xref: /linux/Documentation/networking/vrf.rst (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1.. SPDX-License-Identifier: GPL-2.0
2
3====================================
4Virtual Routing and Forwarding (VRF)
5====================================
6
7The VRF Device
8==============
9
10The VRF device combined with ip rules provides the ability to create virtual
11routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
12Linux network stack. One use case is the multi-tenancy problem where each
13tenant has their own unique routing tables and in the very least need
14different default gateways.
15
16Processes can be "VRF aware" by binding a socket to the VRF device. Packets
17through the socket then use the routing table associated with the VRF
18device. An important feature of the VRF device implementation is that it
19impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
20(ie., they do not need to be run in each VRF). The design also allows
21the use of higher priority ip rules (Policy Based Routing, PBR) to take
22precedence over the VRF device rules directing specific traffic as desired.
23
24In addition, VRF devices allow VRFs to be nested within namespaces. For
25example network namespaces provide separation of network interfaces at the
26device layer, VLANs on the interfaces within a namespace provide L2 separation
27and then VRF devices provide L3 separation.
28
29Design
30------
31A VRF device is created with an associated route table. Network interfaces
32are then enslaved to a VRF device::
33
34	 +-----------------------------+
35	 |           vrf-blue          |  ===> route table 10
36	 +-----------------------------+
37	    |        |            |
38	 +------+ +------+     +-------------+
39	 | eth1 | | eth2 | ... |    bond1    |
40	 +------+ +------+     +-------------+
41				  |       |
42			      +------+ +------+
43			      | eth8 | | eth9 |
44			      +------+ +------+
45
46Packets received on an enslaved device and are switched to the VRF device
47in the IPv4 and IPv6 processing stacks giving the impression that packets
48flow through the VRF device. Similarly on egress routing rules are used to
49send packets to the VRF device driver before getting sent out the actual
50interface. This allows tcpdump on a VRF device to capture all packets into
51and out of the VRF as a whole\ [1]_. Similarly, netfilter\ [2]_ and tc rules
52can be applied using the VRF device to specify rules that apply to the VRF
53domain as a whole.
54
55.. [1] Packets in the forwarded state do not flow through the device, so those
56       packets are not seen by tcpdump. Will revisit this limitation in a
57       future release.
58
59.. [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
60       ingress device and both INPUT and PREROUTING rules with skb->dev set to
61       the VRF device. For egress POSTROUTING and OUTPUT rules can be written
62       using either the VRF device or real egress device.
63
64Setup
65-----
661. VRF device is created with an association to a FIB table.
67   e.g,::
68
69	ip link add vrf-blue type vrf table 10
70	ip link set dev vrf-blue up
71
722. An l3mdev FIB rule directs lookups to the table associated with the device.
73   A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
74   l3mdev rule for IPv4 and IPv6 when the first device is created with a
75   default preference of 1000. Users may delete the rule if desired and add
76   with a different priority or install per-VRF rules.
77
78   Prior to the v4.8 kernel iif and oif rules are needed for each VRF device::
79
80       ip ru add oif vrf-blue table 10
81       ip ru add iif vrf-blue table 10
82
833. Set the default route for the table (and hence default route for the VRF)::
84
85       ip route add table 10 unreachable default metric 4278198272
86
87   This high metric value ensures that the default unreachable route can
88   be overridden by a routing protocol suite.  FRRouting interprets
89   kernel metrics as a combined admin distance (upper byte) and priority
90   (lower 3 bytes).  Thus the above metric translates to [255/8192].
91
924. Enslave L3 interfaces to a VRF device::
93
94       ip link set dev eth1 master vrf-blue
95
96   Local and connected routes for enslaved devices are automatically moved to
97   the table associated with VRF device. Any additional routes depending on
98   the enslaved device are dropped and will need to be reinserted to the VRF
99   FIB table following the enslavement.
100
101   The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
102   addresses as VRF enslavement changes::
103
104       sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
105
1065. Additional VRF routes are added to associated table::
107
108       ip route add table 10 ...
109
110
111Applications
112------------
113Applications that are to work within a VRF need to bind their socket to the
114VRF device::
115
116    setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
117
118or to specify the output device using cmsg and IP_PKTINFO.
119
120By default the scope of the port bindings for unbound sockets is
121limited to the default VRF. That is, it will not be matched by packets
122arriving on interfaces enslaved to an l3mdev and processes may bind to
123the same port if they bind to an l3mdev.
124
125TCP & UDP services running in the default VRF context (ie., not bound
126to any VRF device) can work across all VRF domains by enabling the
127tcp_l3mdev_accept and udp_l3mdev_accept sysctl options::
128
129    sysctl -w net.ipv4.tcp_l3mdev_accept=1
130    sysctl -w net.ipv4.udp_l3mdev_accept=1
131
132These options are disabled by default so that a socket in a VRF is only
133selected for packets in that VRF. There is a similar option for RAW
134sockets, which is enabled by default for reasons of backwards compatibility.
135This is so as to specify the output device with cmsg and IP_PKTINFO, but
136using a socket not bound to the corresponding VRF. This allows e.g. older ping
137implementations to be run with specifying the device but without executing it
138in the VRF. This option can be disabled so that packets received in a VRF
139context are only handled by a raw socket bound to the VRF, and packets in the
140default VRF are only handled by a socket not bound to any VRF::
141
142    sysctl -w net.ipv4.raw_l3mdev_accept=0
143
144netfilter rules on the VRF device can be used to limit access to services
145running in the default VRF context as well.
146
147Using VRF-aware applications (applications which simultaneously create sockets
148outside and inside VRFs) in conjunction with ``net.ipv4.tcp_l3mdev_accept=1``
149is possible but may lead to problems in some situations. With that sysctl
150value, it is unspecified which listening socket will be selected to handle
151connections for VRF traffic; ie. either a socket bound to the VRF or an unbound
152socket may be used to accept new connections from a VRF. This somewhat
153unexpected behavior can lead to problems if sockets are configured with extra
154options (ex. TCP MD5 keys) with the expectation that VRF traffic will
155exclusively be handled by sockets bound to VRFs, as would be the case with
156``net.ipv4.tcp_l3mdev_accept=0``. Finally and as a reminder, regardless of
157which listening socket is selected, established sockets will be created in the
158VRF based on the ingress interface, as documented earlier.
159
160--------------------------------------------------------------------------------
161
162Using iproute2 for VRFs
163=======================
164iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
165section lists both commands where appropriate -- with the vrf keyword and the
166older form without it.
167
1681. Create a VRF
169
170   To instantiate a VRF device and associate it with a table::
171
172       $ ip link add dev NAME type vrf table ID
173
174   As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
175   covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
176   device create.
177
1782. List VRFs
179
180   To list VRFs that have been created::
181
182       $ ip [-d] link show type vrf
183	 NOTE: The -d option is needed to show the table id
184
185   For example::
186
187       $ ip -d link show type vrf
188       11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
189	   link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
190	   vrf table 1 addrgenmode eui64
191       12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
192	   link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
193	   vrf table 10 addrgenmode eui64
194       13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
195	   link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
196	   vrf table 66 addrgenmode eui64
197       14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
198	   link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
199	   vrf table 81 addrgenmode eui64
200
201
202   Or in brief output::
203
204       $ ip -br link show type vrf
205       mgmt         UP             72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
206       red          UP             b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
207       blue         UP             36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
208       green        UP             e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
209
210
2113. Assign a Network Interface to a VRF
212
213   Network interfaces are assigned to a VRF by enslaving the netdevice to a
214   VRF device::
215
216       $ ip link set dev NAME master NAME
217
218   On enslavement connected and local routes are automatically moved to the
219   table associated with the VRF device.
220
221   For example::
222
223       $ ip link set dev eth0 master mgmt
224
225
2264. Show Devices Assigned to a VRF
227
228   To show devices that have been assigned to a specific VRF add the master
229   option to the ip command::
230
231       $ ip link show vrf NAME
232       $ ip link show master NAME
233
234   For example::
235
236       $ ip link show vrf red
237       3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
238	   link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
239       4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
240	   link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
241       7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
242	   link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
243
244
245   Or using the brief output::
246
247       $ ip -br link show vrf red
248       eth1             UP             02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
249       eth2             UP             02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
250       eth5             DOWN           02:00:00:00:02:06 <BROADCAST,MULTICAST>
251
252
2535. Show Neighbor Entries for a VRF
254
255   To list neighbor entries associated with devices enslaved to a VRF device
256   add the master option to the ip command::
257
258       $ ip [-6] neigh show vrf NAME
259       $ ip [-6] neigh show master NAME
260
261   For example::
262
263       $  ip neigh show vrf red
264       10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
265       10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
266
267       $ ip -6 neigh show vrf red
268       2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
269
270
2716. Show Addresses for a VRF
272
273   To show addresses for interfaces associated with a VRF add the master
274   option to the ip command::
275
276       $ ip addr show vrf NAME
277       $ ip addr show master NAME
278
279   For example::
280
281	$ ip addr show vrf red
282	3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
283	    link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
284	    inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
285	       valid_lft forever preferred_lft forever
286	    inet6 2002:1::2/120 scope global
287	       valid_lft forever preferred_lft forever
288	    inet6 fe80::ff:fe00:202/64 scope link
289	       valid_lft forever preferred_lft forever
290	4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
291	    link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
292	    inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
293	       valid_lft forever preferred_lft forever
294	    inet6 2002:2::2/120 scope global
295	       valid_lft forever preferred_lft forever
296	    inet6 fe80::ff:fe00:203/64 scope link
297	       valid_lft forever preferred_lft forever
298	7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
299	    link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
300
301   Or in brief format::
302
303	$ ip -br addr show vrf red
304	eth1             UP             10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
305	eth2             UP             10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
306	eth5             DOWN
307
308
3097. Show Routes for a VRF
310
311   To show routes for a VRF use the ip command to display the table associated
312   with the VRF device::
313
314       $ ip [-6] route show vrf NAME
315       $ ip [-6] route show table ID
316
317   For example::
318
319	$ ip route show vrf red
320	unreachable default  metric 4278198272
321	broadcast 10.2.1.0 dev eth1  proto kernel  scope link  src 10.2.1.2
322	10.2.1.0/24 dev eth1  proto kernel  scope link  src 10.2.1.2
323	local 10.2.1.2 dev eth1  proto kernel  scope host  src 10.2.1.2
324	broadcast 10.2.1.255 dev eth1  proto kernel  scope link  src 10.2.1.2
325	broadcast 10.2.2.0 dev eth2  proto kernel  scope link  src 10.2.2.2
326	10.2.2.0/24 dev eth2  proto kernel  scope link  src 10.2.2.2
327	local 10.2.2.2 dev eth2  proto kernel  scope host  src 10.2.2.2
328	broadcast 10.2.2.255 dev eth2  proto kernel  scope link  src 10.2.2.2
329
330	$ ip -6 route show vrf red
331	local 2002:1:: dev lo  proto none  metric 0  pref medium
332	local 2002:1::2 dev lo  proto none  metric 0  pref medium
333	2002:1::/120 dev eth1  proto kernel  metric 256  pref medium
334	local 2002:2:: dev lo  proto none  metric 0  pref medium
335	local 2002:2::2 dev lo  proto none  metric 0  pref medium
336	2002:2::/120 dev eth2  proto kernel  metric 256  pref medium
337	local fe80:: dev lo  proto none  metric 0  pref medium
338	local fe80:: dev lo  proto none  metric 0  pref medium
339	local fe80::ff:fe00:202 dev lo  proto none  metric 0  pref medium
340	local fe80::ff:fe00:203 dev lo  proto none  metric 0  pref medium
341	fe80::/64 dev eth1  proto kernel  metric 256  pref medium
342	fe80::/64 dev eth2  proto kernel  metric 256  pref medium
343	ff00::/8 dev red  metric 256  pref medium
344	ff00::/8 dev eth1  metric 256  pref medium
345	ff00::/8 dev eth2  metric 256  pref medium
346	unreachable default dev lo  metric 4278198272  error -101 pref medium
347
3488. Route Lookup for a VRF
349
350   A test route lookup can be done for a VRF::
351
352       $ ip [-6] route get vrf NAME ADDRESS
353       $ ip [-6] route get oif NAME ADDRESS
354
355   For example::
356
357	$ ip route get 10.2.1.40 vrf red
358	10.2.1.40 dev eth1  table red  src 10.2.1.2
359	    cache
360
361	$ ip -6 route get 2002:1::32 vrf red
362	2002:1::32 from :: dev eth1  table red  proto kernel  src 2002:1::2  metric 256  pref medium
363
364
3659. Removing Network Interface from a VRF
366
367   Network interfaces are removed from a VRF by breaking the enslavement to
368   the VRF device::
369
370       $ ip link set dev NAME nomaster
371
372   Connected routes are moved back to the default table and local entries are
373   moved to the local table.
374
375   For example::
376
377    $ ip link set dev eth0 nomaster
378
379--------------------------------------------------------------------------------
380
381Commands used in this example::
382
383     cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
384     1  mgmt
385     10 red
386     66 blue
387     81 green
388     EOF
389
390     function vrf_create
391     {
392	 VRF=$1
393	 TBID=$2
394
395	 # create VRF device
396	 ip link add ${VRF} type vrf table ${TBID}
397
398	 if [ "${VRF}" != "mgmt" ]; then
399	     ip route add table ${TBID} unreachable default metric 4278198272
400	 fi
401	 ip link set dev ${VRF} up
402     }
403
404     vrf_create mgmt 1
405     ip link set dev eth0 master mgmt
406
407     vrf_create red 10
408     ip link set dev eth1 master red
409     ip link set dev eth2 master red
410     ip link set dev eth5 master red
411
412     vrf_create blue 66
413     ip link set dev eth3 master blue
414
415     vrf_create green 81
416     ip link set dev eth4 master green
417
418
419     Interface addresses from /etc/network/interfaces:
420     auto eth0
421     iface eth0 inet static
422	   address 10.0.0.2
423	   netmask 255.255.255.0
424	   gateway 10.0.0.254
425
426     iface eth0 inet6 static
427	   address 2000:1::2
428	   netmask 120
429
430     auto eth1
431     iface eth1 inet static
432	   address 10.2.1.2
433	   netmask 255.255.255.0
434
435     iface eth1 inet6 static
436	   address 2002:1::2
437	   netmask 120
438
439     auto eth2
440     iface eth2 inet static
441	   address 10.2.2.2
442	   netmask 255.255.255.0
443
444     iface eth2 inet6 static
445	   address 2002:2::2
446	   netmask 120
447
448     auto eth3
449     iface eth3 inet static
450	   address 10.2.3.2
451	   netmask 255.255.255.0
452
453     iface eth3 inet6 static
454	   address 2002:3::2
455	   netmask 120
456
457     auto eth4
458     iface eth4 inet static
459	   address 10.2.4.2
460	   netmask 255.255.255.0
461
462     iface eth4 inet6 static
463	   address 2002:4::2
464	   netmask 120
465