xref: /linux/Documentation/hwmon/sysfs-interface.rst (revision 20c7775aecea04d8ca322039969d49dcf568e0e9)
1Naming and data format standards for sysfs files
2================================================
3
4The libsensors library offers an interface to the raw sensors data
5through the sysfs interface. Since lm-sensors 3.0.0, libsensors is
6completely chip-independent. It assumes that all the kernel drivers
7implement the standard sysfs interface described in this document.
8This makes adding or updating support for any given chip very easy, as
9libsensors, and applications using it, do not need to be modified.
10This is a major improvement compared to lm-sensors 2.
11
12Note that motherboards vary widely in the connections to sensor chips.
13There is no standard that ensures, for example, that the second
14temperature sensor is connected to the CPU, or that the second fan is on
15the CPU. Also, some values reported by the chips need some computation
16before they make full sense. For example, most chips can only measure
17voltages between 0 and +4V. Other voltages are scaled back into that
18range using external resistors. Since the values of these resistors
19can change from motherboard to motherboard, the conversions cannot be
20hard coded into the driver and have to be done in user space.
21
22For this reason, even if we aim at a chip-independent libsensors, it will
23still require a configuration file (e.g. /etc/sensors.conf) for proper
24values conversion, labeling of inputs and hiding of unused inputs.
25
26An alternative method that some programs use is to access the sysfs
27files directly. This document briefly describes the standards that the
28drivers follow, so that an application program can scan for entries and
29access this data in a simple and consistent way. That said, such programs
30will have to implement conversion, labeling and hiding of inputs. For
31this reason, it is still not recommended to bypass the library.
32
33Each chip gets its own directory in the sysfs /sys/devices tree.  To
34find all sensor chips, it is easier to follow the device symlinks from
35`/sys/class/hwmon/hwmon*`.
36
37Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes
38in the "physical" device directory. Since lm-sensors 3.0.1, attributes found
39in the hwmon "class" device directory are also supported. Complex drivers
40(e.g. drivers for multifunction chips) may want to use this possibility to
41avoid namespace pollution. The only drawback will be that older versions of
42libsensors won't support the driver in question.
43
44All sysfs values are fixed point numbers.
45
46There is only one value per file, unlike the older /proc specification.
47The common scheme for files naming is: <type><number>_<item>. Usual
48types for sensor chips are "in" (voltage), "temp" (temperature) and
49"fan" (fan). Usual items are "input" (measured value), "max" (high
50threshold, "min" (low threshold). Numbering usually starts from 1,
51except for voltages which start from 0 (because most data sheets use
52this). A number is always used for elements that can be present more
53than once, even if there is a single element of the given type on the
54specific chip. Other files do not refer to a specific element, so
55they have a simple name, and no number.
56
57Alarms are direct indications read from the chips. The drivers do NOT
58make comparisons of readings to thresholds. This allows violations
59between readings to be caught and alarmed. The exact definition of an
60alarm (for example, whether a threshold must be met or must be exceeded
61to cause an alarm) is chip-dependent.
62
63When setting values of hwmon sysfs attributes, the string representation of
64the desired value must be written, note that strings which are not a number
65are interpreted as 0! For more on how written strings are interpreted see the
66"sysfs attribute writes interpretation" section at the end of this file.
67
68-------------------------------------------------------------------------
69
70======= ===========================================
71`[0-*]`	denotes any positive number starting from 0
72`[1-*]`	denotes any positive number starting from 1
73RO	read only value
74WO	write only value
75RW	read/write value
76======= ===========================================
77
78Read/write values may be read-only for some chips, depending on the
79hardware implementation.
80
81All entries (except name) are optional, and should only be created in a
82given driver if the chip has the feature.
83
84
85*****************
86Global attributes
87*****************
88
89`name`
90		The chip name.
91		This should be a short, lowercase string, not containing
92		whitespace, dashes, or the wildcard character '*'.
93		This attribute represents the chip name. It is the only
94		mandatory attribute.
95		I2C devices get this attribute created automatically.
96
97		RO
98
99`update_interval`
100		The interval at which the chip will update readings.
101		Unit: millisecond
102
103		RW
104
105		Some devices have a variable update rate or interval.
106		This attribute can be used to change it to the desired value.
107
108
109********
110Voltages
111********
112
113`in[0-*]_min`
114		Voltage min value.
115
116		Unit: millivolt
117
118		RW
119
120`in[0-*]_lcrit`
121		Voltage critical min value.
122
123		Unit: millivolt
124
125		RW
126
127		If voltage drops to or below this limit, the system may
128		take drastic action such as power down or reset. At the very
129		least, it should report a fault.
130
131`in[0-*]_max`
132		Voltage max value.
133
134		Unit: millivolt
135
136		RW
137
138`in[0-*]_crit`
139		Voltage critical max value.
140
141		Unit: millivolt
142
143		RW
144
145		If voltage reaches or exceeds this limit, the system may
146		take drastic action such as power down or reset. At the very
147		least, it should report a fault.
148
149`in[0-*]_input`
150		Voltage input value.
151
152		Unit: millivolt
153
154		RO
155
156		Voltage measured on the chip pin.
157
158		Actual voltage depends on the scaling resistors on the
159		motherboard, as recommended in the chip datasheet.
160
161		This varies by chip and by motherboard.
162		Because of this variation, values are generally NOT scaled
163		by the chip driver, and must be done by the application.
164		However, some drivers (notably lm87 and via686a)
165		do scale, because of internal resistors built into a chip.
166		These drivers will output the actual voltage. Rule of
167		thumb: drivers should report the voltage values at the
168		"pins" of the chip.
169
170`in[0-*]_average`
171		Average voltage
172
173		Unit: millivolt
174
175		RO
176
177`in[0-*]_lowest`
178		Historical minimum voltage
179
180		Unit: millivolt
181
182		RO
183
184`in[0-*]_highest`
185		Historical maximum voltage
186
187		Unit: millivolt
188
189		RO
190
191`in[0-*]_reset_history`
192		Reset inX_lowest and inX_highest
193
194		WO
195
196`in_reset_history`
197		Reset inX_lowest and inX_highest for all sensors
198
199		WO
200
201`in[0-*]_label`
202		Suggested voltage channel label.
203
204		Text string
205
206		Should only be created if the driver has hints about what
207		this voltage channel is being used for, and user-space
208		doesn't. In all other cases, the label is provided by
209		user-space.
210
211		RO
212
213`in[0-*]_enable`
214		Enable or disable the sensors.
215
216		When disabled the sensor read will return -ENODATA.
217
218		- 1: Enable
219		- 0: Disable
220
221		RW
222
223`cpu[0-*]_vid`
224		CPU core reference voltage.
225
226		Unit: millivolt
227
228		RO
229
230		Not always correct.
231
232`vrm`
233		Voltage Regulator Module version number.
234
235		RW (but changing it should no more be necessary)
236
237		Originally the VRM standard version multiplied by 10, but now
238		an arbitrary number, as not all standards have a version
239		number.
240
241		Affects the way the driver calculates the CPU core reference
242		voltage from the vid pins.
243
244`in[0-*]_rated_min`
245		Minimum rated voltage.
246
247		Unit: millivolt
248
249		RO
250
251`in[0-*]_rated_max`
252		Maximum rated voltage.
253
254		Unit: millivolt
255
256		RO
257
258Also see the Alarms section for status flags associated with voltages.
259
260
261****
262Fans
263****
264
265`fan[1-*]_min`
266		Fan minimum value
267
268		Unit: revolution/min (RPM)
269
270		RW
271
272`fan[1-*]_max`
273		Fan maximum value
274
275		Unit: revolution/min (RPM)
276
277		Only rarely supported by the hardware.
278		RW
279
280`fan[1-*]_input`
281		Fan input value.
282
283		Unit: revolution/min (RPM)
284
285		RO
286
287`fan[1-*]_div`
288		Fan divisor.
289
290		Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128).
291
292		RW
293
294		Some chips only support values 1, 2, 4 and 8.
295		Note that this is actually an internal clock divisor, which
296		affects the measurable speed range, not the read value.
297
298`fan[1-*]_pulses`
299		Number of tachometer pulses per fan revolution.
300
301		Integer value, typically between 1 and 4.
302
303		RW
304
305		This value is a characteristic of the fan connected to the
306		device's input, so it has to be set in accordance with the fan
307		model.
308
309		Should only be created if the chip has a register to configure
310		the number of pulses. In the absence of such a register (and
311		thus attribute) the value assumed by all devices is 2 pulses
312		per fan revolution.
313
314`fan[1-*]_target`
315		Desired fan speed
316
317		Unit: revolution/min (RPM)
318
319		RW
320
321		Only makes sense if the chip supports closed-loop fan speed
322		control based on the measured fan speed.
323
324`fan[1-*]_label`
325		Suggested fan channel label.
326
327		Text string
328
329		Should only be created if the driver has hints about what
330		this fan channel is being used for, and user-space doesn't.
331		In all other cases, the label is provided by user-space.
332
333		RO
334
335`fan[1-*]_enable`
336		Enable or disable the sensors.
337
338		When disabled the sensor read will return -ENODATA.
339
340		- 1: Enable
341		- 0: Disable
342
343		RW
344
345Also see the Alarms section for status flags associated with fans.
346
347
348***
349PWM
350***
351
352`pwm[1-*]`
353		Pulse width modulation fan control.
354
355		Integer value in the range 0 to 255
356
357		RW
358
359		255 is max or 100%.
360
361`pwm[1-*]_enable`
362		Fan speed control method:
363
364		- 0: no fan speed control (i.e. fan at full speed)
365		- 1: manual fan speed control enabled (using `pwm[1-*]`)
366		- 2+: automatic fan speed control enabled
367
368		Check individual chip documentation files for automatic mode
369		details.
370
371		RW
372
373`pwm[1-*]_mode`
374		- 0: DC mode (direct current)
375		- 1: PWM mode (pulse-width modulation)
376
377		RW
378
379`pwm[1-*]_freq`
380		Base PWM frequency in Hz.
381
382		Only possibly available when pwmN_mode is PWM, but not always
383		present even then.
384
385		RW
386
387`pwm[1-*]_auto_channels_temp`
388		Select which temperature channels affect this PWM output in
389		auto mode.
390
391		Bitfield, 1 is temp1, 2 is temp2, 4 is temp3 etc...
392		Which values are possible depend on the chip used.
393
394		RW
395
396`pwm[1-*]_auto_point[1-*]_pwm` / `pwm[1-*]_auto_point[1-*]_temp` / `pwm[1-*]_auto_point[1-*]_temp_hyst`
397		Define the PWM vs temperature curve.
398
399		Number of trip points is chip-dependent. Use this for chips
400		which associate trip points to PWM output channels.
401
402		RW
403
404`temp[1-*]_auto_point[1-*]_pwm` / `temp[1-*]_auto_point[1-*]_temp` / `temp[1-*]_auto_point[1-*]_temp_hyst`
405		Define the PWM vs temperature curve.
406
407		Number of trip points is chip-dependent. Use this for chips
408		which associate trip points to temperature channels.
409
410		RW
411
412There is a third case where trip points are associated to both PWM output
413channels and temperature channels: the PWM values are associated to PWM
414output channels while the temperature values are associated to temperature
415channels. In that case, the result is determined by the mapping between
416temperature inputs and PWM outputs. When several temperature inputs are
417mapped to a given PWM output, this leads to several candidate PWM values.
418The actual result is up to the chip, but in general the highest candidate
419value (fastest fan speed) wins.
420
421
422************
423Temperatures
424************
425
426`temp[1-*]_type`
427		Sensor type selection.
428
429		Integers 1 to 6
430
431		RW
432
433		- 1: CPU embedded diode
434		- 2: 3904 transistor
435		- 3: thermal diode
436		- 4: thermistor
437		- 5: AMD AMDSI
438		- 6: Intel PECI
439
440		Not all types are supported by all chips
441
442`temp[1-*]_max`
443		Temperature max value.
444
445		Unit: millidegree Celsius (or millivolt, see below)
446
447		RW
448
449`temp[1-*]_min`
450		Temperature min value.
451
452		Unit: millidegree Celsius
453
454		RW
455
456`temp[1-*]_max_hyst`
457		Temperature hysteresis value for max limit.
458
459		Unit: millidegree Celsius
460
461		Must be reported as an absolute temperature, NOT a delta
462		from the max value.
463
464		RW
465
466`temp[1-*]_min_hyst`
467		Temperature hysteresis value for min limit.
468		Unit: millidegree Celsius
469
470		Must be reported as an absolute temperature, NOT a delta
471		from the min value.
472
473		RW
474
475`temp[1-*]_input`
476	 Temperature input value.
477
478		Unit: millidegree Celsius
479
480		RO
481
482`temp[1-*]_crit`
483		Temperature critical max value, typically greater than
484		corresponding temp_max values.
485
486		Unit: millidegree Celsius
487
488		RW
489
490`temp[1-*]_crit_hyst`
491		Temperature hysteresis value for critical limit.
492
493		Unit: millidegree Celsius
494
495		Must be reported as an absolute temperature, NOT a delta
496		from the critical value.
497
498		RW
499
500`temp[1-*]_emergency`
501		Temperature emergency max value, for chips supporting more than
502		two upper temperature limits. Must be equal or greater than
503		corresponding temp_crit values.
504
505		Unit: millidegree Celsius
506
507		RW
508
509`temp[1-*]_emergency_hyst`
510		Temperature hysteresis value for emergency limit.
511
512		Unit: millidegree Celsius
513
514		Must be reported as an absolute temperature, NOT a delta
515		from the emergency value.
516
517		RW
518
519`temp[1-*]_lcrit`
520		Temperature critical min value, typically lower than
521		corresponding temp_min values.
522
523		Unit: millidegree Celsius
524
525		RW
526
527`temp[1-*]_lcrit_hyst`
528		Temperature hysteresis value for critical min limit.
529
530		Unit: millidegree Celsius
531
532		Must be reported as an absolute temperature, NOT a delta
533		from the critical min value.
534
535		RW
536
537`temp[1-*]_offset`
538		Temperature offset which is added to the temperature reading
539		by the chip.
540
541		Unit: millidegree Celsius
542
543		Read/Write value.
544
545`temp[1-*]_label`
546		Suggested temperature channel label.
547
548		Text string
549
550		Should only be created if the driver has hints about what
551		this temperature channel is being used for, and user-space
552		doesn't. In all other cases, the label is provided by
553		user-space.
554
555		RO
556
557`temp[1-*]_lowest`
558		Historical minimum temperature
559
560		Unit: millidegree Celsius
561
562		RO
563
564`temp[1-*]_highest`
565		Historical maximum temperature
566
567		Unit: millidegree Celsius
568
569		RO
570
571`temp[1-*]_reset_history`
572		Reset temp_lowest and temp_highest
573
574		WO
575
576`temp_reset_history`
577		Reset temp_lowest and temp_highest for all sensors
578
579		WO
580
581`temp[1-*]_enable`
582		Enable or disable the sensors.
583
584		When disabled the sensor read will return -ENODATA.
585
586		- 1: Enable
587		- 0: Disable
588
589		RW
590
591`temp[1-*]_rated_min`
592		Minimum rated temperature.
593
594		Unit: millidegree Celsius
595
596		RO
597
598`temp[1-*]_rated_max`
599		Maximum rated temperature.
600
601		Unit: millidegree Celsius
602
603		RO
604
605Some chips measure temperature using external thermistors and an ADC, and
606report the temperature measurement as a voltage. Converting this voltage
607back to a temperature (or the other way around for limits) requires
608mathematical functions not available in the kernel, so the conversion
609must occur in user space. For these chips, all temp* files described
610above should contain values expressed in millivolt instead of millidegree
611Celsius. In other words, such temperature channels are handled as voltage
612channels by the driver.
613
614Also see the Alarms section for status flags associated with temperatures.
615
616
617********
618Currents
619********
620
621`curr[1-*]_max`
622		Current max value
623
624		Unit: milliampere
625
626		RW
627
628`curr[1-*]_min`
629		Current min value.
630
631		Unit: milliampere
632
633		RW
634
635`curr[1-*]_lcrit`
636		Current critical low value
637
638		Unit: milliampere
639
640		RW
641
642`curr[1-*]_crit`
643		Current critical high value.
644
645		Unit: milliampere
646
647		RW
648
649`curr[1-*]_input`
650		Current input value
651
652		Unit: milliampere
653
654		RO
655
656`curr[1-*]_average`
657		Average current use
658
659		Unit: milliampere
660
661		RO
662
663`curr[1-*]_lowest`
664		Historical minimum current
665
666		Unit: milliampere
667
668		RO
669
670`curr[1-*]_highest`
671		Historical maximum current
672		Unit: milliampere
673		RO
674
675`curr[1-*]_reset_history`
676		Reset currX_lowest and currX_highest
677
678		WO
679
680`curr_reset_history`
681		Reset currX_lowest and currX_highest for all sensors
682
683		WO
684
685`curr[1-*]_enable`
686		Enable or disable the sensors.
687
688		When disabled the sensor read will return -ENODATA.
689
690		- 1: Enable
691		- 0: Disable
692
693		RW
694
695`curr[1-*]_rated_min`
696		Minimum rated current.
697
698		Unit: milliampere
699
700		RO
701
702`curr[1-*]_rated_max`
703		Maximum rated current.
704
705		Unit: milliampere
706
707		RO
708
709Also see the Alarms section for status flags associated with currents.
710
711*****
712Power
713*****
714
715`power[1-*]_average`
716				Average power use
717
718				Unit: microWatt
719
720				RO
721
722`power[1-*]_average_interval`
723				Power use averaging interval.  A poll
724				notification is sent to this file if the
725				hardware changes the averaging interval.
726
727				Unit: milliseconds
728
729				RW
730
731`power[1-*]_average_interval_max`
732				Maximum power use averaging interval
733
734				Unit: milliseconds
735
736				RO
737
738`power[1-*]_average_interval_min`
739				Minimum power use averaging interval
740
741				Unit: milliseconds
742
743				RO
744
745`power[1-*]_average_highest`
746				Historical average maximum power use
747
748				Unit: microWatt
749
750				RO
751
752`power[1-*]_average_lowest`
753				Historical average minimum power use
754
755				Unit: microWatt
756
757				RO
758
759`power[1-*]_average_max`
760				A poll notification is sent to
761				`power[1-*]_average` when power use
762				rises above this value.
763
764				Unit: microWatt
765
766				RW
767
768`power[1-*]_average_min`
769				A poll notification is sent to
770				`power[1-*]_average` when power use
771				sinks below this value.
772
773				Unit: microWatt
774
775				RW
776
777`power[1-*]_input`
778				Instantaneous power use
779
780				Unit: microWatt
781
782				RO
783
784`power[1-*]_input_highest`
785				Historical maximum power use
786
787				Unit: microWatt
788
789				RO
790
791`power[1-*]_input_lowest`
792				Historical minimum power use
793
794				Unit: microWatt
795
796				RO
797
798`power[1-*]_reset_history`
799				Reset input_highest, input_lowest,
800				average_highest and average_lowest.
801
802				WO
803
804`power[1-*]_accuracy`
805				Accuracy of the power meter.
806
807				Unit: Percent
808
809				RO
810
811`power[1-*]_cap`
812				If power use rises above this limit, the
813				system should take action to reduce power use.
814				A poll notification is sent to this file if the
815				cap is changed by the hardware.  The `*_cap`
816				files only appear if the cap is known to be
817				enforced by hardware.
818
819				Unit: microWatt
820
821				RW
822
823`power[1-*]_cap_hyst`
824				Margin of hysteresis built around capping and
825				notification.
826
827				Unit: microWatt
828
829				RW
830
831`power[1-*]_cap_max`
832				Maximum cap that can be set.
833
834				Unit: microWatt
835
836				RO
837
838`power[1-*]_cap_min`
839				Minimum cap that can be set.
840
841				Unit: microWatt
842
843				RO
844
845`power[1-*]_max`
846				Maximum power.
847
848				Unit: microWatt
849
850				RW
851
852`power[1-*]_crit`
853				Critical maximum power.
854
855				If power rises to or above this limit, the
856				system is expected take drastic action to reduce
857				power consumption, such as a system shutdown or
858				a forced powerdown of some devices.
859
860				Unit: microWatt
861
862				RW
863
864`power[1-*]_enable`
865				Enable or disable the sensors.
866
867				When disabled the sensor read will return
868				-ENODATA.
869
870				- 1: Enable
871				- 0: Disable
872
873				RW
874
875`power[1-*]_rated_min`
876				Minimum rated power.
877
878				Unit: microWatt
879
880				RO
881
882`power[1-*]_rated_max`
883				Maximum rated power.
884
885				Unit: microWatt
886
887				RO
888
889Also see the Alarms section for status flags associated with power readings.
890
891******
892Energy
893******
894
895`energy[1-*]_input`
896				Cumulative energy use
897
898				Unit: microJoule
899
900				RO
901
902`energy[1-*]_enable`
903				Enable or disable the sensors.
904
905				When disabled the sensor read will return
906				-ENODATA.
907
908				- 1: Enable
909				- 0: Disable
910
911				RW
912
913********
914Humidity
915********
916
917`humidity[1-*]_input`
918				Humidity
919
920				Unit: milli-percent (per cent mille, pcm)
921
922				RO
923
924
925`humidity[1-*]_enable`
926				Enable or disable the sensors
927
928				When disabled the sensor read will return
929				-ENODATA.
930
931				- 1: Enable
932				- 0: Disable
933
934				RW
935
936`humidity[1-*]_rated_min`
937				Minimum rated humidity.
938
939				Unit: milli-percent (per cent mille, pcm)
940
941				RO
942
943`humidity[1-*]_rated_max`
944				Maximum rated humidity.
945
946				Unit: milli-percent (per cent mille, pcm)
947
948				RO
949
950******
951Alarms
952******
953
954Each channel or limit may have an associated alarm file, containing a
955boolean value. 1 means than an alarm condition exists, 0 means no alarm.
956
957Usually a given chip will either use channel-related alarms, or
958limit-related alarms, not both. The driver should just reflect the hardware
959implementation.
960
961+-------------------------------+-----------------------+
962| **`in[0-*]_alarm`,		| Channel alarm		|
963| `curr[1-*]_alarm`,		|			|
964| `power[1-*]_alarm`,		|   - 0: no alarm	|
965| `fan[1-*]_alarm`,		|   - 1: alarm		|
966| `temp[1-*]_alarm`**		|			|
967|				|   RO			|
968+-------------------------------+-----------------------+
969
970**OR**
971
972+-------------------------------+-----------------------+
973| **`in[0-*]_min_alarm`,	| Limit alarm		|
974| `in[0-*]_max_alarm`,		|			|
975| `in[0-*]_lcrit_alarm`,	|   - 0: no alarm	|
976| `in[0-*]_crit_alarm`,		|   - 1: alarm		|
977| `curr[1-*]_min_alarm`,	|			|
978| `curr[1-*]_max_alarm`,	| RO			|
979| `curr[1-*]_lcrit_alarm`,	|			|
980| `curr[1-*]_crit_alarm`,	|			|
981| `power[1-*]_cap_alarm`,	|			|
982| `power[1-*]_max_alarm`,	|			|
983| `power[1-*]_crit_alarm`,	|			|
984| `fan[1-*]_min_alarm`,		|			|
985| `fan[1-*]_max_alarm`,		|			|
986| `temp[1-*]_min_alarm`,	|			|
987| `temp[1-*]_max_alarm`,	|			|
988| `temp[1-*]_lcrit_alarm`,	|			|
989| `temp[1-*]_crit_alarm`,	|			|
990| `temp[1-*]_emergency_alarm`**	|			|
991+-------------------------------+-----------------------+
992
993Each input channel may have an associated fault file. This can be used
994to notify open diodes, unconnected fans etc. where the hardware
995supports it. When this boolean has value 1, the measurement for that
996channel should not be trusted.
997
998`fan[1-*]_fault` / `temp[1-*]_fault`
999		Input fault condition
1000
1001		- 0: no fault occurred
1002		- 1: fault condition
1003
1004		RO
1005
1006Some chips also offer the possibility to get beeped when an alarm occurs:
1007
1008`beep_enable`
1009		Master beep enable
1010
1011		- 0: no beeps
1012		- 1: beeps
1013
1014		RW
1015
1016`in[0-*]_beep`, `curr[1-*]_beep`, `fan[1-*]_beep`, `temp[1-*]_beep`,
1017		Channel beep
1018
1019		- 0: disable
1020		- 1: enable
1021
1022		RW
1023
1024In theory, a chip could provide per-limit beep masking, but no such chip
1025was seen so far.
1026
1027Old drivers provided a different, non-standard interface to alarms and
1028beeps. These interface files are deprecated, but will be kept around
1029for compatibility reasons:
1030
1031`alarms`
1032		Alarm bitmask.
1033
1034		RO
1035
1036		Integer representation of one to four bytes.
1037
1038		A '1' bit means an alarm.
1039
1040		Chips should be programmed for 'comparator' mode so that
1041		the alarm will 'come back' after you read the register
1042		if it is still valid.
1043
1044		Generally a direct representation of a chip's internal
1045		alarm registers; there is no standard for the position
1046		of individual bits. For this reason, the use of this
1047		interface file for new drivers is discouraged. Use
1048		`individual *_alarm` and `*_fault` files instead.
1049		Bits are defined in kernel/include/sensors.h.
1050
1051`beep_mask`
1052		Bitmask for beep.
1053		Same format as 'alarms' with the same bit locations,
1054		use discouraged for the same reason. Use individual
1055		`*_beep` files instead.
1056		RW
1057
1058
1059*******************
1060Intrusion detection
1061*******************
1062
1063`intrusion[0-*]_alarm`
1064		Chassis intrusion detection
1065
1066		- 0: OK
1067		- 1: intrusion detected
1068
1069		RW
1070
1071		Contrary to regular alarm flags which clear themselves
1072		automatically when read, this one sticks until cleared by
1073		the user. This is done by writing 0 to the file. Writing
1074		other values is unsupported.
1075
1076`intrusion[0-*]_beep`
1077		Chassis intrusion beep
1078
1079		0: disable
1080		1: enable
1081
1082		RW
1083
1084****************************
1085Average sample configuration
1086****************************
1087
1088Devices allowing for reading {in,power,curr,temp}_average values may export
1089attributes for controlling number of samples used to compute average.
1090
1091+--------------+---------------------------------------------------------------+
1092| samples      | Sets number of average samples for all types of measurements. |
1093|	       |							       |
1094|	       | RW							       |
1095+--------------+---------------------------------------------------------------+
1096| in_samples   | Sets number of average samples for specific type of	       |
1097| power_samples| measurements.						       |
1098| curr_samples |							       |
1099| temp_samples | Note that on some devices it won't be possible to set all of  |
1100|	       | them to different values so changing one might also change    |
1101|	       | some others.						       |
1102|	       |							       |
1103|	       | RW							       |
1104+--------------+---------------------------------------------------------------+
1105
1106sysfs attribute writes interpretation
1107-------------------------------------
1108
1109hwmon sysfs attributes always contain numbers, so the first thing to do is to
1110convert the input to a number, there are 2 ways todo this depending whether
1111the number can be negative or not::
1112
1113	unsigned long u = simple_strtoul(buf, NULL, 10);
1114	long s = simple_strtol(buf, NULL, 10);
1115
1116With buf being the buffer with the user input being passed by the kernel.
1117Notice that we do not use the second argument of strto[u]l, and thus cannot
1118tell when 0 is returned, if this was really 0 or is caused by invalid input.
1119This is done deliberately as checking this everywhere would add a lot of
1120code to the kernel.
1121
1122Notice that it is important to always store the converted value in an
1123unsigned long or long, so that no wrap around can happen before any further
1124checking.
1125
1126After the input string is converted to an (unsigned) long, the value should be
1127checked if its acceptable. Be careful with further conversions on the value
1128before checking it for validity, as these conversions could still cause a wrap
1129around before the check. For example do not multiply the result, and only
1130add/subtract if it has been divided before the add/subtract.
1131
1132What to do if a value is found to be invalid, depends on the type of the
1133sysfs attribute that is being set. If it is a continuous setting like a
1134tempX_max or inX_max attribute, then the value should be clamped to its
1135limits using clamp_val(value, min_limit, max_limit). If it is not continuous
1136like for example a tempX_type, then when an invalid value is written,
1137-EINVAL should be returned.
1138
1139Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees)::
1140
1141	long v = simple_strtol(buf, NULL, 10) / 1000;
1142	v = clamp_val(v, -128, 127);
1143	/* write v to register */
1144
1145Example2, fan divider setting, valid values 2, 4 and 8::
1146
1147	unsigned long v = simple_strtoul(buf, NULL, 10);
1148
1149	switch (v) {
1150	case 2: v = 1; break;
1151	case 4: v = 2; break;
1152	case 8: v = 3; break;
1153	default:
1154		return -EINVAL;
1155	}
1156	/* write v to register */
1157