. 420 421config HAVE_HARDLOCKUP_DETECTOR_PERF 422 bool 423 depends on HAVE_PERF_EVENTS_NMI 424 help 425 The arch chooses to use the generic perf-NMI-based hardlockup 426 detector. Must define HAVE_PERF_EVENTS_NMI. 427 428config HAVE_HARDLOCKUP_DETECTOR_ARCH 429 bool 430 help 431 The arch provides its own hardlockup detector implementation instead 432 of the generic ones. 433 434 It uses the same command line parameters, and sysctl interface, 435 as the generic hardlockup detectors. 436 437config HAVE_PERF_REGS 438 bool 439 help 440 Support selective register dumps for perf events. This includes 441 bit-mapping of each registers and a unique architecture id. 442 443config HAVE_PERF_USER_STACK_DUMP 444 bool 445 help 446 Support user stack dumps for perf event samples. This needs 447 access to the user stack pointer which is not unified across 448 architectures. 449 450config HAVE_ARCH_JUMP_LABEL 451 bool 452 453config HAVE_ARCH_JUMP_LABEL_RELATIVE 454 bool 455 456config MMU_GATHER_TABLE_FREE 457 bool 458 459config MMU_GATHER_RCU_TABLE_FREE 460 bool 461 select MMU_GATHER_TABLE_FREE 462 463config MMU_GATHER_PAGE_SIZE 464 bool 465 466config MMU_GATHER_NO_RANGE 467 bool 468 select MMU_GATHER_MERGE_VMAS 469 470config MMU_GATHER_NO_FLUSH_CACHE 471 bool 472 473config MMU_GATHER_MERGE_VMAS 474 bool 475 476config MMU_GATHER_NO_GATHER 477 bool 478 depends on MMU_GATHER_TABLE_FREE 479 480config ARCH_WANT_IRQS_OFF_ACTIVATE_MM 481 bool 482 help 483 Temporary select until all architectures can be converted to have 484 irqs disabled over activate_mm. Architectures that do IPI based TLB 485 shootdowns should enable this. 486 487# Use normal mm refcounting for MMU_LAZY_TLB kernel thread references. 488# MMU_LAZY_TLB_REFCOUNT=n can improve the scalability of context switching 489# to/from kernel threads when the same mm is running on a lot of CPUs (a large 490# multi-threaded application), by reducing contention on the mm refcount. 491# 492# This can be disabled if the architecture ensures no CPUs are using an mm as a 493# "lazy tlb" beyond its final refcount (i.e., by the time __mmdrop frees the mm 494# or its kernel page tables). This could be arranged by arch_exit_mmap(), or 495# final exit(2) TLB flush, for example. 496# 497# To implement this, an arch *must*: 498# Ensure the _lazy_tlb variants of mmgrab/mmdrop are used when manipulating 499# the lazy tlb reference of a kthread's ->active_mm (non-arch code has been 500# converted already). 501config MMU_LAZY_TLB_REFCOUNT 502 def_bool y 503 depends on !MMU_LAZY_TLB_SHOOTDOWN 504 505# This option allows MMU_LAZY_TLB_REFCOUNT=n. It ensures no CPUs are using an 506# mm as a lazy tlb beyond its last reference count, by shooting down these 507# users before the mm is deallocated. __mmdrop() first IPIs all CPUs that may 508# be using the mm as a lazy tlb, so that they may switch themselves to using 509# init_mm for their active mm. mm_cpumask(mm) is used to determine which CPUs 510# may be using mm as a lazy tlb mm. 511# 512# To implement this, an arch *must*: 513# - At the time of the final mmdrop of the mm, ensure mm_cpumask(mm) contains 514# at least all possible CPUs in which the mm is lazy. 515# - It must meet the requirements for MMU_LAZY_TLB_REFCOUNT=n (see above). 516config MMU_LAZY_TLB_SHOOTDOWN 517 bool 518 519config ARCH_HAVE_NMI_SAFE_CMPXCHG 520 bool 521 522config ARCH_HAVE_EXTRA_ELF_NOTES 523 bool 524 help 525 An architecture should select this in order to enable adding an 526 arch-specific ELF note section to core files. It must provide two 527 functions: elf_coredump_extra_notes_size() and 528 elf_coredump_extra_notes_write() which are invoked by the ELF core 529 dumper. 530 531config ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 532 bool 533 534config HAVE_ALIGNED_STRUCT_PAGE 535 bool 536 help 537 This makes sure that struct pages are double word aligned and that 538 e.g. the SLUB allocator can perform double word atomic operations 539 on a struct page for better performance. However selecting this 540 might increase the size of a struct page by a word. 541 542config HAVE_CMPXCHG_LOCAL 543 bool 544 545config HAVE_CMPXCHG_DOUBLE 546 bool 547 548config ARCH_WEAK_RELEASE_ACQUIRE 549 bool 550 551config ARCH_WANT_IPC_PARSE_VERSION 552 bool 553 554config ARCH_WANT_COMPAT_IPC_PARSE_VERSION 555 bool 556 557config ARCH_WANT_OLD_COMPAT_IPC 558 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION 559 bool 560 561config HAVE_ARCH_SECCOMP 562 bool 563 help 564 An arch should select this symbol to support seccomp mode 1 (the fixed 565 syscall policy), and must provide an overrides for __NR_seccomp_sigreturn, 566 and compat syscalls if the asm-generic/seccomp.h defaults need adjustment: 567 - __NR_seccomp_read_32 568 - __NR_seccomp_write_32 569 - __NR_seccomp_exit_32 570 - __NR_seccomp_sigreturn_32 571 572config HAVE_ARCH_SECCOMP_FILTER 573 bool 574 select HAVE_ARCH_SECCOMP 575 help 576 An arch should select this symbol if it provides all of these things: 577 - all the requirements for HAVE_ARCH_SECCOMP 578 - syscall_get_arch() 579 - syscall_get_arguments() 580 - syscall_rollback() 581 - syscall_set_return_value() 582 - SIGSYS siginfo_t support 583 - secure_computing is called from a ptrace_event()-safe context 584 - secure_computing return value is checked and a return value of -1 585 results in the system call being skipped immediately. 586 - seccomp syscall wired up 587 - if !HAVE_SPARSE_SYSCALL_NR, have SECCOMP_ARCH_NATIVE, 588 SECCOMP_ARCH_NATIVE_NR, SECCOMP_ARCH_NATIVE_NAME defined. If 589 COMPAT is supported, have the SECCOMP_ARCH_COMPAT* defines too. 590 591config SECCOMP 592 prompt "Enable seccomp to safely execute untrusted bytecode" 593 def_bool y 594 depends on HAVE_ARCH_SECCOMP 595 help 596 This kernel feature is useful for number crunching applications 597 that may need to handle untrusted bytecode during their 598 execution. By using pipes or other transports made available 599 to the process as file descriptors supporting the read/write 600 syscalls, it's possible to isolate those applications in their 601 own address space using seccomp. Once seccomp is enabled via 602 prctl(PR_SET_SECCOMP) or the seccomp() syscall, it cannot be 603 disabled and the task is only allowed to execute a few safe 604 syscalls defined by each seccomp mode. 605 606 If unsure, say Y. 607 608config SECCOMP_FILTER 609 def_bool y 610 depends on HAVE_ARCH_SECCOMP_FILTER && SECCOMP && NET 611 help 612 Enable tasks to build secure computing environments defined 613 in terms of Berkeley Packet Filter programs which implement 614 task-defined system call filtering polices. 615 616 See Documentation/userspace-api/seccomp_filter.rst for details. 617 618config SECCOMP_CACHE_DEBUG 619 bool "Show seccomp filter cache status in /proc/pid/seccomp_cache" 620 depends on SECCOMP_FILTER && !HAVE_SPARSE_SYSCALL_NR 621 depends on PROC_FS 622 help 623 This enables the /proc/pid/seccomp_cache interface to monitor 624 seccomp cache data. The file format is subject to change. Reading 625 the file requires CAP_SYS_ADMIN. 626 627 This option is for debugging only. Enabling presents the risk that 628 an adversary may be able to infer the seccomp filter logic. 629 630 If unsure, say N. 631 632config HAVE_ARCH_STACKLEAK 633 bool 634 help 635 An architecture should select this if it has the code which 636 fills the used part of the kernel stack with the STACKLEAK_POISON 637 value before returning from system calls. 638 639config HAVE_STACKPROTECTOR 640 bool 641 help 642 An arch should select this symbol if: 643 - it has implemented a stack canary (e.g. __stack_chk_guard) 644 645config STACKPROTECTOR 646 bool "Stack Protector buffer overflow detection" 647 depends on HAVE_STACKPROTECTOR 648 depends on $(cc-option,-fstack-protector) 649 default y 650 help 651 This option turns on the "stack-protector" GCC feature. This 652 feature puts, at the beginning of functions, a canary value on 653 the stack just before the return address, and validates 654 the value just before actually returning. Stack based buffer 655 overflows (that need to overwrite this return address) now also 656 overwrite the canary, which gets detected and the attack is then 657 neutralized via a kernel panic. 658 659 Functions will have the stack-protector canary logic added if they 660 have an 8-byte or larger character array on the stack. 661 662 This feature requires gcc version 4.2 or above, or a distribution 663 gcc with the feature backported ("-fstack-protector"). 664 665 On an x86 "defconfig" build, this feature adds canary checks to 666 about 3% of all kernel functions, which increases kernel code size 667 by about 0.3%. 668 669config STACKPROTECTOR_STRONG 670 bool "Strong Stack Protector" 671 depends on STACKPROTECTOR 672 depends on $(cc-option,-fstack-protector-strong) 673 default y 674 help 675 Functions will have the stack-protector canary logic added in any 676 of the following conditions: 677 678 - local variable's address used as part of the right hand side of an 679 assignment or function argument 680 - local variable is an array (or union containing an array), 681 regardless of array type or length 682 - uses register local variables 683 684 This feature requires gcc version 4.9 or above, or a distribution 685 gcc with the feature backported ("-fstack-protector-strong"). 686 687 On an x86 "defconfig" build, this feature adds canary checks to 688 about 20% of all kernel functions, which increases the kernel code 689 size by about 2%. 690 691config ARCH_SUPPORTS_SHADOW_CALL_STACK 692 bool 693 help 694 An architecture should select this if it supports the compiler's 695 Shadow Call Stack and implements runtime support for shadow stack 696 switching. 697 698config SHADOW_CALL_STACK 699 bool "Shadow Call Stack" 700 depends on ARCH_SUPPORTS_SHADOW_CALL_STACK 701 depends on DYNAMIC_FTRACE_WITH_ARGS || DYNAMIC_FTRACE_WITH_REGS || !FUNCTION_GRAPH_TRACER 702 depends on MMU 703 help 704 This option enables the compiler's Shadow Call Stack, which 705 uses a shadow stack to protect function return addresses from 706 being overwritten by an attacker. More information can be found 707 in the compiler's documentation: 708 709 - Clang: https://clang.llvm.org/docs/ShadowCallStack.html 710 - GCC: https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#Instrumentation-Options 711 712 Note that security guarantees in the kernel differ from the 713 ones documented for user space. The kernel must store addresses 714 of shadow stacks in memory, which means an attacker capable of 715 reading and writing arbitrary memory may be able to locate them 716 and hijack control flow by modifying the stacks. 717 718config DYNAMIC_SCS 719 bool 720 help 721 Set by the arch code if it relies on code patching to insert the 722 shadow call stack push and pop instructions rather than on the 723 compiler. 724 725config LTO 726 bool 727 help 728 Selected if the kernel will be built using the compiler's LTO feature. 729 730config LTO_CLANG 731 bool 732 select LTO 733 help 734 Selected if the kernel will be built using Clang's LTO feature. 735 736config ARCH_SUPPORTS_LTO_CLANG 737 bool 738 help 739 An architecture should select this option if it supports: 740 - compiling with Clang, 741 - compiling inline assembly with Clang's integrated assembler, 742 - and linking with LLD. 743 744config ARCH_SUPPORTS_LTO_CLANG_THIN 745 bool 746 help 747 An architecture should select this option if it can support Clang's 748 ThinLTO mode. 749 750config HAS_LTO_CLANG 751 def_bool y 752 depends on CC_IS_CLANG && LD_IS_LLD && AS_IS_LLVM 753 depends on $(success,$(NM) --help | head -n 1 | grep -qi llvm) 754 depends on $(success,$(AR) --help | head -n 1 | grep -qi llvm) 755 depends on ARCH_SUPPORTS_LTO_CLANG 756 depends on !FTRACE_MCOUNT_USE_RECORDMCOUNT 757 # https://github.com/ClangBuiltLinux/linux/issues/1721 758 depends on (!KASAN || KASAN_HW_TAGS || CLANG_VERSION >= 170000) || !DEBUG_INFO 759 depends on (!KCOV || CLANG_VERSION >= 170000) || !DEBUG_INFO 760 depends on !GCOV_KERNEL 761 help 762 The compiler and Kconfig options support building with Clang's 763 LTO. 764 765choice 766 prompt "Link Time Optimization (LTO)" 767 default LTO_NONE 768 help 769 This option enables Link Time Optimization (LTO), which allows the 770 compiler to optimize binaries globally. 771 772 If unsure, select LTO_NONE. Note that LTO is very resource-intensive 773 so it's disabled by default. 774 775config LTO_NONE 776 bool "None" 777 help 778 Build the kernel normally, without Link Time Optimization (LTO). 779 780config LTO_CLANG_FULL 781 bool "Clang Full LTO (EXPERIMENTAL)" 782 depends on HAS_LTO_CLANG 783 depends on !COMPILE_TEST 784 select LTO_CLANG 785 help 786 This option enables Clang's full Link Time Optimization (LTO), which 787 allows the compiler to optimize the kernel globally. If you enable 788 this option, the compiler generates LLVM bitcode instead of ELF 789 object files, and the actual compilation from bitcode happens at 790 the LTO link step, which may take several minutes depending on the 791 kernel configuration. More information can be found from LLVM's 792 documentation: 793 794 https://llvm.org/docs/LinkTimeOptimization.html 795 796 During link time, this option can use a large amount of RAM, and 797 may take much longer than the ThinLTO option. 798 799config LTO_CLANG_THIN 800 bool "Clang ThinLTO (EXPERIMENTAL)" 801 depends on HAS_LTO_CLANG && ARCH_SUPPORTS_LTO_CLANG_THIN 802 select LTO_CLANG 803 help 804 This option enables Clang's ThinLTO, which allows for parallel 805 optimization and faster incremental compiles compared to the 806 CONFIG_LTO_CLANG_FULL option. More information can be found 807 from Clang's documentation: 808 809 https://clang.llvm.org/docs/ThinLTO.html 810 811 If unsure, say Y. 812endchoice 813 814config ARCH_SUPPORTS_AUTOFDO_CLANG 815 bool 816 817config AUTOFDO_CLANG 818 bool "Enable Clang's AutoFDO build (EXPERIMENTAL)" 819 depends on ARCH_SUPPORTS_AUTOFDO_CLANG 820 depends on CC_IS_CLANG && CLANG_VERSION >= 170000 821 help 822 This option enables Clang’s AutoFDO build. When 823 an AutoFDO profile is specified in variable 824 CLANG_AUTOFDO_PROFILE during the build process, 825 Clang uses the profile to optimize the kernel. 826 827 If no profile is specified, AutoFDO options are 828 still passed to Clang to facilitate the collection 829 of perf data for creating an AutoFDO profile in 830 subsequent builds. 831 832 If unsure, say N. 833 834config ARCH_SUPPORTS_PROPELLER_CLANG 835 bool 836 837config PROPELLER_CLANG 838 bool "Enable Clang's Propeller build" 839 depends on ARCH_SUPPORTS_PROPELLER_CLANG 840 depends on CC_IS_CLANG && CLANG_VERSION >= 190000 841 help 842 This option enables Clang’s Propeller build. When the Propeller 843 profiles is specified in variable CLANG_PROPELLER_PROFILE_PREFIX 844 during the build process, Clang uses the profiles to optimize 845 the kernel. 846 847 If no profile is specified, Propeller options are still passed 848 to Clang to facilitate the collection of perf data for creating 849 the Propeller profiles in subsequent builds. 850 851 If unsure, say N. 852 853config ARCH_SUPPORTS_CFI_CLANG 854 bool 855 help 856 An architecture should select this option if it can support Clang's 857 Control-Flow Integrity (CFI) checking. 858 859config ARCH_USES_CFI_TRAPS 860 bool 861 862config CFI_CLANG 863 bool "Use Clang's Control Flow Integrity (CFI)" 864 depends on ARCH_SUPPORTS_CFI_CLANG 865 depends on $(cc-option,-fsanitize=kcfi) 866 help 867 This option enables Clang's forward-edge Control Flow Integrity 868 (CFI) checking, where the compiler injects a runtime check to each 869 indirect function call to ensure the target is a valid function with 870 the correct static type. This restricts possible call targets and 871 makes it more difficult for an attacker to exploit bugs that allow 872 the modification of stored function pointers. More information can be 873 found from Clang's documentation: 874 875 https://clang.llvm.org/docs/ControlFlowIntegrity.html 876 877config CFI_ICALL_NORMALIZE_INTEGERS 878 bool "Normalize CFI tags for integers" 879 depends on CFI_CLANG 880 depends on HAVE_CFI_ICALL_NORMALIZE_INTEGERS_CLANG 881 help 882 This option normalizes the CFI tags for integer types so that all 883 integer types of the same size and signedness receive the same CFI 884 tag. 885 886 The option is separate from CONFIG_RUST because it affects the ABI. 887 When working with build systems that care about the ABI, it is 888 convenient to be able to turn on this flag first, before Rust is 889 turned on. 890 891 This option is necessary for using CFI with Rust. If unsure, say N. 892 893config HAVE_CFI_ICALL_NORMALIZE_INTEGERS_CLANG 894 def_bool y 895 depends on $(cc-option,-fsanitize=kcfi -fsanitize-cfi-icall-experimental-normalize-integers) 896 # With GCOV/KASAN we need this fix: https://github.com/llvm/llvm-project/pull/104826 897 depends on CLANG_VERSION >= 190103 || (!GCOV_KERNEL && !KASAN_GENERIC && !KASAN_SW_TAGS) 898 899config HAVE_CFI_ICALL_NORMALIZE_INTEGERS_RUSTC 900 def_bool y 901 depends on HAVE_CFI_ICALL_NORMALIZE_INTEGERS_CLANG 902 depends on RUSTC_VERSION >= 107900 903 # With GCOV/KASAN we need this fix: https://github.com/rust-lang/rust/pull/129373 904 depends on (RUSTC_LLVM_VERSION >= 190103 && RUSTC_VERSION >= 108200) || \ 905 (!GCOV_KERNEL && !KASAN_GENERIC && !KASAN_SW_TAGS) 906 907config CFI_PERMISSIVE 908 bool "Use CFI in permissive mode" 909 depends on CFI_CLANG 910 help 911 When selected, Control Flow Integrity (CFI) violations result in a 912 warning instead of a kernel panic. This option should only be used 913 for finding indirect call type mismatches during development. 914 915 If unsure, say N. 916 917config HAVE_ARCH_WITHIN_STACK_FRAMES 918 bool 919 help 920 An architecture should select this if it can walk the kernel stack 921 frames to determine if an object is part of either the arguments 922 or local variables (i.e. that it excludes saved return addresses, 923 and similar) by implementing an inline arch_within_stack_frames(), 924 which is used by CONFIG_HARDENED_USERCOPY. 925 926config HAVE_CONTEXT_TRACKING_USER 927 bool 928 help 929 Provide kernel/user boundaries probes necessary for subsystems 930 that need it, such as userspace RCU extended quiescent state. 931 Syscalls need to be wrapped inside user_exit()-user_enter(), either 932 optimized behind static key or through the slow path using TIF_NOHZ 933 flag. Exceptions handlers must be wrapped as well. Irqs are already 934 protected inside ct_irq_enter/ct_irq_exit() but preemption or signal 935 handling on irq exit still need to be protected. 936 937config HAVE_CONTEXT_TRACKING_USER_OFFSTACK 938 bool 939 help 940 Architecture neither relies on exception_enter()/exception_exit() 941 nor on schedule_user(). Also preempt_schedule_notrace() and 942 preempt_schedule_irq() can't be called in a preemptible section 943 while context tracking is CT_STATE_USER. This feature reflects a sane 944 entry implementation where the following requirements are met on 945 critical entry code, ie: before user_exit() or after user_enter(): 946 947 - Critical entry code isn't preemptible (or better yet: 948 not interruptible). 949 - No use of RCU read side critical sections, unless ct_nmi_enter() 950 got called. 951 - No use of instrumentation, unless instrumentation_begin() got 952 called. 953 954config HAVE_TIF_NOHZ 955 bool 956 help 957 Arch relies on TIF_NOHZ and syscall slow path to implement context 958 tracking calls to user_enter()/user_exit(). 959 960config HAVE_VIRT_CPU_ACCOUNTING 961 bool 962 963config HAVE_VIRT_CPU_ACCOUNTING_IDLE 964 bool 965 help 966 Architecture has its own way to account idle CPU time and therefore 967 doesn't implement vtime_account_idle(). 968 969config ARCH_HAS_SCALED_CPUTIME 970 bool 971 972config HAVE_VIRT_CPU_ACCOUNTING_GEN 973 bool 974 default y if 64BIT 975 help 976 With VIRT_CPU_ACCOUNTING_GEN, cputime_t becomes 64-bit. 977 Before enabling this option, arch code must be audited 978 to ensure there are no races in concurrent read/write of 979 cputime_t. For example, reading/writing 64-bit cputime_t on 980 some 32-bit arches may require multiple accesses, so proper 981 locking is needed to protect against concurrent accesses. 982 983config HAVE_IRQ_TIME_ACCOUNTING 984 bool 985 help 986 Archs need to ensure they use a high enough resolution clock to 987 support irq time accounting and then call enable_sched_clock_irqtime(). 988 989config HAVE_MOVE_PUD 990 bool 991 help 992 Architectures that select this are able to move page tables at the 993 PUD level. If there are only 3 page table levels, the move effectively 994 happens at the PGD level. 995 996config HAVE_MOVE_PMD 997 bool 998 help 999 Archs that select this are able to move page tables at the PMD level. 1000 1001config HAVE_ARCH_TRANSPARENT_HUGEPAGE 1002 bool 1003 1004config HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1005 bool 1006 1007config HAVE_ARCH_HUGE_VMAP 1008 bool 1009 1010# 1011# Archs that select this would be capable of PMD-sized vmaps (i.e., 1012# arch_vmap_pmd_supported() returns true). The VM_ALLOW_HUGE_VMAP flag 1013# must be used to enable allocations to use hugepages. 1014# 1015config HAVE_ARCH_HUGE_VMALLOC 1016 depends on HAVE_ARCH_HUGE_VMAP 1017 bool 1018 1019config ARCH_WANT_HUGE_PMD_SHARE 1020 bool 1021 1022# Archs that want to use pmd_mkwrite on kernel memory need it defined even 1023# if there are no userspace memory management features that use it 1024config ARCH_WANT_KERNEL_PMD_MKWRITE 1025 bool 1026 1027config ARCH_WANT_PMD_MKWRITE 1028 def_bool TRANSPARENT_HUGEPAGE || ARCH_WANT_KERNEL_PMD_MKWRITE 1029 1030config HAVE_ARCH_SOFT_DIRTY 1031 bool 1032 1033config HAVE_MOD_ARCH_SPECIFIC 1034 bool 1035 help 1036 The arch uses struct mod_arch_specific to store data. Many arches 1037 just need a simple module loader without arch specific data - those 1038 should not enable this. 1039 1040config MODULES_USE_ELF_RELA 1041 bool 1042 help 1043 Modules only use ELF RELA relocations. Modules with ELF REL 1044 relocations will give an error. 1045 1046config MODULES_USE_ELF_REL 1047 bool 1048 help 1049 Modules only use ELF REL relocations. Modules with ELF RELA 1050 relocations will give an error. 1051 1052config ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1053 bool 1054 help 1055 For architectures like powerpc/32 which have constraints on module 1056 allocation and need to allocate module data outside of module area. 1057 1058config ARCH_WANTS_EXECMEM_LATE 1059 bool 1060 help 1061 For architectures that do not allocate executable memory early on 1062 boot, but rather require its initialization late when there is 1063 enough entropy for module space randomization, for instance 1064 arm64. 1065 1066config HAVE_IRQ_EXIT_ON_IRQ_STACK 1067 bool 1068 help 1069 Architecture doesn't only execute the irq handler on the irq stack 1070 but also irq_exit(). This way we can process softirqs on this irq 1071 stack instead of switching to a new one when we call __do_softirq() 1072 in the end of an hardirq. 1073 This spares a stack switch and improves cache usage on softirq 1074 processing. 1075 1076config HAVE_SOFTIRQ_ON_OWN_STACK 1077 bool 1078 help 1079 Architecture provides a function to run __do_softirq() on a 1080 separate stack. 1081 1082config SOFTIRQ_ON_OWN_STACK 1083 def_bool HAVE_SOFTIRQ_ON_OWN_STACK && !PREEMPT_RT 1084 1085config ALTERNATE_USER_ADDRESS_SPACE 1086 bool 1087 help 1088 Architectures set this when the CPU uses separate address 1089 spaces for kernel and user space pointers. In this case, the 1090 access_ok() check on a __user pointer is skipped. 1091 1092config PGTABLE_LEVELS 1093 int 1094 default 2 1095 1096config ARCH_HAS_ELF_RANDOMIZE 1097 bool 1098 help 1099 An architecture supports choosing randomized locations for 1100 stack, mmap, brk, and ET_DYN. Defined functions: 1101 - arch_mmap_rnd() 1102 - arch_randomize_brk() 1103 1104config HAVE_ARCH_MMAP_RND_BITS 1105 bool 1106 help 1107 An arch should select this symbol if it supports setting a variable 1108 number of bits for use in establishing the base address for mmap 1109 allocations, has MMU enabled and provides values for both: 1110 - ARCH_MMAP_RND_BITS_MIN 1111 - ARCH_MMAP_RND_BITS_MAX 1112 1113config HAVE_EXIT_THREAD 1114 bool 1115 help 1116 An architecture implements exit_thread. 1117 1118config ARCH_MMAP_RND_BITS_MIN 1119 int 1120 1121config ARCH_MMAP_RND_BITS_MAX 1122 int 1123 1124config ARCH_MMAP_RND_BITS_DEFAULT 1125 int 1126 1127config ARCH_MMAP_RND_BITS 1128 int "Number of bits to use for ASLR of mmap base address" if EXPERT 1129 range ARCH_MMAP_RND_BITS_MIN ARCH_MMAP_RND_BITS_MAX 1130 default ARCH_MMAP_RND_BITS_DEFAULT if ARCH_MMAP_RND_BITS_DEFAULT 1131 default ARCH_MMAP_RND_BITS_MIN 1132 depends on HAVE_ARCH_MMAP_RND_BITS 1133 help 1134 This value can be used to select the number of bits to use to 1135 determine the random offset to the base address of vma regions 1136 resulting from mmap allocations. This value will be bounded 1137 by the architecture's minimum and maximum supported values. 1138 1139 This value can be changed after boot using the 1140 /proc/sys/vm/mmap_rnd_bits tunable 1141 1142config HAVE_ARCH_MMAP_RND_COMPAT_BITS 1143 bool 1144 help 1145 An arch should select this symbol if it supports running applications 1146 in compatibility mode, supports setting a variable number of bits for 1147 use in establishing the base address for mmap allocations, has MMU 1148 enabled and provides values for both: 1149 - ARCH_MMAP_RND_COMPAT_BITS_MIN 1150 - ARCH_MMAP_RND_COMPAT_BITS_MAX 1151 1152config ARCH_MMAP_RND_COMPAT_BITS_MIN 1153 int 1154 1155config ARCH_MMAP_RND_COMPAT_BITS_MAX 1156 int 1157 1158config ARCH_MMAP_RND_COMPAT_BITS_DEFAULT 1159 int 1160 1161config ARCH_MMAP_RND_COMPAT_BITS 1162 int "Number of bits to use for ASLR of mmap base address for compatible applications" if EXPERT 1163 range ARCH_MMAP_RND_COMPAT_BITS_MIN ARCH_MMAP_RND_COMPAT_BITS_MAX 1164 default ARCH_MMAP_RND_COMPAT_BITS_DEFAULT if ARCH_MMAP_RND_COMPAT_BITS_DEFAULT 1165 default ARCH_MMAP_RND_COMPAT_BITS_MIN 1166 depends on HAVE_ARCH_MMAP_RND_COMPAT_BITS 1167 help 1168 This value can be used to select the number of bits to use to 1169 determine the random offset to the base address of vma regions 1170 resulting from mmap allocations for compatible applications This 1171 value will be bounded by the architecture's minimum and maximum 1172 supported values. 1173 1174 This value can be changed after boot using the 1175 /proc/sys/vm/mmap_rnd_compat_bits tunable 1176 1177config HAVE_ARCH_COMPAT_MMAP_BASES 1178 bool 1179 help 1180 This allows 64bit applications to invoke 32-bit mmap() syscall 1181 and vice-versa 32-bit applications to call 64-bit mmap(). 1182 Required for applications doing different bitness syscalls. 1183 1184config HAVE_PAGE_SIZE_4KB 1185 bool 1186 1187config HAVE_PAGE_SIZE_8KB 1188 bool 1189 1190config HAVE_PAGE_SIZE_16KB 1191 bool 1192 1193config HAVE_PAGE_SIZE_32KB 1194 bool 1195 1196config HAVE_PAGE_SIZE_64KB 1197 bool 1198 1199config HAVE_PAGE_SIZE_256KB 1200 bool 1201 1202choice 1203 prompt "MMU page size" 1204 1205config PAGE_SIZE_4KB 1206 bool "4KiB pages" 1207 depends on HAVE_PAGE_SIZE_4KB 1208 help 1209 This option select the standard 4KiB Linux page size and the only 1210 available option on many architectures. Using 4KiB page size will 1211 minimize memory consumption and is therefore recommended for low 1212 memory systems. 1213 Some software that is written for x86 systems makes incorrect 1214 assumptions about the page size and only runs on 4KiB pages. 1215 1216config PAGE_SIZE_8KB 1217 bool "8KiB pages" 1218 depends on HAVE_PAGE_SIZE_8KB 1219 help 1220 This option is the only supported page size on a few older 1221 processors, and can be slightly faster than 4KiB pages. 1222 1223config PAGE_SIZE_16KB 1224 bool "16KiB pages" 1225 depends on HAVE_PAGE_SIZE_16KB 1226 help 1227 This option is usually a good compromise between memory 1228 consumption and performance for typical desktop and server 1229 workloads, often saving a level of page table lookups compared 1230 to 4KB pages as well as reducing TLB pressure and overhead of 1231 per-page operations in the kernel at the expense of a larger 1232 page cache. 1233 1234config PAGE_SIZE_32KB 1235 bool "32KiB pages" 1236 depends on HAVE_PAGE_SIZE_32KB 1237 help 1238 Using 32KiB page size will result in slightly higher performance 1239 kernel at the price of higher memory consumption compared to 1240 16KiB pages. This option is available only on cnMIPS cores. 1241 Note that you will need a suitable Linux distribution to 1242 support this. 1243 1244config PAGE_SIZE_64KB 1245 bool "64KiB pages" 1246 depends on HAVE_PAGE_SIZE_64KB 1247 help 1248 Using 64KiB page size will result in slightly higher performance 1249 kernel at the price of much higher memory consumption compared to 1250 4KiB or 16KiB pages. 1251 This is not suitable for general-purpose workloads but the 1252 better performance may be worth the cost for certain types of 1253 supercomputing or database applications that work mostly with 1254 large in-memory data rather than small files. 1255 1256config PAGE_SIZE_256KB 1257 bool "256KiB pages" 1258 depends on HAVE_PAGE_SIZE_256KB 1259 help 1260 256KiB pages have little practical value due to their extreme 1261 memory usage. The kernel will only be able to run applications 1262 that have been compiled with '-zmax-page-size' set to 256KiB 1263 (the default is 64KiB or 4KiB on most architectures). 1264 1265endchoice 1266 1267config PAGE_SIZE_LESS_THAN_64KB 1268 def_bool y 1269 depends on !PAGE_SIZE_64KB 1270 depends on PAGE_SIZE_LESS_THAN_256KB 1271 1272config PAGE_SIZE_LESS_THAN_256KB 1273 def_bool y 1274 depends on !PAGE_SIZE_256KB 1275 1276config PAGE_SHIFT 1277 int 1278 default 12 if PAGE_SIZE_4KB 1279 default 13 if PAGE_SIZE_8KB 1280 default 14 if PAGE_SIZE_16KB 1281 default 15 if PAGE_SIZE_32KB 1282 default 16 if PAGE_SIZE_64KB 1283 default 18 if PAGE_SIZE_256KB 1284 1285# This allows to use a set of generic functions to determine mmap base 1286# address by giving priority to top-down scheme only if the process 1287# is not in legacy mode (compat task, unlimited stack size or 1288# sysctl_legacy_va_layout). 1289# Architecture that selects this option can provide its own version of: 1290# - STACK_RND_MASK 1291config ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 1292 bool 1293 depends on MMU 1294 select ARCH_HAS_ELF_RANDOMIZE 1295 1296config HAVE_OBJTOOL 1297 bool 1298 1299config HAVE_JUMP_LABEL_HACK 1300 bool 1301 1302config HAVE_NOINSTR_HACK 1303 bool 1304 1305config HAVE_NOINSTR_VALIDATION 1306 bool 1307 1308config HAVE_UACCESS_VALIDATION 1309 bool 1310 select OBJTOOL 1311 1312config HAVE_STACK_VALIDATION 1313 bool 1314 help 1315 Architecture supports objtool compile-time frame pointer rule 1316 validation. 1317 1318config HAVE_RELIABLE_STACKTRACE 1319 bool 1320 help 1321 Architecture has either save_stack_trace_tsk_reliable() or 1322 arch_stack_walk_reliable() function which only returns a stack trace 1323 if it can guarantee the trace is reliable. 1324 1325config HAVE_ARCH_HASH 1326 bool 1327 default n 1328 help 1329 If this is set, the architecture provides an <asm/hash.h> 1330 file which provides platform-specific implementations of some 1331 functions in <linux/hash.h> or fs/namei.c. 1332 1333config HAVE_ARCH_NVRAM_OPS 1334 bool 1335 1336config ISA_BUS_API 1337 def_bool ISA 1338 1339# 1340# ABI hall of shame 1341# 1342config CLONE_BACKWARDS 1343 bool 1344 help 1345 Architecture has tls passed as the 4th argument of clone(2), 1346 not the 5th one. 1347 1348config CLONE_BACKWARDS2 1349 bool 1350 help 1351 Architecture has the first two arguments of clone(2) swapped. 1352 1353config CLONE_BACKWARDS3 1354 bool 1355 help 1356 Architecture has tls passed as the 3rd argument of clone(2), 1357 not the 5th one. 1358 1359config ODD_RT_SIGACTION 1360 bool 1361 help 1362 Architecture has unusual rt_sigaction(2) arguments 1363 1364config OLD_SIGSUSPEND 1365 bool 1366 help 1367 Architecture has old sigsuspend(2) syscall, of one-argument variety 1368 1369config OLD_SIGSUSPEND3 1370 bool 1371 help 1372 Even weirder antique ABI - three-argument sigsuspend(2) 1373 1374config OLD_SIGACTION 1375 bool 1376 help 1377 Architecture has old sigaction(2) syscall. Nope, not the same 1378 as OLD_SIGSUSPEND | OLD_SIGSUSPEND3 - alpha has sigsuspend(2), 1379 but fairly different variant of sigaction(2), thanks to OSF/1 1380 compatibility... 1381 1382config COMPAT_OLD_SIGACTION 1383 bool 1384 1385config COMPAT_32BIT_TIME 1386 bool "Provide system calls for 32-bit time_t" 1387 default !64BIT || COMPAT 1388 help 1389 This enables 32 bit time_t support in addition to 64 bit time_t support. 1390 This is relevant on all 32-bit architectures, and 64-bit architectures 1391 as part of compat syscall handling. 1392 1393config ARCH_NO_PREEMPT 1394 bool 1395 1396config ARCH_SUPPORTS_RT 1397 bool 1398 1399config CPU_NO_EFFICIENT_FFS 1400 def_bool n 1401 1402config HAVE_ARCH_VMAP_STACK 1403 def_bool n 1404 help 1405 An arch should select this symbol if it can support kernel stacks 1406 in vmalloc space. This means: 1407 1408 - vmalloc space must be large enough to hold many kernel stacks. 1409 This may rule out many 32-bit architectures. 1410 1411 - Stacks in vmalloc space need to work reliably. For example, if 1412 vmap page tables are created on demand, either this mechanism 1413 needs to work while the stack points to a virtual address with 1414 unpopulated page tables or arch code (switch_to() and switch_mm(), 1415 most likely) needs to ensure that the stack's page table entries 1416 are populated before running on a possibly unpopulated stack. 1417 1418 - If the stack overflows into a guard page, something reasonable 1419 should happen. The definition of "reasonable" is flexible, but 1420 instantly rebooting without logging anything would be unfriendly. 1421 1422config VMAP_STACK 1423 default y 1424 bool "Use a virtually-mapped stack" 1425 depends on HAVE_ARCH_VMAP_STACK 1426 depends on !KASAN || KASAN_HW_TAGS || KASAN_VMALLOC 1427 help 1428 Enable this if you want the use virtually-mapped kernel stacks 1429 with guard pages. This causes kernel stack overflows to be 1430 caught immediately rather than causing difficult-to-diagnose 1431 corruption. 1432 1433 To use this with software KASAN modes, the architecture must support 1434 backing virtual mappings with real shadow memory, and KASAN_VMALLOC 1435 must be enabled. 1436 1437config HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 1438 def_bool n 1439 help 1440 An arch should select this symbol if it can support kernel stack 1441 offset randomization with calls to add_random_kstack_offset() 1442 during syscall entry and choose_random_kstack_offset() during 1443 syscall exit. Careful removal of -fstack-protector-strong and 1444 -fstack-protector should also be applied to the entry code and 1445 closely examined, as the artificial stack bump looks like an array 1446 to the compiler, so it will attempt to add canary checks regardless 1447 of the static branch state. 1448 1449config RANDOMIZE_KSTACK_OFFSET 1450 bool "Support for randomizing kernel stack offset on syscall entry" if EXPERT 1451 default y 1452 depends on HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 1453 depends on INIT_STACK_NONE || !CC_IS_CLANG || CLANG_VERSION >= 140000 1454 help 1455 The kernel stack offset can be randomized (after pt_regs) by 1456 roughly 5 bits of entropy, frustrating memory corruption 1457 attacks that depend on stack address determinism or 1458 cross-syscall address exposures. 1459 1460 The feature is controlled via the "randomize_kstack_offset=on/off" 1461 kernel boot param, and if turned off has zero overhead due to its use 1462 of static branches (see JUMP_LABEL). 1463 1464 If unsure, say Y. 1465 1466config RANDOMIZE_KSTACK_OFFSET_DEFAULT 1467 bool "Default state of kernel stack offset randomization" 1468 depends on RANDOMIZE_KSTACK_OFFSET 1469 help 1470 Kernel stack offset randomization is controlled by kernel boot param 1471 "randomize_kstack_offset=on/off", and this config chooses the default 1472 boot state. 1473 1474config ARCH_OPTIONAL_KERNEL_RWX 1475 def_bool n 1476 1477config ARCH_OPTIONAL_KERNEL_RWX_DEFAULT 1478 def_bool n 1479 1480config ARCH_HAS_STRICT_KERNEL_RWX 1481 def_bool n 1482 1483config STRICT_KERNEL_RWX 1484 bool "Make kernel text and rodata read-only" if ARCH_OPTIONAL_KERNEL_RWX 1485 depends on ARCH_HAS_STRICT_KERNEL_RWX 1486 default !ARCH_OPTIONAL_KERNEL_RWX || ARCH_OPTIONAL_KERNEL_RWX_DEFAULT 1487 help 1488 If this is set, kernel text and rodata memory will be made read-only, 1489 and non-text memory will be made non-executable. This provides 1490 protection against certain security exploits (e.g. executing the heap 1491 or modifying text) 1492 1493 These features are considered standard security practice these days. 1494 You should say Y here in almost all cases. 1495 1496config ARCH_HAS_STRICT_MODULE_RWX 1497 def_bool n 1498 1499config STRICT_MODULE_RWX 1500 bool "Set loadable kernel module data as NX and text as RO" if ARCH_OPTIONAL_KERNEL_RWX 1501 depends on ARCH_HAS_STRICT_MODULE_RWX && MODULES 1502 default !ARCH_OPTIONAL_KERNEL_RWX || ARCH_OPTIONAL_KERNEL_RWX_DEFAULT 1503 help 1504 If this is set, module text and rodata memory will be made read-only, 1505 and non-text memory will be made non-executable. This provides 1506 protection against certain security exploits (e.g. writing to text) 1507 1508# select if the architecture provides an asm/dma-direct.h header 1509config ARCH_HAS_PHYS_TO_DMA 1510 bool 1511 1512config HAVE_ARCH_COMPILER_H 1513 bool 1514 help 1515 An architecture can select this if it provides an 1516 asm/compiler.h header that should be included after 1517 linux/compiler-*.h in order to override macro definitions that those 1518 headers generally provide. 1519 1520config HAVE_ARCH_PREL32_RELOCATIONS 1521 bool 1522 help 1523 May be selected by an architecture if it supports place-relative 1524 32-bit relocations, both in the toolchain and in the module loader, 1525 in which case relative references can be used in special sections 1526 for PCI fixup, initcalls etc which are only half the size on 64 bit 1527 architectures, and don't require runtime relocation on relocatable 1528 kernels. 1529 1530config ARCH_USE_MEMREMAP_PROT 1531 bool 1532 1533config LOCK_EVENT_COUNTS 1534 bool "Locking event counts collection" 1535 depends on DEBUG_FS 1536 help 1537 Enable light-weight counting of various locking related events 1538 in the system with minimal performance impact. This reduces 1539 the chance of application behavior change because of timing 1540 differences. The counts are reported via debugfs. 1541 1542# Select if the architecture has support for applying RELR relocations. 1543config ARCH_HAS_RELR 1544 bool 1545 1546config RELR 1547 bool "Use RELR relocation packing" 1548 depends on ARCH_HAS_RELR && TOOLS_SUPPORT_RELR 1549 default y 1550 help 1551 Store the kernel's dynamic relocations in the RELR relocation packing 1552 format. Requires a compatible linker (LLD supports this feature), as 1553 well as compatible NM and OBJCOPY utilities (llvm-nm and llvm-objcopy 1554 are compatible). 1555 1556config ARCH_HAS_MEM_ENCRYPT 1557 bool 1558 1559config ARCH_HAS_CC_PLATFORM 1560 bool 1561 1562config HAVE_SPARSE_SYSCALL_NR 1563 bool 1564 help 1565 An architecture should select this if its syscall numbering is sparse 1566 to save space. For example, MIPS architecture has a syscall array with 1567 entries at 4000, 5000 and 6000 locations. This option turns on syscall 1568 related optimizations for a given architecture. 1569 1570config ARCH_HAS_VDSO_DATA 1571 bool 1572 1573config HAVE_STATIC_CALL 1574 bool 1575 1576config HAVE_STATIC_CALL_INLINE 1577 bool 1578 depends on HAVE_STATIC_CALL 1579 select OBJTOOL 1580 1581config HAVE_PREEMPT_DYNAMIC 1582 bool 1583 1584config HAVE_PREEMPT_DYNAMIC_CALL 1585 bool 1586 depends on HAVE_STATIC_CALL 1587 select HAVE_PREEMPT_DYNAMIC 1588 help 1589 An architecture should select this if it can handle the preemption 1590 model being selected at boot time using static calls. 1591 1592 Where an architecture selects HAVE_STATIC_CALL_INLINE, any call to a 1593 preemption function will be patched directly. 1594 1595 Where an architecture does not select HAVE_STATIC_CALL_INLINE, any 1596 call to a preemption function will go through a trampoline, and the 1597 trampoline will be patched. 1598 1599 It is strongly advised to support inline static call to avoid any 1600 overhead. 1601 1602config HAVE_PREEMPT_DYNAMIC_KEY 1603 bool 1604 depends on HAVE_ARCH_JUMP_LABEL 1605 select HAVE_PREEMPT_DYNAMIC 1606 help 1607 An architecture should select this if it can handle the preemption 1608 model being selected at boot time using static keys. 1609 1610 Each preemption function will be given an early return based on a 1611 static key. This should have slightly lower overhead than non-inline 1612 static calls, as this effectively inlines each trampoline into the 1613 start of its callee. This may avoid redundant work, and may 1614 integrate better with CFI schemes. 1615 1616 This will have greater overhead than using inline static calls as 1617 the call to the preemption function cannot be entirely elided. 1618 1619config ARCH_WANT_LD_ORPHAN_WARN 1620 bool 1621 help 1622 An arch should select this symbol once all linker sections are explicitly 1623 included, size-asserted, or discarded in the linker scripts. This is 1624 important because we never want expected sections to be placed heuristically 1625 by the linker, since the locations of such sections can change between linker 1626 versions. 1627 1628config HAVE_ARCH_PFN_VALID 1629 bool 1630 1631config ARCH_SUPPORTS_DEBUG_PAGEALLOC 1632 bool 1633 1634config ARCH_SUPPORTS_PAGE_TABLE_CHECK 1635 bool 1636 1637config ARCH_SPLIT_ARG64 1638 bool 1639 help 1640 If a 32-bit architecture requires 64-bit arguments to be split into 1641 pairs of 32-bit arguments, select this option. 1642 1643config ARCH_HAS_ELFCORE_COMPAT 1644 bool 1645 1646config ARCH_HAS_PARANOID_L1D_FLUSH 1647 bool 1648 1649config ARCH_HAVE_TRACE_MMIO_ACCESS 1650 bool 1651 1652config DYNAMIC_SIGFRAME 1653 bool 1654 1655# Select, if arch has a named attribute group bound to NUMA device nodes. 1656config HAVE_ARCH_NODE_DEV_GROUP 1657 bool 1658 1659config ARCH_HAS_HW_PTE_YOUNG 1660 bool 1661 help 1662 Architectures that select this option are capable of setting the 1663 accessed bit in PTE entries when using them as part of linear address 1664 translations. Architectures that require runtime check should select 1665 this option and override arch_has_hw_pte_young(). 1666 1667config ARCH_HAS_NONLEAF_PMD_YOUNG 1668 bool 1669 help 1670 Architectures that select this option are capable of setting the 1671 accessed bit in non-leaf PMD entries when using them as part of linear 1672 address translations. Page table walkers that clear the accessed bit 1673 may use this capability to reduce their search space. 1674 1675config ARCH_HAS_KERNEL_FPU_SUPPORT 1676 bool 1677 help 1678 Architectures that select this option can run floating-point code in 1679 the kernel, as described in Documentation/core-api/floating-point.rst. 1680 1681source "kernel/gcov/Kconfig" 1682 1683source "scripts/gcc-plugins/Kconfig" 1684 1685config FUNCTION_ALIGNMENT_4B 1686 bool 1687 1688config FUNCTION_ALIGNMENT_8B 1689 bool 1690 1691config FUNCTION_ALIGNMENT_16B 1692 bool 1693 1694config FUNCTION_ALIGNMENT_32B 1695 bool 1696 1697config FUNCTION_ALIGNMENT_64B 1698 bool 1699 1700config FUNCTION_ALIGNMENT 1701 int 1702 default 64 if FUNCTION_ALIGNMENT_64B 1703 default 32 if FUNCTION_ALIGNMENT_32B 1704 default 16 if FUNCTION_ALIGNMENT_16B 1705 default 8 if FUNCTION_ALIGNMENT_8B 1706 default 4 if FUNCTION_ALIGNMENT_4B 1707 default 0 1708 1709config CC_HAS_MIN_FUNCTION_ALIGNMENT 1710 # Detect availability of the GCC option -fmin-function-alignment which 1711 # guarantees minimal alignment for all functions, unlike 1712 # -falign-functions which the compiler ignores for cold functions. 1713 def_bool $(cc-option, -fmin-function-alignment=8) 1714 1715config CC_HAS_SANE_FUNCTION_ALIGNMENT 1716 # Set if the guaranteed alignment with -fmin-function-alignment is 1717 # available or extra care is required in the kernel. Clang provides 1718 # strict alignment always, even with -falign-functions. 1719 def_bool CC_HAS_MIN_FUNCTION_ALIGNMENT || CC_IS_CLANG 1720 1721config ARCH_NEED_CMPXCHG_1_EMU 1722 bool 1723 1724endmenu 1725