xref: /linux/Documentation/userspace-api/media/v4l/vidioc-g-fbuf.rst (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1.. SPDX-License-Identifier: GFDL-1.1-no-invariants-or-later
2.. c:namespace:: V4L
3
4.. _VIDIOC_G_FBUF:
5
6**********************************
7ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF
8**********************************
9
10Name
11====
12
13VIDIOC_G_FBUF - VIDIOC_S_FBUF - Get or set frame buffer overlay parameters
14
15Synopsis
16========
17
18.. c:macro:: VIDIOC_G_FBUF
19
20``int ioctl(int fd, VIDIOC_G_FBUF, struct v4l2_framebuffer *argp)``
21
22.. c:macro:: VIDIOC_S_FBUF
23
24``int ioctl(int fd, VIDIOC_S_FBUF, const struct v4l2_framebuffer *argp)``
25
26Arguments
27=========
28
29``fd``
30    File descriptor returned by :c:func:`open()`.
31
32``argp``
33    Pointer to struct :c:type:`v4l2_framebuffer`.
34
35Description
36===========
37
38Applications can use the :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>` and :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` ioctl
39to get and set the framebuffer parameters for a
40:ref:`Video Overlay <overlay>` or :ref:`Video Output Overlay <osd>`
41(OSD). The type of overlay is implied by the device type (capture or
42output device) and can be determined with the
43:ref:`VIDIOC_QUERYCAP` ioctl. One ``/dev/videoN``
44device must not support both kinds of overlay.
45
46The V4L2 API distinguishes destructive and non-destructive overlays. A
47destructive overlay copies captured video images into the video memory
48of a graphics card. A non-destructive overlay blends video images into a
49VGA signal or graphics into a video signal. *Video Output Overlays* are
50always non-destructive.
51
52Destructive overlay support has been removed: with modern GPUs and CPUs
53this is no longer needed, and it was always a very dangerous feature.
54
55To get the current parameters applications call the :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>`
56ioctl with a pointer to a struct :c:type:`v4l2_framebuffer`
57structure. The driver fills all fields of the structure or returns an
58EINVAL error code when overlays are not supported.
59
60To set the parameters for a *Video Output Overlay*, applications must
61initialize the ``flags`` field of a struct
62:c:type:`v4l2_framebuffer`. Since the framebuffer is
63implemented on the TV card all other parameters are determined by the
64driver. When an application calls :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` with a pointer to
65this structure, the driver prepares for the overlay and returns the
66framebuffer parameters as :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>` does, or it returns an error
67code.
68
69To set the parameters for a *Video Capture Overlay*
70applications must initialize the ``flags`` field, the ``fmt``
71substructure, and call :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>`. Again the driver prepares for
72the overlay and returns the framebuffer parameters as :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>`
73does, or it returns an error code.
74
75.. tabularcolumns:: |p{3.5cm}|p{3.5cm}|p{3.5cm}|p{6.6cm}|
76
77.. c:type:: v4l2_framebuffer
78
79.. cssclass:: longtable
80
81.. flat-table:: struct v4l2_framebuffer
82    :header-rows:  0
83    :stub-columns: 0
84    :widths:       1 1 1 2
85
86    * - __u32
87      - ``capability``
88      -
89      - Overlay capability flags set by the driver, see
90	:ref:`framebuffer-cap`.
91    * - __u32
92      - ``flags``
93      -
94      - Overlay control flags set by application and driver, see
95	:ref:`framebuffer-flags`
96    * - void *
97      - ``base``
98      -
99      - Physical base address of the framebuffer, that is the address of
100	the pixel in the top left corner of the framebuffer.
101	For :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` this field is no longer supported
102	and the kernel will always set this to NULL.
103	For *Video Output Overlays*
104	the driver will return a valid base address, so applications can
105	find the corresponding Linux framebuffer device (see
106	:ref:`osd`). For *Video Capture Overlays* this field will always be
107	NULL.
108    * - struct
109      - ``fmt``
110      -
111      - Layout of the frame buffer.
112    * -
113      - __u32
114      - ``width``
115      - Width of the frame buffer in pixels.
116    * -
117      - __u32
118      - ``height``
119      - Height of the frame buffer in pixels.
120    * -
121      - __u32
122      - ``pixelformat``
123      - The pixel format of the framebuffer.
124    * -
125      -
126      -
127      - For *non-destructive Video Overlays* this field only defines a
128	format for the struct :c:type:`v4l2_window`
129	``chromakey`` field.
130    * -
131      -
132      -
133      - For *Video Output Overlays* the driver must return a valid
134	format.
135    * -
136      -
137      -
138      - Usually this is an RGB format (for example
139	:ref:`V4L2_PIX_FMT_RGB565 <V4L2-PIX-FMT-RGB565>`) but YUV
140	formats (only packed YUV formats when chroma keying is used, not
141	including ``V4L2_PIX_FMT_YUYV`` and ``V4L2_PIX_FMT_UYVY``) and the
142	``V4L2_PIX_FMT_PAL8`` format are also permitted. The behavior of
143	the driver when an application requests a compressed format is
144	undefined. See :ref:`pixfmt` for information on pixel formats.
145    * -
146      - enum :c:type:`v4l2_field`
147      - ``field``
148      - Drivers and applications shall ignore this field. If applicable,
149	the field order is selected with the
150	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>` ioctl, using the ``field``
151	field of struct :c:type:`v4l2_window`.
152    * -
153      - __u32
154      - ``bytesperline``
155      - Distance in bytes between the leftmost pixels in two adjacent
156	lines.
157    * - :cspan:`3`
158
159	This field is irrelevant to *non-destructive Video Overlays*.
160
161	For *Video Output Overlays* the driver must return a valid value.
162
163	Video hardware may access padding bytes, therefore they must
164	reside in accessible memory. Consider for example the case where
165	padding bytes after the last line of an image cross a system page
166	boundary. Capture devices may write padding bytes, the value is
167	undefined. Output devices ignore the contents of padding bytes.
168
169	When the image format is planar the ``bytesperline`` value applies
170	to the first plane and is divided by the same factor as the
171	``width`` field for the other planes. For example the Cb and Cr
172	planes of a YUV 4:2:0 image have half as many padding bytes
173	following each line as the Y plane. To avoid ambiguities drivers
174	must return a ``bytesperline`` value rounded up to a multiple of
175	the scale factor.
176    * -
177      - __u32
178      - ``sizeimage``
179      - This field is irrelevant to *non-destructive Video Overlays*.
180	For *Video Output Overlays* the driver must return a valid
181	format.
182
183	Together with ``base`` it defines the framebuffer memory
184	accessible by the driver.
185    * -
186      - enum :c:type:`v4l2_colorspace`
187      - ``colorspace``
188      - This information supplements the ``pixelformat`` and must be set
189	by the driver, see :ref:`colorspaces`.
190    * -
191      - __u32
192      - ``priv``
193      - Reserved. Drivers and applications must set this field to zero.
194
195.. tabularcolumns:: |p{7.4cm}|p{1.6cm}|p{8.3cm}|
196
197.. _framebuffer-cap:
198
199.. flat-table:: Frame Buffer Capability Flags
200    :header-rows:  0
201    :stub-columns: 0
202    :widths:       3 1 4
203
204    * - ``V4L2_FBUF_CAP_EXTERNOVERLAY``
205      - 0x0001
206      - The device is capable of non-destructive overlays. When the driver
207	clears this flag, only destructive overlays are supported. There
208	are no drivers yet which support both destructive and
209	non-destructive overlays. Video Output Overlays are in practice
210	always non-destructive.
211    * - ``V4L2_FBUF_CAP_CHROMAKEY``
212      - 0x0002
213      - The device supports clipping by chroma-keying the images. That is,
214	image pixels replace pixels in the VGA or video signal only where
215	the latter assume a certain color. Chroma-keying makes no sense
216	for destructive overlays.
217    * - ``V4L2_FBUF_CAP_LIST_CLIPPING``
218      - 0x0004
219      - The device supports clipping using a list of clip rectangles.
220        Note that this is no longer supported.
221    * - ``V4L2_FBUF_CAP_BITMAP_CLIPPING``
222      - 0x0008
223      - The device supports clipping using a bit mask.
224        Note that this is no longer supported.
225    * - ``V4L2_FBUF_CAP_LOCAL_ALPHA``
226      - 0x0010
227      - The device supports clipping/blending using the alpha channel of
228	the framebuffer or VGA signal. Alpha blending makes no sense for
229	destructive overlays.
230    * - ``V4L2_FBUF_CAP_GLOBAL_ALPHA``
231      - 0x0020
232      - The device supports alpha blending using a global alpha value.
233	Alpha blending makes no sense for destructive overlays.
234    * - ``V4L2_FBUF_CAP_LOCAL_INV_ALPHA``
235      - 0x0040
236      - The device supports clipping/blending using the inverted alpha
237	channel of the framebuffer or VGA signal. Alpha blending makes no
238	sense for destructive overlays.
239    * - ``V4L2_FBUF_CAP_SRC_CHROMAKEY``
240      - 0x0080
241      - The device supports Source Chroma-keying. Video pixels with the
242	chroma-key colors are replaced by framebuffer pixels, which is
243	exactly opposite of ``V4L2_FBUF_CAP_CHROMAKEY``
244
245.. tabularcolumns:: |p{7.4cm}|p{1.6cm}|p{8.3cm}|
246
247.. _framebuffer-flags:
248
249.. cssclass:: longtable
250
251.. flat-table:: Frame Buffer Flags
252    :header-rows:  0
253    :stub-columns: 0
254    :widths:       3 1 4
255
256    * - ``V4L2_FBUF_FLAG_PRIMARY``
257      - 0x0001
258      - The framebuffer is the primary graphics surface. In other words,
259	the overlay is destructive. This flag is typically set by any
260	driver that doesn't have the ``V4L2_FBUF_CAP_EXTERNOVERLAY``
261	capability and it is cleared otherwise.
262    * - ``V4L2_FBUF_FLAG_OVERLAY``
263      - 0x0002
264      - If this flag is set for a video capture device, then the driver
265	will set the initial overlay size to cover the full framebuffer
266	size, otherwise the existing overlay size (as set by
267	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>`) will be used. Only one
268	video capture driver (bttv) supports this flag. The use of this
269	flag for capture devices is deprecated. There is no way to detect
270	which drivers support this flag, so the only reliable method of
271	setting the overlay size is through
272	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>`. If this flag is set for a
273	video output device, then the video output overlay window is
274	relative to the top-left corner of the framebuffer and restricted
275	to the size of the framebuffer. If it is cleared, then the video
276	output overlay window is relative to the video output display.
277    * - ``V4L2_FBUF_FLAG_CHROMAKEY``
278      - 0x0004
279      - Use chroma-keying. The chroma-key color is determined by the
280	``chromakey`` field of struct :c:type:`v4l2_window`
281	and negotiated with the :ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>`
282	ioctl, see :ref:`overlay` and :ref:`osd`.
283    * - :cspan:`2` There are no flags to enable clipping using a list of
284	clip rectangles or a bitmap. These methods are negotiated with the
285	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>` ioctl, see :ref:`overlay`
286	and :ref:`osd`.
287    * - ``V4L2_FBUF_FLAG_LOCAL_ALPHA``
288      - 0x0008
289      - Use the alpha channel of the framebuffer to clip or blend
290	framebuffer pixels with video images. The blend function is:
291	output = framebuffer pixel * alpha + video pixel * (1 - alpha).
292	The actual alpha depth depends on the framebuffer pixel format.
293    * - ``V4L2_FBUF_FLAG_GLOBAL_ALPHA``
294      - 0x0010
295      - Use a global alpha value to blend the framebuffer with video
296	images. The blend function is: output = (framebuffer pixel * alpha
297	+ video pixel * (255 - alpha)) / 255. The alpha value is
298	determined by the ``global_alpha`` field of struct
299	:c:type:`v4l2_window` and negotiated with the
300	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>` ioctl, see :ref:`overlay`
301	and :ref:`osd`.
302    * - ``V4L2_FBUF_FLAG_LOCAL_INV_ALPHA``
303      - 0x0020
304      - Like ``V4L2_FBUF_FLAG_LOCAL_ALPHA``, use the alpha channel of the
305	framebuffer to clip or blend framebuffer pixels with video images,
306	but with an inverted alpha value. The blend function is: output =
307	framebuffer pixel * (1 - alpha) + video pixel * alpha. The actual
308	alpha depth depends on the framebuffer pixel format.
309    * - ``V4L2_FBUF_FLAG_SRC_CHROMAKEY``
310      - 0x0040
311      - Use source chroma-keying. The source chroma-key color is
312	determined by the ``chromakey`` field of struct
313	:c:type:`v4l2_window` and negotiated with the
314	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>` ioctl, see :ref:`overlay`
315	and :ref:`osd`. Both chroma-keying are mutual exclusive to each
316	other, so same ``chromakey`` field of struct
317	:c:type:`v4l2_window` is being used.
318
319Return Value
320============
321
322On success 0 is returned, on error -1 and the ``errno`` variable is set
323appropriately. The generic error codes are described at the
324:ref:`Generic Error Codes <gen-errors>` chapter.
325
326EPERM
327    :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` can only be called by a privileged user to
328    negotiate the parameters for a destructive overlay.
329
330EINVAL
331    The :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` parameters are unsuitable.
332