xref: /linux/Documentation/gpu/drm-kms.rst (revision e08a1d97d33e2ac05cd368b955f9fdc2823f15fd)
1=========================
2Kernel Mode Setting (KMS)
3=========================
4
5Drivers must initialize the mode setting core by calling
6:c:func:`drm_mode_config_init()` on the DRM device. The function
7initializes the :c:type:`struct drm_device <drm_device>`
8mode_config field and never fails. Once done, mode configuration must
9be setup by initializing the following fields.
10
11-  int min_width, min_height; int max_width, max_height;
12   Minimum and maximum width and height of the frame buffers in pixel
13   units.
14
15-  struct drm_mode_config_funcs \*funcs;
16   Mode setting functions.
17
18Modeset Base Object Abstraction
19===============================
20
21.. kernel-doc:: include/drm/drm_mode_object.h
22   :internal:
23
24.. kernel-doc:: drivers/gpu/drm/drm_mode_object.c
25   :export:
26
27KMS Data Structures
28===================
29
30.. kernel-doc:: include/drm/drm_crtc.h
31   :internal:
32
33KMS API Functions
34=================
35
36.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
37   :export:
38
39Atomic Mode Setting Function Reference
40======================================
41
42.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
43   :export:
44
45.. kernel-doc:: include/drm/drm_atomic.h
46   :internal:
47
48Frame Buffer Abstraction
49========================
50
51.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
52   :doc: overview
53
54Frame Buffer Functions Reference
55--------------------------------
56
57.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
58   :export:
59
60.. kernel-doc:: include/drm/drm_framebuffer.h
61   :internal:
62
63DRM Format Handling
64===================
65
66.. kernel-doc:: include/drm/drm_fourcc.h
67   :internal:
68
69.. kernel-doc:: drivers/gpu/drm/drm_fourcc.c
70   :export:
71
72Dumb Buffer Objects
73===================
74
75The KMS API doesn't standardize backing storage object creation and
76leaves it to driver-specific ioctls. Furthermore actually creating a
77buffer object even for GEM-based drivers is done through a
78driver-specific ioctl - GEM only has a common userspace interface for
79sharing and destroying objects. While not an issue for full-fledged
80graphics stacks that include device-specific userspace components (in
81libdrm for instance), this limit makes DRM-based early boot graphics
82unnecessarily complex.
83
84Dumb objects partly alleviate the problem by providing a standard API to
85create dumb buffers suitable for scanout, which can then be used to
86create KMS frame buffers.
87
88To support dumb objects drivers must implement the dumb_create,
89dumb_destroy and dumb_map_offset operations.
90
91-  int (\*dumb_create)(struct drm_file \*file_priv, struct
92   drm_device \*dev, struct drm_mode_create_dumb \*args);
93   The dumb_create operation creates a driver object (GEM or TTM
94   handle) suitable for scanout based on the width, height and depth
95   from the struct :c:type:`struct drm_mode_create_dumb
96   <drm_mode_create_dumb>` argument. It fills the argument's
97   handle, pitch and size fields with a handle for the newly created
98   object and its line pitch and size in bytes.
99
100-  int (\*dumb_destroy)(struct drm_file \*file_priv, struct
101   drm_device \*dev, uint32_t handle);
102   The dumb_destroy operation destroys a dumb object created by
103   dumb_create.
104
105-  int (\*dumb_map_offset)(struct drm_file \*file_priv, struct
106   drm_device \*dev, uint32_t handle, uint64_t \*offset);
107   The dumb_map_offset operation associates an mmap fake offset with
108   the object given by the handle and returns it. Drivers must use the
109   :c:func:`drm_gem_create_mmap_offset()` function to associate
110   the fake offset as described in ?.
111
112Note that dumb objects may not be used for gpu acceleration, as has been
113attempted on some ARM embedded platforms. Such drivers really must have
114a hardware-specific ioctl to allocate suitable buffer objects.
115
116Plane Abstraction
117=================
118
119.. kernel-doc:: drivers/gpu/drm/drm_plane.c
120   :doc: overview
121
122Plane Functions Reference
123-------------------------
124
125.. kernel-doc:: include/drm/drm_plane.h
126   :internal:
127
128.. kernel-doc:: drivers/gpu/drm/drm_plane.c
129   :export:
130
131Display Modes Function Reference
132================================
133
134.. kernel-doc:: include/drm/drm_modes.h
135   :internal:
136
137.. kernel-doc:: drivers/gpu/drm/drm_modes.c
138   :export:
139
140Connector Abstraction
141=====================
142
143.. kernel-doc:: drivers/gpu/drm/drm_connector.c
144   :doc: overview
145
146Connector Functions Reference
147-----------------------------
148
149.. kernel-doc:: include/drm/drm_connector.h
150   :internal:
151
152.. kernel-doc:: drivers/gpu/drm/drm_connector.c
153   :export:
154
155Encoder Abstraction
156===================
157
158.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
159   :doc: overview
160
161Encoder Functions Reference
162---------------------------
163
164.. kernel-doc:: include/drm/drm_encoder.h
165   :internal:
166
167.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
168   :export:
169
170KMS Initialization and Cleanup
171==============================
172
173A KMS device is abstracted and exposed as a set of planes, CRTCs,
174encoders and connectors. KMS drivers must thus create and initialize all
175those objects at load time after initializing mode setting.
176
177CRTCs (:c:type:`struct drm_crtc <drm_crtc>`)
178--------------------------------------------
179
180A CRTC is an abstraction representing a part of the chip that contains a
181pointer to a scanout buffer. Therefore, the number of CRTCs available
182determines how many independent scanout buffers can be active at any
183given time. The CRTC structure contains several fields to support this:
184a pointer to some video memory (abstracted as a frame buffer object), a
185display mode, and an (x, y) offset into the video memory to support
186panning or configurations where one piece of video memory spans multiple
187CRTCs.
188
189CRTC Initialization
190~~~~~~~~~~~~~~~~~~~
191
192A KMS device must create and register at least one struct
193:c:type:`struct drm_crtc <drm_crtc>` instance. The instance is
194allocated and zeroed by the driver, possibly as part of a larger
195structure, and registered with a call to :c:func:`drm_crtc_init()`
196with a pointer to CRTC functions.
197
198
199Cleanup
200-------
201
202The DRM core manages its objects' lifetime. When an object is not needed
203anymore the core calls its destroy function, which must clean up and
204free every resource allocated for the object. Every
205:c:func:`drm_\*_init()` call must be matched with a corresponding
206:c:func:`drm_\*_cleanup()` call to cleanup CRTCs
207(:c:func:`drm_crtc_cleanup()`), planes
208(:c:func:`drm_plane_cleanup()`), encoders
209(:c:func:`drm_encoder_cleanup()`) and connectors
210(:c:func:`drm_connector_cleanup()`). Furthermore, connectors that
211have been added to sysfs must be removed by a call to
212:c:func:`drm_connector_unregister()` before calling
213:c:func:`drm_connector_cleanup()`.
214
215Connectors state change detection must be cleanup up with a call to
216:c:func:`drm_kms_helper_poll_fini()`.
217
218Output discovery and initialization example
219-------------------------------------------
220
221::
222
223    void intel_crt_init(struct drm_device *dev)
224    {
225        struct drm_connector *connector;
226        struct intel_output *intel_output;
227
228        intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
229        if (!intel_output)
230            return;
231
232        connector = &intel_output->base;
233        drm_connector_init(dev, &intel_output->base,
234                   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
235
236        drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
237                 DRM_MODE_ENCODER_DAC);
238
239        drm_mode_connector_attach_encoder(&intel_output->base,
240                          &intel_output->enc);
241
242        /* Set up the DDC bus. */
243        intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
244        if (!intel_output->ddc_bus) {
245            dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
246                   "failed.\n");
247            return;
248        }
249
250        intel_output->type = INTEL_OUTPUT_ANALOG;
251        connector->interlace_allowed = 0;
252        connector->doublescan_allowed = 0;
253
254        drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
255        drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
256
257        drm_connector_register(connector);
258    }
259
260In the example above (taken from the i915 driver), a CRTC, connector and
261encoder combination is created. A device-specific i2c bus is also
262created for fetching EDID data and performing monitor detection. Once
263the process is complete, the new connector is registered with sysfs to
264make its properties available to applications.
265
266KMS Locking
267===========
268
269.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
270   :doc: kms locking
271
272.. kernel-doc:: include/drm/drm_modeset_lock.h
273   :internal:
274
275.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
276   :export:
277
278KMS Properties
279==============
280
281Property Types and Blob Property Support
282----------------------------------------
283
284.. kernel-doc:: drivers/gpu/drm/drm_property.c
285   :doc: overview
286
287.. kernel-doc:: include/drm/drm_property.h
288   :internal:
289
290.. kernel-doc:: drivers/gpu/drm/drm_property.c
291   :export:
292
293Plane Composition Properties
294----------------------------
295
296.. kernel-doc:: drivers/gpu/drm/drm_blend.c
297   :doc: overview
298
299.. kernel-doc:: drivers/gpu/drm/drm_blend.c
300   :export:
301
302Color Management Properties
303---------------------------
304
305.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
306   :doc: overview
307
308.. kernel-doc:: include/drm/drm_color_mgmt.h
309   :internal:
310
311.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
312   :export:
313
314Existing KMS Properties
315-----------------------
316
317The following table gives description of drm properties exposed by
318various modules/drivers.
319
320.. csv-table::
321   :header-rows: 1
322   :file: kms-properties.csv
323
324Vertical Blanking
325=================
326
327Vertical blanking plays a major role in graphics rendering. To achieve
328tear-free display, users must synchronize page flips and/or rendering to
329vertical blanking. The DRM API offers ioctls to perform page flips
330synchronized to vertical blanking and wait for vertical blanking.
331
332The DRM core handles most of the vertical blanking management logic,
333which involves filtering out spurious interrupts, keeping race-free
334blanking counters, coping with counter wrap-around and resets and
335keeping use counts. It relies on the driver to generate vertical
336blanking interrupts and optionally provide a hardware vertical blanking
337counter. Drivers must implement the following operations.
338
339-  int (\*enable_vblank) (struct drm_device \*dev, int crtc); void
340   (\*disable_vblank) (struct drm_device \*dev, int crtc);
341   Enable or disable vertical blanking interrupts for the given CRTC.
342
343-  u32 (\*get_vblank_counter) (struct drm_device \*dev, int crtc);
344   Retrieve the value of the vertical blanking counter for the given
345   CRTC. If the hardware maintains a vertical blanking counter its value
346   should be returned. Otherwise drivers can use the
347   :c:func:`drm_vblank_count()` helper function to handle this
348   operation.
349
350Drivers must initialize the vertical blanking handling core with a call
351to :c:func:`drm_vblank_init()` in their load operation.
352
353Vertical blanking interrupts can be enabled by the DRM core or by
354drivers themselves (for instance to handle page flipping operations).
355The DRM core maintains a vertical blanking use count to ensure that the
356interrupts are not disabled while a user still needs them. To increment
357the use count, drivers call :c:func:`drm_vblank_get()`. Upon
358return vertical blanking interrupts are guaranteed to be enabled.
359
360To decrement the use count drivers call
361:c:func:`drm_vblank_put()`. Only when the use count drops to zero
362will the DRM core disable the vertical blanking interrupts after a delay
363by scheduling a timer. The delay is accessible through the
364vblankoffdelay module parameter or the ``drm_vblank_offdelay`` global
365variable and expressed in milliseconds. Its default value is 5000 ms.
366Zero means never disable, and a negative value means disable
367immediately. Drivers may override the behaviour by setting the
368:c:type:`struct drm_device <drm_device>`
369vblank_disable_immediate flag, which when set causes vblank interrupts
370to be disabled immediately regardless of the drm_vblank_offdelay
371value. The flag should only be set if there's a properly working
372hardware vblank counter present.
373
374When a vertical blanking interrupt occurs drivers only need to call the
375:c:func:`drm_handle_vblank()` function to account for the
376interrupt.
377
378Resources allocated by :c:func:`drm_vblank_init()` must be freed
379with a call to :c:func:`drm_vblank_cleanup()` in the driver unload
380operation handler.
381
382Vertical Blanking and Interrupt Handling Functions Reference
383------------------------------------------------------------
384
385.. kernel-doc:: drivers/gpu/drm/drm_irq.c
386   :export:
387
388.. kernel-doc:: include/drm/drm_irq.h
389   :internal:
390