xref: /linux/Documentation/bpf/llvm_reloc.rst (revision 6fd44a30d0297c22406276ffb717f373170943ee)
1.. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3====================
4BPF LLVM Relocations
5====================
6
7This document describes LLVM BPF backend relocation types.
8
9Relocation Record
10=================
11
12LLVM BPF backend records each relocation with the following 16-byte
13ELF structure::
14
15  typedef struct
16  {
17    Elf64_Addr    r_offset;  // Offset from the beginning of section.
18    Elf64_Xword   r_info;    // Relocation type and symbol index.
19  } Elf64_Rel;
20
21For example, for the following code::
22
23  int g1 __attribute__((section("sec")));
24  int g2 __attribute__((section("sec")));
25  static volatile int l1 __attribute__((section("sec")));
26  static volatile int l2 __attribute__((section("sec")));
27  int test() {
28    return g1 + g2 + l1 + l2;
29  }
30
31Compiled with ``clang -target bpf -O2 -c test.c``, the following is
32the code with ``llvm-objdump -dr test.o``::
33
34       0:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
35                0000000000000000:  R_BPF_64_64  g1
36       2:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
37       3:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
38                0000000000000018:  R_BPF_64_64  g2
39       5:       61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
40       6:       0f 10 00 00 00 00 00 00 r0 += r1
41       7:       18 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r1 = 8 ll
42                0000000000000038:  R_BPF_64_64  sec
43       9:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
44      10:       0f 10 00 00 00 00 00 00 r0 += r1
45      11:       18 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 r1 = 12 ll
46                0000000000000058:  R_BPF_64_64  sec
47      13:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
48      14:       0f 10 00 00 00 00 00 00 r0 += r1
49      15:       95 00 00 00 00 00 00 00 exit
50
51There are four relocations in the above for four ``LD_imm64`` instructions.
52The following ``llvm-readelf -r test.o`` shows the binary values of the four
53relocations::
54
55  Relocation section '.rel.text' at offset 0x190 contains 4 entries:
56      Offset             Info             Type               Symbol's Value  Symbol's Name
57  0000000000000000  0000000600000001 R_BPF_64_64            0000000000000000 g1
58  0000000000000018  0000000700000001 R_BPF_64_64            0000000000000004 g2
59  0000000000000038  0000000400000001 R_BPF_64_64            0000000000000000 sec
60  0000000000000058  0000000400000001 R_BPF_64_64            0000000000000000 sec
61
62Each relocation is represented by ``Offset`` (8 bytes) and ``Info`` (8 bytes).
63For example, the first relocation corresponds to the first instruction
64(Offset 0x0) and the corresponding ``Info`` indicates the relocation type
65of ``R_BPF_64_64`` (type 1) and the entry in the symbol table (entry 6).
66The following is the symbol table with ``llvm-readelf -s test.o``::
67
68  Symbol table '.symtab' contains 8 entries:
69     Num:    Value          Size Type    Bind   Vis       Ndx Name
70       0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT   UND
71       1: 0000000000000000     0 FILE    LOCAL  DEFAULT   ABS test.c
72       2: 0000000000000008     4 OBJECT  LOCAL  DEFAULT     4 l1
73       3: 000000000000000c     4 OBJECT  LOCAL  DEFAULT     4 l2
74       4: 0000000000000000     0 SECTION LOCAL  DEFAULT     4 sec
75       5: 0000000000000000   128 FUNC    GLOBAL DEFAULT     2 test
76       6: 0000000000000000     4 OBJECT  GLOBAL DEFAULT     4 g1
77       7: 0000000000000004     4 OBJECT  GLOBAL DEFAULT     4 g2
78
79The 6th entry is global variable ``g1`` with value 0.
80
81Similarly, the second relocation is at ``.text`` offset ``0x18``, instruction 3,
82has a type of ``R_BPF_64_64`` and refers to entry 7 in the symbol table.
83The second relocation resolves to global variable ``g2`` which has a symbol
84value 4. The symbol value represents the offset from the start of ``.data``
85section where the initial value of the global variable ``g2`` is stored.
86
87The third and fourth relocations refer to static variables ``l1``
88and ``l2``. From the ``.rel.text`` section above, it is not clear
89to which symbols they really refer as they both refer to
90symbol table entry 4, symbol ``sec``, which has ``STT_SECTION`` type
91and represents a section. So for a static variable or function,
92the section offset is written to the original insn
93buffer, which is called ``A`` (addend). Looking at
94above insn ``7`` and ``11``, they have section offset ``8`` and ``12``.
95From symbol table, we can find that they correspond to entries ``2``
96and ``3`` for ``l1`` and ``l2``.
97
98In general, the ``A`` is 0 for global variables and functions,
99and is the section offset or some computation result based on
100section offset for static variables/functions. The non-section-offset
101case refers to function calls. See below for more details.
102
103Different Relocation Types
104==========================
105
106Six relocation types are supported. The following is an overview and
107``S`` represents the value of the symbol in the symbol table::
108
109  Enum  ELF Reloc Type     Description      BitSize  Offset        Calculation
110  0     R_BPF_NONE         None
111  1     R_BPF_64_64        ld_imm64 insn    32       r_offset + 4  S + A
112  2     R_BPF_64_ABS64     normal data      64       r_offset      S + A
113  3     R_BPF_64_ABS32     normal data      32       r_offset      S + A
114  4     R_BPF_64_NODYLD32  .BTF[.ext] data  32       r_offset      S + A
115  10    R_BPF_64_32        call insn        32       r_offset + 4  (S + A) / 8 - 1
116
117For example, ``R_BPF_64_64`` relocation type is used for ``ld_imm64`` instruction.
118The actual to-be-relocated data (0 or section offset)
119is stored at ``r_offset + 4`` and the read/write
120data bitsize is 32 (4 bytes). The relocation can be resolved with
121the symbol value plus implicit addend. Note that the ``BitSize`` is 32 which
122means the section offset must be less than or equal to ``UINT32_MAX`` and this
123is enforced by LLVM BPF backend.
124
125In another case, ``R_BPF_64_ABS64`` relocation type is used for normal 64-bit data.
126The actual to-be-relocated data is stored at ``r_offset`` and the read/write data
127bitsize is 64 (8 bytes). The relocation can be resolved with
128the symbol value plus implicit addend.
129
130Both ``R_BPF_64_ABS32`` and ``R_BPF_64_NODYLD32`` types are for 32-bit data.
131But ``R_BPF_64_NODYLD32`` specifically refers to relocations in ``.BTF`` and
132``.BTF.ext`` sections. For cases like bcc where llvm ``ExecutionEngine RuntimeDyld``
133is involved, ``R_BPF_64_NODYLD32`` types of relocations should not be resolved
134to actual function/variable address. Otherwise, ``.BTF`` and ``.BTF.ext``
135become unusable by bcc and kernel.
136
137Type ``R_BPF_64_32`` is used for call instruction. The call target section
138offset is stored at ``r_offset + 4`` (32bit) and calculated as
139``(S + A) / 8 - 1``.
140
141Examples
142========
143
144Types ``R_BPF_64_64`` and ``R_BPF_64_32`` are used to resolve ``ld_imm64``
145and ``call`` instructions. For example::
146
147  __attribute__((noinline)) __attribute__((section("sec1")))
148  int gfunc(int a, int b) {
149    return a * b;
150  }
151  static __attribute__((noinline)) __attribute__((section("sec1")))
152  int lfunc(int a, int b) {
153    return a + b;
154  }
155  int global __attribute__((section("sec2")));
156  int test(int a, int b) {
157    return gfunc(a, b) +  lfunc(a, b) + global;
158  }
159
160Compiled with ``clang -target bpf -O2 -c test.c``, we will have
161following code with `llvm-objdump -dr test.o``::
162
163  Disassembly of section .text:
164
165  0000000000000000 <test>:
166         0:       bf 26 00 00 00 00 00 00 r6 = r2
167         1:       bf 17 00 00 00 00 00 00 r7 = r1
168         2:       85 10 00 00 ff ff ff ff call -1
169                  0000000000000010:  R_BPF_64_32  gfunc
170         3:       bf 08 00 00 00 00 00 00 r8 = r0
171         4:       bf 71 00 00 00 00 00 00 r1 = r7
172         5:       bf 62 00 00 00 00 00 00 r2 = r6
173         6:       85 10 00 00 02 00 00 00 call 2
174                  0000000000000030:  R_BPF_64_32  sec1
175         7:       0f 80 00 00 00 00 00 00 r0 += r8
176         8:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
177                  0000000000000040:  R_BPF_64_64  global
178        10:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
179        11:       0f 10 00 00 00 00 00 00 r0 += r1
180        12:       95 00 00 00 00 00 00 00 exit
181
182  Disassembly of section sec1:
183
184  0000000000000000 <gfunc>:
185         0:       bf 20 00 00 00 00 00 00 r0 = r2
186         1:       2f 10 00 00 00 00 00 00 r0 *= r1
187         2:       95 00 00 00 00 00 00 00 exit
188
189  0000000000000018 <lfunc>:
190         3:       bf 20 00 00 00 00 00 00 r0 = r2
191         4:       0f 10 00 00 00 00 00 00 r0 += r1
192         5:       95 00 00 00 00 00 00 00 exit
193
194The first relocation corresponds to ``gfunc(a, b)`` where ``gfunc`` has a value of 0,
195so the ``call`` instruction offset is ``(0 + 0)/8 - 1 = -1``.
196The second relocation corresponds to ``lfunc(a, b)`` where ``lfunc`` has a section
197offset ``0x18``, so the ``call`` instruction offset is ``(0 + 0x18)/8 - 1 = 2``.
198The third relocation corresponds to ld_imm64 of ``global``, which has a section
199offset ``0``.
200
201The following is an example to show how R_BPF_64_ABS64 could be generated::
202
203  int global() { return 0; }
204  struct t { void *g; } gbl = { global };
205
206Compiled with ``clang -target bpf -O2 -g -c test.c``, we will see a
207relocation below in ``.data`` section with command
208``llvm-readelf -r test.o``::
209
210  Relocation section '.rel.data' at offset 0x458 contains 1 entries:
211      Offset             Info             Type               Symbol's Value  Symbol's Name
212  0000000000000000  0000000700000002 R_BPF_64_ABS64         0000000000000000 global
213
214The relocation says the first 8-byte of ``.data`` section should be
215filled with address of ``global`` variable.
216
217With ``llvm-readelf`` output, we can see that dwarf sections have a bunch of
218``R_BPF_64_ABS32`` and ``R_BPF_64_ABS64`` relocations::
219
220  Relocation section '.rel.debug_info' at offset 0x468 contains 13 entries:
221      Offset             Info             Type               Symbol's Value  Symbol's Name
222  0000000000000006  0000000300000003 R_BPF_64_ABS32         0000000000000000 .debug_abbrev
223  000000000000000c  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
224  0000000000000012  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
225  0000000000000016  0000000600000003 R_BPF_64_ABS32         0000000000000000 .debug_line
226  000000000000001a  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
227  000000000000001e  0000000200000002 R_BPF_64_ABS64         0000000000000000 .text
228  000000000000002b  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
229  0000000000000037  0000000800000002 R_BPF_64_ABS64         0000000000000000 gbl
230  0000000000000040  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
231  ......
232
233The .BTF/.BTF.ext sections has R_BPF_64_NODYLD32 relocations::
234
235  Relocation section '.rel.BTF' at offset 0x538 contains 1 entries:
236      Offset             Info             Type               Symbol's Value  Symbol's Name
237  0000000000000084  0000000800000004 R_BPF_64_NODYLD32      0000000000000000 gbl
238
239  Relocation section '.rel.BTF.ext' at offset 0x548 contains 2 entries:
240      Offset             Info             Type               Symbol's Value  Symbol's Name
241  000000000000002c  0000000200000004 R_BPF_64_NODYLD32      0000000000000000 .text
242  0000000000000040  0000000200000004 R_BPF_64_NODYLD32      0000000000000000 .text
243