xref: /linux/Documentation/bpf/llvm_reloc.rst (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3====================
4BPF LLVM Relocations
5====================
6
7This document describes LLVM BPF backend relocation types.
8
9Relocation Record
10=================
11
12LLVM BPF backend records each relocation with the following 16-byte
13ELF structure::
14
15  typedef struct
16  {
17    Elf64_Addr    r_offset;  // Offset from the beginning of section.
18    Elf64_Xword   r_info;    // Relocation type and symbol index.
19  } Elf64_Rel;
20
21For example, for the following code::
22
23  int g1 __attribute__((section("sec")));
24  int g2 __attribute__((section("sec")));
25  static volatile int l1 __attribute__((section("sec")));
26  static volatile int l2 __attribute__((section("sec")));
27  int test() {
28    return g1 + g2 + l1 + l2;
29  }
30
31Compiled with ``clang --target=bpf -O2 -c test.c``, the following is
32the code with ``llvm-objdump -dr test.o``::
33
34       0:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
35                0000000000000000:  R_BPF_64_64  g1
36       2:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
37       3:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
38                0000000000000018:  R_BPF_64_64  g2
39       5:       61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
40       6:       0f 10 00 00 00 00 00 00 r0 += r1
41       7:       18 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r1 = 8 ll
42                0000000000000038:  R_BPF_64_64  sec
43       9:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
44      10:       0f 10 00 00 00 00 00 00 r0 += r1
45      11:       18 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 r1 = 12 ll
46                0000000000000058:  R_BPF_64_64  sec
47      13:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
48      14:       0f 10 00 00 00 00 00 00 r0 += r1
49      15:       95 00 00 00 00 00 00 00 exit
50
51There are four relocations in the above for four ``LD_imm64`` instructions.
52The following ``llvm-readelf -r test.o`` shows the binary values of the four
53relocations::
54
55  Relocation section '.rel.text' at offset 0x190 contains 4 entries:
56      Offset             Info             Type               Symbol's Value  Symbol's Name
57  0000000000000000  0000000600000001 R_BPF_64_64            0000000000000000 g1
58  0000000000000018  0000000700000001 R_BPF_64_64            0000000000000004 g2
59  0000000000000038  0000000400000001 R_BPF_64_64            0000000000000000 sec
60  0000000000000058  0000000400000001 R_BPF_64_64            0000000000000000 sec
61
62Each relocation is represented by ``Offset`` (8 bytes) and ``Info`` (8 bytes).
63For example, the first relocation corresponds to the first instruction
64(Offset 0x0) and the corresponding ``Info`` indicates the relocation type
65of ``R_BPF_64_64`` (type 1) and the entry in the symbol table (entry 6).
66The following is the symbol table with ``llvm-readelf -s test.o``::
67
68  Symbol table '.symtab' contains 8 entries:
69     Num:    Value          Size Type    Bind   Vis       Ndx Name
70       0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT   UND
71       1: 0000000000000000     0 FILE    LOCAL  DEFAULT   ABS test.c
72       2: 0000000000000008     4 OBJECT  LOCAL  DEFAULT     4 l1
73       3: 000000000000000c     4 OBJECT  LOCAL  DEFAULT     4 l2
74       4: 0000000000000000     0 SECTION LOCAL  DEFAULT     4 sec
75       5: 0000000000000000   128 FUNC    GLOBAL DEFAULT     2 test
76       6: 0000000000000000     4 OBJECT  GLOBAL DEFAULT     4 g1
77       7: 0000000000000004     4 OBJECT  GLOBAL DEFAULT     4 g2
78
79The 6th entry is global variable ``g1`` with value 0.
80
81Similarly, the second relocation is at ``.text`` offset ``0x18``, instruction 3,
82has a type of ``R_BPF_64_64`` and refers to entry 7 in the symbol table.
83The second relocation resolves to global variable ``g2`` which has a symbol
84value 4. The symbol value represents the offset from the start of ``.data``
85section where the initial value of the global variable ``g2`` is stored.
86
87The third and fourth relocations refer to static variables ``l1``
88and ``l2``. From the ``.rel.text`` section above, it is not clear
89to which symbols they really refer as they both refer to
90symbol table entry 4, symbol ``sec``, which has ``STT_SECTION`` type
91and represents a section. So for a static variable or function,
92the section offset is written to the original insn
93buffer, which is called ``A`` (addend). Looking at
94above insn ``7`` and ``11``, they have section offset ``8`` and ``12``.
95From symbol table, we can find that they correspond to entries ``2``
96and ``3`` for ``l1`` and ``l2``.
97
98In general, the ``A`` is 0 for global variables and functions,
99and is the section offset or some computation result based on
100section offset for static variables/functions. The non-section-offset
101case refers to function calls. See below for more details.
102
103Different Relocation Types
104==========================
105
106Six relocation types are supported. The following is an overview and
107``S`` represents the value of the symbol in the symbol table::
108
109  Enum  ELF Reloc Type     Description      BitSize  Offset        Calculation
110  0     R_BPF_NONE         None
111  1     R_BPF_64_64        ld_imm64 insn    32       r_offset + 4  S + A
112  2     R_BPF_64_ABS64     normal data      64       r_offset      S + A
113  3     R_BPF_64_ABS32     normal data      32       r_offset      S + A
114  4     R_BPF_64_NODYLD32  .BTF[.ext] data  32       r_offset      S + A
115  10    R_BPF_64_32        call insn        32       r_offset + 4  (S + A) / 8 - 1
116
117For example, ``R_BPF_64_64`` relocation type is used for ``ld_imm64`` instruction.
118The actual to-be-relocated data (0 or section offset)
119is stored at ``r_offset + 4`` and the read/write
120data bitsize is 32 (4 bytes). The relocation can be resolved with
121the symbol value plus implicit addend. Note that the ``BitSize`` is 32 which
122means the section offset must be less than or equal to ``UINT32_MAX`` and this
123is enforced by LLVM BPF backend.
124
125In another case, ``R_BPF_64_ABS64`` relocation type is used for normal 64-bit data.
126The actual to-be-relocated data is stored at ``r_offset`` and the read/write data
127bitsize is 64 (8 bytes). The relocation can be resolved with
128the symbol value plus implicit addend.
129
130Both ``R_BPF_64_ABS32`` and ``R_BPF_64_NODYLD32`` types are for 32-bit data.
131But ``R_BPF_64_NODYLD32`` specifically refers to relocations in ``.BTF`` and
132``.BTF.ext`` sections. For cases like bcc where llvm ``ExecutionEngine RuntimeDyld``
133is involved, ``R_BPF_64_NODYLD32`` types of relocations should not be resolved
134to actual function/variable address. Otherwise, ``.BTF`` and ``.BTF.ext``
135become unusable by bcc and kernel.
136
137Type ``R_BPF_64_32`` is used for call instruction. The call target section
138offset is stored at ``r_offset + 4`` (32bit) and calculated as
139``(S + A) / 8 - 1``.
140
141Examples
142========
143
144Types ``R_BPF_64_64`` and ``R_BPF_64_32`` are used to resolve ``ld_imm64``
145and ``call`` instructions. For example::
146
147  __attribute__((noinline)) __attribute__((section("sec1")))
148  int gfunc(int a, int b) {
149    return a * b;
150  }
151  static __attribute__((noinline)) __attribute__((section("sec1")))
152  int lfunc(int a, int b) {
153    return a + b;
154  }
155  int global __attribute__((section("sec2")));
156  int test(int a, int b) {
157    return gfunc(a, b) +  lfunc(a, b) + global;
158  }
159
160Compiled with ``clang --target=bpf -O2 -c test.c``, we will have
161following code with `llvm-objdump -dr test.o``::
162
163  Disassembly of section .text:
164
165  0000000000000000 <test>:
166         0:       bf 26 00 00 00 00 00 00 r6 = r2
167         1:       bf 17 00 00 00 00 00 00 r7 = r1
168         2:       85 10 00 00 ff ff ff ff call -1
169                  0000000000000010:  R_BPF_64_32  gfunc
170         3:       bf 08 00 00 00 00 00 00 r8 = r0
171         4:       bf 71 00 00 00 00 00 00 r1 = r7
172         5:       bf 62 00 00 00 00 00 00 r2 = r6
173         6:       85 10 00 00 02 00 00 00 call 2
174                  0000000000000030:  R_BPF_64_32  sec1
175         7:       0f 80 00 00 00 00 00 00 r0 += r8
176         8:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
177                  0000000000000040:  R_BPF_64_64  global
178        10:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
179        11:       0f 10 00 00 00 00 00 00 r0 += r1
180        12:       95 00 00 00 00 00 00 00 exit
181
182  Disassembly of section sec1:
183
184  0000000000000000 <gfunc>:
185         0:       bf 20 00 00 00 00 00 00 r0 = r2
186         1:       2f 10 00 00 00 00 00 00 r0 *= r1
187         2:       95 00 00 00 00 00 00 00 exit
188
189  0000000000000018 <lfunc>:
190         3:       bf 20 00 00 00 00 00 00 r0 = r2
191         4:       0f 10 00 00 00 00 00 00 r0 += r1
192         5:       95 00 00 00 00 00 00 00 exit
193
194The first relocation corresponds to ``gfunc(a, b)`` where ``gfunc`` has a value of 0,
195so the ``call`` instruction offset is ``(0 + 0)/8 - 1 = -1``.
196The second relocation corresponds to ``lfunc(a, b)`` where ``lfunc`` has a section
197offset ``0x18``, so the ``call`` instruction offset is ``(0 + 0x18)/8 - 1 = 2``.
198The third relocation corresponds to ld_imm64 of ``global``, which has a section
199offset ``0``.
200
201The following is an example to show how R_BPF_64_ABS64 could be generated::
202
203  int global() { return 0; }
204  struct t { void *g; } gbl = { global };
205
206Compiled with ``clang --target=bpf -O2 -g -c test.c``, we will see a
207relocation below in ``.data`` section with command
208``llvm-readelf -r test.o``::
209
210  Relocation section '.rel.data' at offset 0x458 contains 1 entries:
211      Offset             Info             Type               Symbol's Value  Symbol's Name
212  0000000000000000  0000000700000002 R_BPF_64_ABS64         0000000000000000 global
213
214The relocation says the first 8-byte of ``.data`` section should be
215filled with address of ``global`` variable.
216
217With ``llvm-readelf`` output, we can see that dwarf sections have a bunch of
218``R_BPF_64_ABS32`` and ``R_BPF_64_ABS64`` relocations::
219
220  Relocation section '.rel.debug_info' at offset 0x468 contains 13 entries:
221      Offset             Info             Type               Symbol's Value  Symbol's Name
222  0000000000000006  0000000300000003 R_BPF_64_ABS32         0000000000000000 .debug_abbrev
223  000000000000000c  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
224  0000000000000012  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
225  0000000000000016  0000000600000003 R_BPF_64_ABS32         0000000000000000 .debug_line
226  000000000000001a  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
227  000000000000001e  0000000200000002 R_BPF_64_ABS64         0000000000000000 .text
228  000000000000002b  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
229  0000000000000037  0000000800000002 R_BPF_64_ABS64         0000000000000000 gbl
230  0000000000000040  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
231  ......
232
233The .BTF/.BTF.ext sections has R_BPF_64_NODYLD32 relocations::
234
235  Relocation section '.rel.BTF' at offset 0x538 contains 1 entries:
236      Offset             Info             Type               Symbol's Value  Symbol's Name
237  0000000000000084  0000000800000004 R_BPF_64_NODYLD32      0000000000000000 gbl
238
239  Relocation section '.rel.BTF.ext' at offset 0x548 contains 2 entries:
240      Offset             Info             Type               Symbol's Value  Symbol's Name
241  000000000000002c  0000000200000004 R_BPF_64_NODYLD32      0000000000000000 .text
242  0000000000000040  0000000200000004 R_BPF_64_NODYLD32      0000000000000000 .text
243
244.. _btf-co-re-relocations:
245
246=================
247CO-RE Relocations
248=================
249
250From object file point of view CO-RE mechanism is implemented as a set
251of CO-RE specific relocation records. These relocation records are not
252related to ELF relocations and are encoded in .BTF.ext section.
253See :ref:`Documentation/bpf/btf.rst <BTF_Ext_Section>` for more
254information on .BTF.ext structure.
255
256CO-RE relocations are applied to BPF instructions to update immediate
257or offset fields of the instruction at load time with information
258relevant for target kernel.
259
260Field to patch is selected basing on the instruction class:
261
262* For BPF_ALU, BPF_ALU64, BPF_LD `immediate` field is patched;
263* For BPF_LDX, BPF_STX, BPF_ST `offset` field is patched;
264* BPF_JMP, BPF_JMP32 instructions **should not** be patched.
265
266Relocation kinds
267================
268
269There are several kinds of CO-RE relocations that could be split in
270three groups:
271
272* Field-based - patch instruction with field related information, e.g.
273  change offset field of the BPF_LDX instruction to reflect offset
274  of a specific structure field in the target kernel.
275
276* Type-based - patch instruction with type related information, e.g.
277  change immediate field of the BPF_ALU move instruction to 0 or 1 to
278  reflect if specific type is present in the target kernel.
279
280* Enum-based - patch instruction with enum related information, e.g.
281  change immediate field of the BPF_LD_IMM64 instruction to reflect
282  value of a specific enum literal in the target kernel.
283
284The complete list of relocation kinds is represented by the following enum:
285
286.. code-block:: c
287
288 enum bpf_core_relo_kind {
289	BPF_CORE_FIELD_BYTE_OFFSET = 0,  /* field byte offset */
290	BPF_CORE_FIELD_BYTE_SIZE   = 1,  /* field size in bytes */
291	BPF_CORE_FIELD_EXISTS      = 2,  /* field existence in target kernel */
292	BPF_CORE_FIELD_SIGNED      = 3,  /* field signedness (0 - unsigned, 1 - signed) */
293	BPF_CORE_FIELD_LSHIFT_U64  = 4,  /* bitfield-specific left bitshift */
294	BPF_CORE_FIELD_RSHIFT_U64  = 5,  /* bitfield-specific right bitshift */
295	BPF_CORE_TYPE_ID_LOCAL     = 6,  /* type ID in local BPF object */
296	BPF_CORE_TYPE_ID_TARGET    = 7,  /* type ID in target kernel */
297	BPF_CORE_TYPE_EXISTS       = 8,  /* type existence in target kernel */
298	BPF_CORE_TYPE_SIZE         = 9,  /* type size in bytes */
299	BPF_CORE_ENUMVAL_EXISTS    = 10, /* enum value existence in target kernel */
300	BPF_CORE_ENUMVAL_VALUE     = 11, /* enum value integer value */
301	BPF_CORE_TYPE_MATCHES      = 12, /* type match in target kernel */
302 };
303
304Notes:
305
306* ``BPF_CORE_FIELD_LSHIFT_U64`` and ``BPF_CORE_FIELD_RSHIFT_U64`` are
307  supposed to be used to read bitfield values using the following
308  algorithm:
309
310  .. code-block:: c
311
312     // To read bitfield ``f`` from ``struct s``
313     is_signed = relo(s->f, BPF_CORE_FIELD_SIGNED)
314     off = relo(s->f, BPF_CORE_FIELD_BYTE_OFFSET)
315     sz  = relo(s->f, BPF_CORE_FIELD_BYTE_SIZE)
316     l   = relo(s->f, BPF_CORE_FIELD_LSHIFT_U64)
317     r   = relo(s->f, BPF_CORE_FIELD_RSHIFT_U64)
318     // define ``v`` as signed or unsigned integer of size ``sz``
319     v = *({s|u}<sz> *)((void *)s + off)
320     v <<= l
321     v >>= r
322
323* The ``BPF_CORE_TYPE_MATCHES`` queries matching relation, defined as
324  follows:
325
326  * for integers: types match if size and signedness match;
327  * for arrays & pointers: target types are recursively matched;
328  * for structs & unions:
329
330    * local members need to exist in target with the same name;
331
332    * for each member we recursively check match unless it is already behind a
333      pointer, in which case we only check matching names and compatible kind;
334
335  * for enums:
336
337    * local variants have to have a match in target by symbolic name (but not
338      numeric value);
339
340    * size has to match (but enum may match enum64 and vice versa);
341
342  * for function pointers:
343
344    * number and position of arguments in local type has to match target;
345    * for each argument and the return value we recursively check match.
346
347CO-RE Relocation Record
348=======================
349
350Relocation record is encoded as the following structure:
351
352.. code-block:: c
353
354 struct bpf_core_relo {
355	__u32 insn_off;
356	__u32 type_id;
357	__u32 access_str_off;
358	enum bpf_core_relo_kind kind;
359 };
360
361* ``insn_off`` - instruction offset (in bytes) within a code section
362  associated with this relocation;
363
364* ``type_id`` - BTF type ID of the "root" (containing) entity of a
365  relocatable type or field;
366
367* ``access_str_off`` - offset into corresponding .BTF string section.
368  String interpretation depends on specific relocation kind:
369
370  * for field-based relocations, string encodes an accessed field using
371    a sequence of field and array indices, separated by colon (:). It's
372    conceptually very close to LLVM's `getelementptr <GEP_>`_ instruction's
373    arguments for identifying offset to a field. For example, consider the
374    following C code:
375
376    .. code-block:: c
377
378       struct sample {
379           int a;
380           int b;
381           struct { int c[10]; };
382       } __attribute__((preserve_access_index));
383       struct sample *s;
384
385    * Access to ``s[0].a`` would be encoded as ``0:0``:
386
387      * ``0``: first element of ``s`` (as if ``s`` is an array);
388      * ``0``: index of field ``a`` in ``struct sample``.
389
390    * Access to ``s->a`` would be encoded as ``0:0`` as well.
391    * Access to ``s->b`` would be encoded as ``0:1``:
392
393      * ``0``: first element of ``s``;
394      * ``1``: index of field ``b`` in ``struct sample``.
395
396    * Access to ``s[1].c[5]`` would be encoded as ``1:2:0:5``:
397
398      * ``1``: second element of ``s``;
399      * ``2``: index of anonymous structure field in ``struct sample``;
400      * ``0``: index of field ``c`` in anonymous structure;
401      * ``5``: access to array element #5.
402
403  * for type-based relocations, string is expected to be just "0";
404
405  * for enum value-based relocations, string contains an index of enum
406     value within its enum type;
407
408* ``kind`` - one of ``enum bpf_core_relo_kind``.
409
410.. _GEP: https://llvm.org/docs/LangRef.html#getelementptr-instruction
411
412.. _btf_co_re_relocation_examples:
413
414CO-RE Relocation Examples
415=========================
416
417For the following C code:
418
419.. code-block:: c
420
421 struct foo {
422   int a;
423   int b;
424   unsigned c:15;
425 } __attribute__((preserve_access_index));
426
427 enum bar { U, V };
428
429With the following BTF definitions:
430
431.. code-block::
432
433 ...
434 [2] STRUCT 'foo' size=8 vlen=2
435        'a' type_id=3 bits_offset=0
436        'b' type_id=3 bits_offset=32
437        'c' type_id=4 bits_offset=64 bitfield_size=15
438 [3] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
439 [4] INT 'unsigned int' size=4 bits_offset=0 nr_bits=32 encoding=(none)
440 ...
441 [16] ENUM 'bar' encoding=UNSIGNED size=4 vlen=2
442        'U' val=0
443        'V' val=1
444
445Field offset relocations are generated automatically when
446``__attribute__((preserve_access_index))`` is used, for example:
447
448.. code-block:: c
449
450  void alpha(struct foo *s, volatile unsigned long *g) {
451    *g = s->a;
452    s->a = 1;
453  }
454
455  00 <alpha>:
456    0:  r3 = *(s32 *)(r1 + 0x0)
457           00:  CO-RE <byte_off> [2] struct foo::a (0:0)
458    1:  *(u64 *)(r2 + 0x0) = r3
459    2:  *(u32 *)(r1 + 0x0) = 0x1
460           10:  CO-RE <byte_off> [2] struct foo::a (0:0)
461    3:  exit
462
463
464All relocation kinds could be requested via built-in functions.
465E.g. field-based relocations:
466
467.. code-block:: c
468
469  void bravo(struct foo *s, volatile unsigned long *g) {
470    *g = __builtin_preserve_field_info(s->b, 0 /* field byte offset */);
471    *g = __builtin_preserve_field_info(s->b, 1 /* field byte size */);
472    *g = __builtin_preserve_field_info(s->b, 2 /* field existence */);
473    *g = __builtin_preserve_field_info(s->b, 3 /* field signedness */);
474    *g = __builtin_preserve_field_info(s->c, 4 /* bitfield left shift */);
475    *g = __builtin_preserve_field_info(s->c, 5 /* bitfield right shift */);
476  }
477
478  20 <bravo>:
479     4:     r1 = 0x4
480            20:  CO-RE <byte_off> [2] struct foo::b (0:1)
481     5:     *(u64 *)(r2 + 0x0) = r1
482     6:     r1 = 0x4
483            30:  CO-RE <byte_sz> [2] struct foo::b (0:1)
484     7:     *(u64 *)(r2 + 0x0) = r1
485     8:     r1 = 0x1
486            40:  CO-RE <field_exists> [2] struct foo::b (0:1)
487     9:     *(u64 *)(r2 + 0x0) = r1
488    10:     r1 = 0x1
489            50:  CO-RE <signed> [2] struct foo::b (0:1)
490    11:     *(u64 *)(r2 + 0x0) = r1
491    12:     r1 = 0x31
492            60:  CO-RE <lshift_u64> [2] struct foo::c (0:2)
493    13:     *(u64 *)(r2 + 0x0) = r1
494    14:     r1 = 0x31
495            70:  CO-RE <rshift_u64> [2] struct foo::c (0:2)
496    15:     *(u64 *)(r2 + 0x0) = r1
497    16:     exit
498
499
500Type-based relocations:
501
502.. code-block:: c
503
504  void charlie(struct foo *s, volatile unsigned long *g) {
505    *g = __builtin_preserve_type_info(*s, 0 /* type existence */);
506    *g = __builtin_preserve_type_info(*s, 1 /* type size */);
507    *g = __builtin_preserve_type_info(*s, 2 /* type matches */);
508    *g = __builtin_btf_type_id(*s, 0 /* type id in this object file */);
509    *g = __builtin_btf_type_id(*s, 1 /* type id in target kernel */);
510  }
511
512  88 <charlie>:
513    17:     r1 = 0x1
514            88:  CO-RE <type_exists> [2] struct foo
515    18:     *(u64 *)(r2 + 0x0) = r1
516    19:     r1 = 0xc
517            98:  CO-RE <type_size> [2] struct foo
518    20:     *(u64 *)(r2 + 0x0) = r1
519    21:     r1 = 0x1
520            a8:  CO-RE <type_matches> [2] struct foo
521    22:     *(u64 *)(r2 + 0x0) = r1
522    23:     r1 = 0x2 ll
523            b8:  CO-RE <local_type_id> [2] struct foo
524    25:     *(u64 *)(r2 + 0x0) = r1
525    26:     r1 = 0x2 ll
526            d0:  CO-RE <target_type_id> [2] struct foo
527    28:     *(u64 *)(r2 + 0x0) = r1
528    29:     exit
529
530Enum-based relocations:
531
532.. code-block:: c
533
534  void delta(struct foo *s, volatile unsigned long *g) {
535    *g = __builtin_preserve_enum_value(*(enum bar *)U, 0 /* enum literal existence */);
536    *g = __builtin_preserve_enum_value(*(enum bar *)V, 1 /* enum literal value */);
537  }
538
539  f0 <delta>:
540    30:     r1 = 0x1 ll
541            f0:  CO-RE <enumval_exists> [16] enum bar::U = 0
542    32:     *(u64 *)(r2 + 0x0) = r1
543    33:     r1 = 0x1 ll
544            108:  CO-RE <enumval_value> [16] enum bar::V = 1
545    35:     *(u64 *)(r2 + 0x0) = r1
546    36:     exit
547