1.. SPDX-License-Identifier: GPL-2.0 2 3Writing Tests 4============= 5 6Test Cases 7---------- 8 9The fundamental unit in KUnit is the test case. A test case is a function with 10the signature ``void (*)(struct kunit *test)``. It calls the function under test 11and then sets *expectations* for what should happen. For example: 12 13.. code-block:: c 14 15 void example_test_success(struct kunit *test) 16 { 17 } 18 19 void example_test_failure(struct kunit *test) 20 { 21 KUNIT_FAIL(test, "This test never passes."); 22 } 23 24In the above example, ``example_test_success`` always passes because it does 25nothing; no expectations are set, and therefore all expectations pass. On the 26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, 27which is a special expectation that logs a message and causes the test case to 28fail. 29 30Expectations 31~~~~~~~~~~~~ 32An *expectation* specifies that we expect a piece of code to do something in a 33test. An expectation is called like a function. A test is made by setting 34expectations about the behavior of a piece of code under test. When one or more 35expectations fail, the test case fails and information about the failure is 36logged. For example: 37 38.. code-block:: c 39 40 void add_test_basic(struct kunit *test) 41 { 42 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 43 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 44 } 45 46In the above example, ``add_test_basic`` makes a number of assertions about the 47behavior of a function called ``add``. The first parameter is always of type 48``struct kunit *``, which contains information about the current test context. 49The second parameter, in this case, is what the value is expected to be. The 50last value is what the value actually is. If ``add`` passes all of these 51expectations, the test case, ``add_test_basic`` will pass; if any one of these 52expectations fails, the test case will fail. 53 54A test case *fails* when any expectation is violated; however, the test will 55continue to run, and try other expectations until the test case ends or is 56otherwise terminated. This is as opposed to *assertions* which are discussed 57later. 58 59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst. 60 61.. note:: 62 A single test case should be short, easy to understand, and focused on a 63 single behavior. 64 65For example, if we want to rigorously test the ``add`` function above, create 66additional tests cases which would test each property that an ``add`` function 67should have as shown below: 68 69.. code-block:: c 70 71 void add_test_basic(struct kunit *test) 72 { 73 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 74 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 75 } 76 77 void add_test_negative(struct kunit *test) 78 { 79 KUNIT_EXPECT_EQ(test, 0, add(-1, 1)); 80 } 81 82 void add_test_max(struct kunit *test) 83 { 84 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX)); 85 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN)); 86 } 87 88 void add_test_overflow(struct kunit *test) 89 { 90 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); 91 } 92 93Assertions 94~~~~~~~~~~ 95 96An assertion is like an expectation, except that the assertion immediately 97terminates the test case if the condition is not satisfied. For example: 98 99.. code-block:: c 100 101 static void test_sort(struct kunit *test) 102 { 103 int *a, i, r = 1; 104 a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); 105 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); 106 for (i = 0; i < TEST_LEN; i++) { 107 r = (r * 725861) % 6599; 108 a[i] = r; 109 } 110 sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); 111 for (i = 0; i < TEST_LEN-1; i++) 112 KUNIT_EXPECT_LE(test, a[i], a[i + 1]); 113 } 114 115In this example, we need to be able to allocate an array to test the ``sort()`` 116function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_NULL()`` to abort the test if 117there's an allocation error. 118 119.. note:: 120 In other test frameworks, ``ASSERT`` macros are often implemented by calling 121 ``return`` so they only work from the test function. In KUnit, we stop the 122 current kthread on failure, so you can call them from anywhere. 123 124.. note:: 125 Warning: There is an exception to the above rule. You shouldn't use assertions 126 in the suite's exit() function, or in the free function for a resource. These 127 run when a test is shutting down, and an assertion here prevents further 128 cleanup code from running, potentially leading to a memory leak. 129 130Customizing error messages 131-------------------------- 132 133Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSERT`` macros have a ``_MSG`` 134variant. These take a format string and arguments to provide additional 135context to the automatically generated error messages. 136 137.. code-block:: c 138 139 char some_str[41]; 140 generate_sha1_hex_string(some_str); 141 142 /* Before. Not easy to tell why the test failed. */ 143 KUNIT_EXPECT_EQ(test, strlen(some_str), 40); 144 145 /* After. Now we see the offending string. */ 146 KUNIT_EXPECT_EQ_MSG(test, strlen(some_str), 40, "some_str='%s'", some_str); 147 148Alternatively, one can take full control over the error message by using 149``KUNIT_FAIL()``, e.g. 150 151.. code-block:: c 152 153 /* Before */ 154 KUNIT_EXPECT_EQ(test, some_setup_function(), 0); 155 156 /* After: full control over the failure message. */ 157 if (some_setup_function()) 158 KUNIT_FAIL(test, "Failed to setup thing for testing"); 159 160 161Test Suites 162~~~~~~~~~~~ 163 164We need many test cases covering all the unit's behaviors. It is common to have 165many similar tests. In order to reduce duplication in these closely related 166tests, most unit testing frameworks (including KUnit) provide the concept of a 167*test suite*. A test suite is a collection of test cases for a unit of code 168with optional setup and teardown functions that run before/after the whole 169suite and/or every test case. 170 171.. note:: 172 A test case will only run if it is associated with a test suite. 173 174For example: 175 176.. code-block:: c 177 178 static struct kunit_case example_test_cases[] = { 179 KUNIT_CASE(example_test_foo), 180 KUNIT_CASE(example_test_bar), 181 KUNIT_CASE(example_test_baz), 182 {} 183 }; 184 185 static struct kunit_suite example_test_suite = { 186 .name = "example", 187 .init = example_test_init, 188 .exit = example_test_exit, 189 .suite_init = example_suite_init, 190 .suite_exit = example_suite_exit, 191 .test_cases = example_test_cases, 192 }; 193 kunit_test_suite(example_test_suite); 194 195In the above example, the test suite ``example_test_suite`` would first run 196``example_suite_init``, then run the test cases ``example_test_foo``, 197``example_test_bar``, and ``example_test_baz``. Each would have 198``example_test_init`` called immediately before it and ``example_test_exit`` 199called immediately after it. Finally, ``example_suite_exit`` would be called 200after everything else. ``kunit_test_suite(example_test_suite)`` registers the 201test suite with the KUnit test framework. 202 203.. note:: 204 The ``exit`` and ``suite_exit`` functions will run even if ``init`` or 205 ``suite_init`` fail. Make sure that they can handle any inconsistent 206 state which may result from ``init`` or ``suite_init`` encountering errors 207 or exiting early. 208 209``kunit_test_suite(...)`` is a macro which tells the linker to put the 210specified test suite in a special linker section so that it can be run by KUnit 211either after ``late_init``, or when the test module is loaded (if the test was 212built as a module). 213 214For more information, see Documentation/dev-tools/kunit/api/test.rst. 215 216.. _kunit-on-non-uml: 217 218Writing Tests For Other Architectures 219------------------------------------- 220 221It is better to write tests that run on UML to tests that only run under a 222particular architecture. It is better to write tests that run under QEMU or 223another easy to obtain (and monetarily free) software environment to a specific 224piece of hardware. 225 226Nevertheless, there are still valid reasons to write a test that is architecture 227or hardware specific. For example, we might want to test code that really 228belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does 229not depend on physical hardware. Some of our test cases may not need hardware, 230only few tests actually require the hardware to test it. When hardware is not 231available, instead of disabling tests, we can skip them. 232 233Now that we have narrowed down exactly what bits are hardware specific, the 234actual procedure for writing and running the tests is same as writing normal 235KUnit tests. 236 237.. important:: 238 We may have to reset hardware state. If this is not possible, we may only 239 be able to run one test case per invocation. 240 241.. TODO(brendanhiggins@google.com): Add an actual example of an architecture- 242 dependent KUnit test. 243 244Common Patterns 245=============== 246 247Isolating Behavior 248------------------ 249 250Unit testing limits the amount of code under test to a single unit. It controls 251what code gets run when the unit under test calls a function. Where a function 252is exposed as part of an API such that the definition of that function can be 253changed without affecting the rest of the code base. In the kernel, this comes 254from two constructs: classes, which are structs that contain function pointers 255provided by the implementer, and architecture-specific functions, which have 256definitions selected at compile time. 257 258Classes 259~~~~~~~ 260 261Classes are not a construct that is built into the C programming language; 262however, it is an easily derived concept. Accordingly, in most cases, every 263project that does not use a standardized object oriented library (like GNOME's 264GObject) has their own slightly different way of doing object oriented 265programming; the Linux kernel is no exception. 266 267The central concept in kernel object oriented programming is the class. In the 268kernel, a *class* is a struct that contains function pointers. This creates a 269contract between *implementers* and *users* since it forces them to use the 270same function signature without having to call the function directly. To be a 271class, the function pointers must specify that a pointer to the class, known as 272a *class handle*, be one of the parameters. Thus the member functions (also 273known as *methods*) have access to member variables (also known as *fields*) 274allowing the same implementation to have multiple *instances*. 275 276A class can be *overridden* by *child classes* by embedding the *parent class* 277in the child class. Then when the child class *method* is called, the child 278implementation knows that the pointer passed to it is of a parent contained 279within the child. Thus, the child can compute the pointer to itself because the 280pointer to the parent is always a fixed offset from the pointer to the child. 281This offset is the offset of the parent contained in the child struct. For 282example: 283 284.. code-block:: c 285 286 struct shape { 287 int (*area)(struct shape *this); 288 }; 289 290 struct rectangle { 291 struct shape parent; 292 int length; 293 int width; 294 }; 295 296 int rectangle_area(struct shape *this) 297 { 298 struct rectangle *self = container_of(this, struct rectangle, parent); 299 300 return self->length * self->width; 301 }; 302 303 void rectangle_new(struct rectangle *self, int length, int width) 304 { 305 self->parent.area = rectangle_area; 306 self->length = length; 307 self->width = width; 308 } 309 310In this example, computing the pointer to the child from the pointer to the 311parent is done by ``container_of``. 312 313Faking Classes 314~~~~~~~~~~~~~~ 315 316In order to unit test a piece of code that calls a method in a class, the 317behavior of the method must be controllable, otherwise the test ceases to be a 318unit test and becomes an integration test. 319 320A fake class implements a piece of code that is different than what runs in a 321production instance, but behaves identical from the standpoint of the callers. 322This is done to replace a dependency that is hard to deal with, or is slow. For 323example, implementing a fake EEPROM that stores the "contents" in an 324internal buffer. Assume we have a class that represents an EEPROM: 325 326.. code-block:: c 327 328 struct eeprom { 329 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count); 330 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); 331 }; 332 333And we want to test code that buffers writes to the EEPROM: 334 335.. code-block:: c 336 337 struct eeprom_buffer { 338 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count); 339 int flush(struct eeprom_buffer *this); 340 size_t flush_count; /* Flushes when buffer exceeds flush_count. */ 341 }; 342 343 struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); 344 void destroy_eeprom_buffer(struct eeprom *eeprom); 345 346We can test this code by *faking out* the underlying EEPROM: 347 348.. code-block:: c 349 350 struct fake_eeprom { 351 struct eeprom parent; 352 char contents[FAKE_EEPROM_CONTENTS_SIZE]; 353 }; 354 355 ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count) 356 { 357 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 358 359 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 360 memcpy(buffer, this->contents + offset, count); 361 362 return count; 363 } 364 365 ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count) 366 { 367 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 368 369 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 370 memcpy(this->contents + offset, buffer, count); 371 372 return count; 373 } 374 375 void fake_eeprom_init(struct fake_eeprom *this) 376 { 377 this->parent.read = fake_eeprom_read; 378 this->parent.write = fake_eeprom_write; 379 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE); 380 } 381 382We can now use it to test ``struct eeprom_buffer``: 383 384.. code-block:: c 385 386 struct eeprom_buffer_test { 387 struct fake_eeprom *fake_eeprom; 388 struct eeprom_buffer *eeprom_buffer; 389 }; 390 391 static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test) 392 { 393 struct eeprom_buffer_test *ctx = test->priv; 394 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 395 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 396 char buffer[] = {0xff}; 397 398 eeprom_buffer->flush_count = SIZE_MAX; 399 400 eeprom_buffer->write(eeprom_buffer, buffer, 1); 401 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 402 403 eeprom_buffer->write(eeprom_buffer, buffer, 1); 404 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0); 405 406 eeprom_buffer->flush(eeprom_buffer); 407 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 408 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 409 } 410 411 static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test) 412 { 413 struct eeprom_buffer_test *ctx = test->priv; 414 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 415 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 416 char buffer[] = {0xff}; 417 418 eeprom_buffer->flush_count = 2; 419 420 eeprom_buffer->write(eeprom_buffer, buffer, 1); 421 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 422 423 eeprom_buffer->write(eeprom_buffer, buffer, 1); 424 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 425 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 426 } 427 428 static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test) 429 { 430 struct eeprom_buffer_test *ctx = test->priv; 431 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 432 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 433 char buffer[] = {0xff, 0xff}; 434 435 eeprom_buffer->flush_count = 2; 436 437 eeprom_buffer->write(eeprom_buffer, buffer, 1); 438 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 439 440 eeprom_buffer->write(eeprom_buffer, buffer, 2); 441 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 442 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 443 /* Should have only flushed the first two bytes. */ 444 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0); 445 } 446 447 static int eeprom_buffer_test_init(struct kunit *test) 448 { 449 struct eeprom_buffer_test *ctx; 450 451 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); 452 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); 453 454 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL); 455 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom); 456 fake_eeprom_init(ctx->fake_eeprom); 457 458 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent); 459 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer); 460 461 test->priv = ctx; 462 463 return 0; 464 } 465 466 static void eeprom_buffer_test_exit(struct kunit *test) 467 { 468 struct eeprom_buffer_test *ctx = test->priv; 469 470 destroy_eeprom_buffer(ctx->eeprom_buffer); 471 } 472 473Testing Against Multiple Inputs 474------------------------------- 475 476Testing just a few inputs is not enough to ensure that the code works correctly, 477for example: testing a hash function. 478 479We can write a helper macro or function. The function is called for each input. 480For example, to test ``sha1sum(1)``, we can write: 481 482.. code-block:: c 483 484 #define TEST_SHA1(in, want) \ 485 sha1sum(in, out); \ 486 KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in); 487 488 char out[40]; 489 TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); 490 TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169"); 491 492Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more 493detailed error and make the assertions clearer within the helper macros. 494 495The ``_MSG`` variants are useful when the same expectation is called multiple 496times (in a loop or helper function) and thus the line number is not enough to 497identify what failed, as shown below. 498 499In complicated cases, we recommend using a *table-driven test* compared to the 500helper macro variation, for example: 501 502.. code-block:: c 503 504 int i; 505 char out[40]; 506 507 struct sha1_test_case { 508 const char *str; 509 const char *sha1; 510 }; 511 512 struct sha1_test_case cases[] = { 513 { 514 .str = "hello world", 515 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 516 }, 517 { 518 .str = "hello world!", 519 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 520 }, 521 }; 522 for (i = 0; i < ARRAY_SIZE(cases); ++i) { 523 sha1sum(cases[i].str, out); 524 KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1, 525 "sha1sum(%s)", cases[i].str); 526 } 527 528 529There is more boilerplate code involved, but it can: 530 531* be more readable when there are multiple inputs/outputs (due to field names). 532 533 * For example, see ``fs/ext4/inode-test.c``. 534 535* reduce duplication if test cases are shared across multiple tests. 536 537 * For example: if we want to test ``sha256sum``, we could add a ``sha256`` 538 field and reuse ``cases``. 539 540* be converted to a "parameterized test". 541 542Parameterized Testing 543~~~~~~~~~~~~~~~~~~~~~ 544 545To run a test case against multiple inputs, KUnit provides a parameterized 546testing framework. This feature formalizes and extends the concept of 547table-driven tests discussed previously. 548 549A KUnit test is determined to be parameterized if a parameter generator function 550is provided when registering the test case. A test user can either write their 551own generator function or use one that is provided by KUnit. The generator 552function is stored in ``kunit_case->generate_params`` and can be set using the 553macros described in the section below. 554 555To establish the terminology, a "parameterized test" is a test which is run 556multiple times (once per "parameter" or "parameter run"). Each parameter run has 557both its own independent ``struct kunit`` (the "parameter run context") and 558access to a shared parent ``struct kunit`` (the "parameterized test context"). 559 560Passing Parameters to a Test 561^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 562There are three ways to provide the parameters to a test: 563 564Array Parameter Macros: 565 566 KUnit provides special support for the common table-driven testing pattern. 567 By applying either ``KUNIT_ARRAY_PARAM`` or ``KUNIT_ARRAY_PARAM_DESC`` to the 568 ``cases`` array from the previous section, we can create a parameterized test 569 as shown below: 570 571.. code-block:: c 572 573 // This is copy-pasted from above. 574 struct sha1_test_case { 575 const char *str; 576 const char *sha1; 577 }; 578 static const struct sha1_test_case cases[] = { 579 { 580 .str = "hello world", 581 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 582 }, 583 { 584 .str = "hello world!", 585 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 586 }, 587 }; 588 589 // Creates `sha1_gen_params()` to iterate over `cases` while using 590 // the struct member `str` for the case description. 591 KUNIT_ARRAY_PARAM_DESC(sha1, cases, str); 592 593 // Looks no different from a normal test. 594 static void sha1_test(struct kunit *test) 595 { 596 // This function can just contain the body of the for-loop. 597 // The former `cases[i]` is accessible under test->param_value. 598 char out[40]; 599 struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value); 600 601 sha1sum(test_param->str, out); 602 KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1, 603 "sha1sum(%s)", test_param->str); 604 } 605 606 // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the 607 // function declared by KUNIT_ARRAY_PARAM or KUNIT_ARRAY_PARAM_DESC. 608 static struct kunit_case sha1_test_cases[] = { 609 KUNIT_CASE_PARAM(sha1_test, sha1_gen_params), 610 {} 611 }; 612 613Custom Parameter Generator Function: 614 615 The generator function is responsible for generating parameters one-by-one 616 and has the following signature: 617 ``const void* (*)(struct kunit *test, const void *prev, char *desc)``. 618 You can pass the generator function to the ``KUNIT_CASE_PARAM`` 619 or ``KUNIT_CASE_PARAM_WITH_INIT`` macros. 620 621 The function receives the previously generated parameter as the ``prev`` argument 622 (which is ``NULL`` on the first call) and can also access the parameterized 623 test context passed as the ``test`` argument. KUnit calls this function 624 repeatedly until it returns ``NULL``, which signifies that a parameterized 625 test ended. 626 627 Below is an example of how it works: 628 629.. code-block:: c 630 631 #define MAX_TEST_BUFFER_SIZE 8 632 633 // Example generator function. It produces a sequence of buffer sizes that 634 // are powers of two, starting at 1 (e.g., 1, 2, 4, 8). 635 static const void *buffer_size_gen_params(struct kunit *test, const void *prev, char *desc) 636 { 637 long prev_buffer_size = (long)prev; 638 long next_buffer_size = 1; // Start with an initial size of 1. 639 640 // Stop generating parameters if the limit is reached or exceeded. 641 if (prev_buffer_size >= MAX_TEST_BUFFER_SIZE) 642 return NULL; 643 644 // For subsequent calls, calculate the next size by doubling the previous one. 645 if (prev) 646 next_buffer_size = prev_buffer_size << 1; 647 648 return (void *)next_buffer_size; 649 } 650 651 // Simple test to validate that kunit_kzalloc provides zeroed memory. 652 static void buffer_zero_test(struct kunit *test) 653 { 654 long buffer_size = (long)test->param_value; 655 // Use kunit_kzalloc to allocate a zero-initialized buffer. This makes the 656 // memory "parameter run managed," meaning it's automatically cleaned up at 657 // the end of each parameter run. 658 int *buf = kunit_kzalloc(test, buffer_size * sizeof(int), GFP_KERNEL); 659 660 // Ensure the allocation was successful. 661 KUNIT_ASSERT_NOT_NULL(test, buf); 662 663 // Loop through the buffer and confirm every element is zero. 664 for (int i = 0; i < buffer_size; i++) 665 KUNIT_EXPECT_EQ(test, buf[i], 0); 666 } 667 668 static struct kunit_case buffer_test_cases[] = { 669 KUNIT_CASE_PARAM(buffer_zero_test, buffer_size_gen_params), 670 {} 671 }; 672 673Runtime Parameter Array Registration in the Init Function: 674 675 For scenarios where you might need to initialize a parameterized test, you 676 can directly register a parameter array to the parameterized test context. 677 678 To do this, you must pass the parameterized test context, the array itself, 679 the array size, and a ``get_description()`` function to the 680 ``kunit_register_params_array()`` macro. This macro populates 681 ``struct kunit_params`` within the parameterized test context, effectively 682 storing a parameter array object. The ``get_description()`` function will 683 be used for populating parameter descriptions and has the following signature: 684 ``void (*)(struct kunit *test, const void *param, char *desc)``. Note that it 685 also has access to the parameterized test context. 686 687 .. important:: 688 When using this way to register a parameter array, you will need to 689 manually pass ``kunit_array_gen_params()`` as the generator function to 690 ``KUNIT_CASE_PARAM_WITH_INIT``. ``kunit_array_gen_params()`` is a KUnit 691 helper that will use the registered array to generate the parameters. 692 693 If needed, instead of passing the KUnit helper, you can also pass your 694 own custom generator function that utilizes the parameter array. To 695 access the parameter array from within the parameter generator 696 function use ``test->params_array.params``. 697 698 The ``kunit_register_params_array()`` macro should be called within a 699 ``param_init()`` function that initializes the parameterized test and has 700 the following signature ``int (*)(struct kunit *test)``. For a detailed 701 explanation of this mechanism please refer to the "Adding Shared Resources" 702 section that is after this one. This method supports registering both 703 dynamically built and static parameter arrays. 704 705 The code snippet below shows the ``example_param_init_dynamic_arr`` test that 706 utilizes ``make_fibonacci_params()`` to create a dynamic array, which is then 707 registered using ``kunit_register_params_array()``. To see the full code 708 please refer to lib/kunit/kunit-example-test.c. 709 710.. code-block:: c 711 712 /* 713 * Example of a parameterized test param_init() function that registers a dynamic 714 * array of parameters. 715 */ 716 static int example_param_init_dynamic_arr(struct kunit *test) 717 { 718 size_t seq_size; 719 int *fibonacci_params; 720 721 kunit_info(test, "initializing parameterized test\n"); 722 723 seq_size = 6; 724 fibonacci_params = make_fibonacci_params(test, seq_size); 725 if (!fibonacci_params) 726 return -ENOMEM; 727 /* 728 * Passes the dynamic parameter array information to the parameterized test 729 * context struct kunit. The array and its metadata will be stored in 730 * test->parent->params_array. The array itself will be located in 731 * params_data.params. 732 */ 733 kunit_register_params_array(test, fibonacci_params, seq_size, 734 example_param_dynamic_arr_get_desc); 735 return 0; 736 } 737 738 static struct kunit_case example_test_cases[] = { 739 /* 740 * Note how we pass kunit_array_gen_params() to use the array we 741 * registered in example_param_init_dynamic_arr() to generate 742 * parameters. 743 */ 744 KUNIT_CASE_PARAM_WITH_INIT(example_params_test_with_init_dynamic_arr, 745 kunit_array_gen_params, 746 example_param_init_dynamic_arr, 747 example_param_exit_dynamic_arr), 748 {} 749 }; 750 751Adding Shared Resources 752^^^^^^^^^^^^^^^^^^^^^^^ 753All parameter runs in this framework hold a reference to the parameterized test 754context, which can be accessed using the parent ``struct kunit`` pointer. The 755parameterized test context is not used to execute any test logic itself; instead, 756it serves as a container for shared resources. 757 758It's possible to add resources to share between parameter runs within a 759parameterized test by using ``KUNIT_CASE_PARAM_WITH_INIT``, to which you pass 760custom ``param_init()`` and ``param_exit()`` functions. These functions run once 761before and once after the parameterized test, respectively. 762 763The ``param_init()`` function, with the signature ``int (*)(struct kunit *test)``, 764can be used for adding resources to the ``resources`` or ``priv`` fields of 765the parameterized test context, registering the parameter array, and any other 766initialization logic. 767 768The ``param_exit()`` function, with the signature ``void (*)(struct kunit *test)``, 769can be used to release any resources that were not parameterized test managed (i.e. 770not automatically cleaned up after the parameterized test ends) and for any other 771exit logic. 772 773Both ``param_init()`` and ``param_exit()`` are passed the parameterized test 774context behind the scenes. However, the test case function receives the parameter 775run context. Therefore, to manage and access shared resources from within a test 776case function, you must use ``test->parent``. 777 778For instance, finding a shared resource allocated by the Resource API requires 779passing ``test->parent`` to ``kunit_find_resource()``. This principle extends to 780all other APIs that might be used in the test case function, including 781``kunit_kzalloc()``, ``kunit_kmalloc_array()``, and others (see 782Documentation/dev-tools/kunit/api/test.rst and the 783Documentation/dev-tools/kunit/api/resource.rst). 784 785.. note:: 786 The ``suite->init()`` function, which executes before each parameter run, 787 receives the parameter run context. Therefore, any resources set up in 788 ``suite->init()`` are cleaned up after each parameter run. 789 790The code below shows how you can add the shared resources. Note that this code 791utilizes the Resource API, which you can read more about here: 792Documentation/dev-tools/kunit/api/resource.rst. To see the full version of this 793code please refer to lib/kunit/kunit-example-test.c. 794 795.. code-block:: c 796 797 static int example_resource_init(struct kunit_resource *res, void *context) 798 { 799 ... /* Code that allocates memory and stores context in res->data. */ 800 } 801 802 /* This function deallocates memory for the kunit_resource->data field. */ 803 static void example_resource_free(struct kunit_resource *res) 804 { 805 kfree(res->data); 806 } 807 808 /* This match function locates a test resource based on defined criteria. */ 809 static bool example_resource_alloc_match(struct kunit *test, struct kunit_resource *res, 810 void *match_data) 811 { 812 return res->data && res->free == example_resource_free; 813 } 814 815 /* Function to initialize the parameterized test. */ 816 static int example_param_init(struct kunit *test) 817 { 818 int ctx = 3; /* Data to be stored. */ 819 void *data = kunit_alloc_resource(test, example_resource_init, 820 example_resource_free, 821 GFP_KERNEL, &ctx); 822 if (!data) 823 return -ENOMEM; 824 kunit_register_params_array(test, example_params_array, 825 ARRAY_SIZE(example_params_array)); 826 return 0; 827 } 828 829 /* Example test that uses shared resources in test->resources. */ 830 static void example_params_test_with_init(struct kunit *test) 831 { 832 int threshold; 833 const struct example_param *param = test->param_value; 834 /* Here we pass test->parent to access the parameterized test context. */ 835 struct kunit_resource *res = kunit_find_resource(test->parent, 836 example_resource_alloc_match, 837 NULL); 838 839 threshold = *((int *)res->data); 840 KUNIT_ASSERT_LE(test, param->value, threshold); 841 kunit_put_resource(res); 842 } 843 844 static struct kunit_case example_test_cases[] = { 845 KUNIT_CASE_PARAM_WITH_INIT(example_params_test_with_init, kunit_array_gen_params, 846 example_param_init, NULL), 847 {} 848 }; 849 850As an alternative to using the KUnit Resource API for sharing resources, you can 851place them in ``test->parent->priv``. This serves as a more lightweight method 852for resource storage, best for scenarios where complex resource management is 853not required. 854 855As stated previously ``param_init()`` and ``param_exit()`` get the parameterized 856test context. So, you can directly use ``test->priv`` within ``param_init/exit`` 857to manage shared resources. However, from within the test case function, you must 858navigate up to the parent ``struct kunit`` i.e. the parameterized test context. 859Therefore, you need to use ``test->parent->priv`` to access those same 860resources. 861 862The resources placed in ``test->parent->priv`` will need to be allocated in 863memory to persist across the parameter runs. If memory is allocated using the 864KUnit memory allocation APIs (described more in the "Allocating Memory" section 865below), you won't need to worry about deallocation. The APIs will make the memory 866parameterized test 'managed', ensuring that it will automatically get cleaned up 867after the parameterized test concludes. 868 869The code below demonstrates example usage of the ``priv`` field for shared 870resources: 871 872.. code-block:: c 873 874 static const struct example_param { 875 int value; 876 } example_params_array[] = { 877 { .value = 3, }, 878 { .value = 2, }, 879 { .value = 1, }, 880 { .value = 0, }, 881 }; 882 883 /* Initialize the parameterized test context. */ 884 static int example_param_init_priv(struct kunit *test) 885 { 886 int ctx = 3; /* Data to be stored. */ 887 int arr_size = ARRAY_SIZE(example_params_array); 888 889 /* 890 * Allocate memory using kunit_kzalloc(). Since the `param_init` 891 * function receives the parameterized test context, this memory 892 * allocation will be scoped to the lifetime of the parameterized test. 893 */ 894 test->priv = kunit_kzalloc(test, sizeof(int), GFP_KERNEL); 895 896 /* Assign the context value to test->priv.*/ 897 *((int *)test->priv) = ctx; 898 899 /* Register the parameter array. */ 900 kunit_register_params_array(test, example_params_array, arr_size, NULL); 901 return 0; 902 } 903 904 static void example_params_test_with_init_priv(struct kunit *test) 905 { 906 int threshold; 907 const struct example_param *param = test->param_value; 908 909 /* By design, test->parent will not be NULL. */ 910 KUNIT_ASSERT_NOT_NULL(test, test->parent); 911 912 /* Here we use test->parent->priv to access the shared resource. */ 913 threshold = *(int *)test->parent->priv; 914 915 KUNIT_ASSERT_LE(test, param->value, threshold); 916 } 917 918 static struct kunit_case example_tests[] = { 919 KUNIT_CASE_PARAM_WITH_INIT(example_params_test_with_init_priv, 920 kunit_array_gen_params, 921 example_param_init_priv, NULL), 922 {} 923 }; 924 925Allocating Memory 926----------------- 927 928Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit 929will then ensure that the memory is freed once the test completes. 930 931This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit 932early from a test without having to worry about remembering to call ``kfree``. 933For example: 934 935.. code-block:: c 936 937 void example_test_allocation(struct kunit *test) 938 { 939 char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); 940 /* Ensure allocation succeeded. */ 941 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer); 942 943 KUNIT_ASSERT_STREQ(test, buffer, ""); 944 } 945 946Registering Cleanup Actions 947--------------------------- 948 949If you need to perform some cleanup beyond simple use of ``kunit_kzalloc``, 950you can register a custom "deferred action", which is a cleanup function 951run when the test exits (whether cleanly, or via a failed assertion). 952 953Actions are simple functions with no return value, and a single ``void*`` 954context argument, and fulfill the same role as "cleanup" functions in Python 955and Go tests, "defer" statements in languages which support them, and 956(in some cases) destructors in RAII languages. 957 958These are very useful for unregistering things from global lists, closing 959files or other resources, or freeing resources. 960 961For example: 962 963.. code-block:: C 964 965 static void cleanup_device(void *ctx) 966 { 967 struct device *dev = (struct device *)ctx; 968 969 device_unregister(dev); 970 } 971 972 void example_device_test(struct kunit *test) 973 { 974 struct my_device dev; 975 976 device_register(&dev); 977 978 kunit_add_action(test, &cleanup_device, &dev); 979 } 980 981Note that, for functions like device_unregister which only accept a single 982pointer-sized argument, it's possible to automatically generate a wrapper 983with the ``KUNIT_DEFINE_ACTION_WRAPPER()`` macro, for example: 984 985.. code-block:: C 986 987 KUNIT_DEFINE_ACTION_WRAPPER(device_unregister, device_unregister_wrapper, struct device *); 988 kunit_add_action(test, &device_unregister_wrapper, &dev); 989 990You should do this in preference to manually casting to the ``kunit_action_t`` type, 991as casting function pointers will break Control Flow Integrity (CFI). 992 993``kunit_add_action`` can fail if, for example, the system is out of memory. 994You can use ``kunit_add_action_or_reset`` instead which runs the action 995immediately if it cannot be deferred. 996 997If you need more control over when the cleanup function is called, you 998can trigger it early using ``kunit_release_action``, or cancel it entirely 999with ``kunit_remove_action``. 1000 1001 1002Testing Static Functions 1003------------------------ 1004 1005If you want to test static functions without exposing those functions outside of 1006testing, one option is conditionally export the symbol. When KUnit is enabled, 1007the symbol is exposed but remains static otherwise. To use this method, follow 1008the template below. 1009 1010.. code-block:: c 1011 1012 /* In the file containing functions to test "my_file.c" */ 1013 1014 #include <kunit/visibility.h> 1015 #include <my_file.h> 1016 ... 1017 VISIBLE_IF_KUNIT int do_interesting_thing() 1018 { 1019 ... 1020 } 1021 EXPORT_SYMBOL_IF_KUNIT(do_interesting_thing); 1022 1023 /* In the header file "my_file.h" */ 1024 1025 #if IS_ENABLED(CONFIG_KUNIT) 1026 int do_interesting_thing(void); 1027 #endif 1028 1029 /* In the KUnit test file "my_file_test.c" */ 1030 1031 #include <kunit/visibility.h> 1032 #include <my_file.h> 1033 ... 1034 MODULE_IMPORT_NS("EXPORTED_FOR_KUNIT_TESTING"); 1035 ... 1036 // Use do_interesting_thing() in tests 1037 1038For a full example, see this `patch <https://lore.kernel.org/all/20221207014024.340230-3-rmoar@google.com/>`_ 1039where a test is modified to conditionally expose static functions for testing 1040using the macros above. 1041 1042As an **alternative** to the method above, you could conditionally ``#include`` 1043the test file at the end of your .c file. This is not recommended but works 1044if needed. For example: 1045 1046.. code-block:: c 1047 1048 /* In "my_file.c" */ 1049 1050 static int do_interesting_thing(); 1051 1052 #ifdef CONFIG_MY_KUNIT_TEST 1053 #include "my_kunit_test.c" 1054 #endif 1055 1056Injecting Test-Only Code 1057------------------------ 1058 1059Similar to as shown above, we can add test-specific logic. For example: 1060 1061.. code-block:: c 1062 1063 /* In my_file.h */ 1064 1065 #ifdef CONFIG_MY_KUNIT_TEST 1066 /* Defined in my_kunit_test.c */ 1067 void test_only_hook(void); 1068 #else 1069 void test_only_hook(void) { } 1070 #endif 1071 1072This test-only code can be made more useful by accessing the current ``kunit_test`` 1073as shown in next section: *Accessing The Current Test*. 1074 1075Accessing The Current Test 1076-------------------------- 1077 1078In some cases, we need to call test-only code from outside the test file. This 1079is helpful, for example, when providing a fake implementation of a function, or 1080to fail any current test from within an error handler. 1081We can do this via the ``kunit_test`` field in ``task_struct``, which we can 1082access using the ``kunit_get_current_test()`` function in ``kunit/test-bug.h``. 1083 1084``kunit_get_current_test()`` is safe to call even if KUnit is not enabled. If 1085KUnit is not enabled, or if no test is running in the current task, it will 1086return ``NULL``. This compiles down to either a no-op or a static key check, 1087so will have a negligible performance impact when no test is running. 1088 1089The example below uses this to implement a "mock" implementation of a function, ``foo``: 1090 1091.. code-block:: c 1092 1093 #include <kunit/test-bug.h> /* for kunit_get_current_test */ 1094 1095 struct test_data { 1096 int foo_result; 1097 int want_foo_called_with; 1098 }; 1099 1100 static int fake_foo(int arg) 1101 { 1102 struct kunit *test = kunit_get_current_test(); 1103 struct test_data *test_data = test->priv; 1104 1105 KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); 1106 return test_data->foo_result; 1107 } 1108 1109 static void example_simple_test(struct kunit *test) 1110 { 1111 /* Assume priv (private, a member used to pass test data from 1112 * the init function) is allocated in the suite's .init */ 1113 struct test_data *test_data = test->priv; 1114 1115 test_data->foo_result = 42; 1116 test_data->want_foo_called_with = 1; 1117 1118 /* In a real test, we'd probably pass a pointer to fake_foo somewhere 1119 * like an ops struct, etc. instead of calling it directly. */ 1120 KUNIT_EXPECT_EQ(test, fake_foo(1), 42); 1121 } 1122 1123In this example, we are using the ``priv`` member of ``struct kunit`` as a way 1124of passing data to the test from the init function. In general ``priv`` is 1125pointer that can be used for any user data. This is preferred over static 1126variables, as it avoids concurrency issues. 1127 1128Had we wanted something more flexible, we could have used a named ``kunit_resource``. 1129Each test can have multiple resources which have string names providing the same 1130flexibility as a ``priv`` member, but also, for example, allowing helper 1131functions to create resources without conflicting with each other. It is also 1132possible to define a clean up function for each resource, making it easy to 1133avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/resource.rst. 1134 1135Failing The Current Test 1136------------------------ 1137 1138If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` 1139which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. 1140For example, we have an option to enable some extra debug checks on some data 1141structures as shown below: 1142 1143.. code-block:: c 1144 1145 #include <kunit/test-bug.h> 1146 1147 #ifdef CONFIG_EXTRA_DEBUG_CHECKS 1148 static void validate_my_data(struct data *data) 1149 { 1150 if (is_valid(data)) 1151 return; 1152 1153 kunit_fail_current_test("data %p is invalid", data); 1154 1155 /* Normal, non-KUnit, error reporting code here. */ 1156 } 1157 #else 1158 static void my_debug_function(void) { } 1159 #endif 1160 1161``kunit_fail_current_test()`` is safe to call even if KUnit is not enabled. If 1162KUnit is not enabled, or if no test is running in the current task, it will do 1163nothing. This compiles down to either a no-op or a static key check, so will 1164have a negligible performance impact when no test is running. 1165 1166Managing Fake Devices and Drivers 1167--------------------------------- 1168 1169When testing drivers or code which interacts with drivers, many functions will 1170require a ``struct device`` or ``struct device_driver``. In many cases, setting 1171up a real device is not required to test any given function, so a fake device 1172can be used instead. 1173 1174KUnit provides helper functions to create and manage these fake devices, which 1175are internally of type ``struct kunit_device``, and are attached to a special 1176``kunit_bus``. These devices support managed device resources (devres), as 1177described in Documentation/driver-api/driver-model/devres.rst 1178 1179To create a KUnit-managed ``struct device_driver``, use ``kunit_driver_create()``, 1180which will create a driver with the given name, on the ``kunit_bus``. This driver 1181will automatically be destroyed when the corresponding test finishes, but can also 1182be manually destroyed with ``driver_unregister()``. 1183 1184To create a fake device, use the ``kunit_device_register()``, which will create 1185and register a device, using a new KUnit-managed driver created with ``kunit_driver_create()``. 1186To provide a specific, non-KUnit-managed driver, use ``kunit_device_register_with_driver()`` 1187instead. Like with managed drivers, KUnit-managed fake devices are automatically 1188cleaned up when the test finishes, but can be manually cleaned up early with 1189``kunit_device_unregister()``. 1190 1191The KUnit devices should be used in preference to ``root_device_register()``, and 1192instead of ``platform_device_register()`` in cases where the device is not otherwise 1193a platform device. 1194 1195For example: 1196 1197.. code-block:: c 1198 1199 #include <kunit/device.h> 1200 1201 static void test_my_device(struct kunit *test) 1202 { 1203 struct device *fake_device; 1204 const char *dev_managed_string; 1205 1206 // Create a fake device. 1207 fake_device = kunit_device_register(test, "my_device"); 1208 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, fake_device) 1209 1210 // Pass it to functions which need a device. 1211 dev_managed_string = devm_kstrdup(fake_device, "Hello, World!"); 1212 1213 // Everything is cleaned up automatically when the test ends. 1214 }