1===================== 2BPF Type Format (BTF) 3===================== 4 51. Introduction 6=============== 7 8BTF (BPF Type Format) is the metadata format which encodes the debug info 9related to BPF program/map. The name BTF was used initially to describe data 10types. The BTF was later extended to include function info for defined 11subroutines, and line info for source/line information. 12 13The debug info is used for map pretty print, function signature, etc. The 14function signature enables better bpf program/function kernel symbol. The line 15info helps generate source annotated translated byte code, jited code and 16verifier log. 17 18The BTF specification contains two parts, 19 * BTF kernel API 20 * BTF ELF file format 21 22The kernel API is the contract between user space and kernel. The kernel 23verifies the BTF info before using it. The ELF file format is a user space 24contract between ELF file and libbpf loader. 25 26The type and string sections are part of the BTF kernel API, describing the 27debug info (mostly types related) referenced by the bpf program. These two 28sections are discussed in details in :ref:`BTF_Type_String`. 29 30.. _BTF_Type_String: 31 322. BTF Type and String Encoding 33=============================== 34 35The file ``include/uapi/linux/btf.h`` provides high-level definition of how 36types/strings are encoded. 37 38The beginning of data blob must be:: 39 40 struct btf_header { 41 __u16 magic; 42 __u8 version; 43 __u8 flags; 44 __u32 hdr_len; 45 46 /* All offsets are in bytes relative to the end of this header */ 47 __u32 type_off; /* offset of type section */ 48 __u32 type_len; /* length of type section */ 49 __u32 str_off; /* offset of string section */ 50 __u32 str_len; /* length of string section */ 51 }; 52 53The magic is ``0xeB9F``, which has different encoding for big and little 54endian systems, and can be used to test whether BTF is generated for big- or 55little-endian target. The ``btf_header`` is designed to be extensible with 56``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is 57generated. 58 592.1 String Encoding 60------------------- 61 62The first string in the string section must be a null string. The rest of 63string table is a concatenation of other null-terminated strings. 64 652.2 Type Encoding 66----------------- 67 68The type id ``0`` is reserved for ``void`` type. The type section is parsed 69sequentially and type id is assigned to each recognized type starting from id 70``1``. Currently, the following types are supported:: 71 72 #define BTF_KIND_INT 1 /* Integer */ 73 #define BTF_KIND_PTR 2 /* Pointer */ 74 #define BTF_KIND_ARRAY 3 /* Array */ 75 #define BTF_KIND_STRUCT 4 /* Struct */ 76 #define BTF_KIND_UNION 5 /* Union */ 77 #define BTF_KIND_ENUM 6 /* Enumeration */ 78 #define BTF_KIND_FWD 7 /* Forward */ 79 #define BTF_KIND_TYPEDEF 8 /* Typedef */ 80 #define BTF_KIND_VOLATILE 9 /* Volatile */ 81 #define BTF_KIND_CONST 10 /* Const */ 82 #define BTF_KIND_RESTRICT 11 /* Restrict */ 83 #define BTF_KIND_FUNC 12 /* Function */ 84 #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */ 85 #define BTF_KIND_VAR 14 /* Variable */ 86 #define BTF_KIND_DATASEC 15 /* Section */ 87 #define BTF_KIND_FLOAT 16 /* Floating point */ 88 #define BTF_KIND_DECL_TAG 17 /* Decl Tag */ 89 #define BTF_KIND_TYPE_TAG 18 /* Type Tag */ 90 91Note that the type section encodes debug info, not just pure types. 92``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram. 93 94Each type contains the following common data:: 95 96 struct btf_type { 97 __u32 name_off; 98 /* "info" bits arrangement 99 * bits 0-15: vlen (e.g. # of struct's members) 100 * bits 16-23: unused 101 * bits 24-28: kind (e.g. int, ptr, array...etc) 102 * bits 29-30: unused 103 * bit 31: kind_flag, currently used by 104 * struct, union and fwd 105 */ 106 __u32 info; 107 /* "size" is used by INT, ENUM, STRUCT and UNION. 108 * "size" tells the size of the type it is describing. 109 * 110 * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT, 111 * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG. 112 * "type" is a type_id referring to another type. 113 */ 114 union { 115 __u32 size; 116 __u32 type; 117 }; 118 }; 119 120For certain kinds, the common data are followed by kind-specific data. The 121``name_off`` in ``struct btf_type`` specifies the offset in the string table. 122The following sections detail encoding of each kind. 123 1242.2.1 BTF_KIND_INT 125~~~~~~~~~~~~~~~~~~ 126 127``struct btf_type`` encoding requirement: 128 * ``name_off``: any valid offset 129 * ``info.kind_flag``: 0 130 * ``info.kind``: BTF_KIND_INT 131 * ``info.vlen``: 0 132 * ``size``: the size of the int type in bytes. 133 134``btf_type`` is followed by a ``u32`` with the following bits arrangement:: 135 136 #define BTF_INT_ENCODING(VAL) (((VAL) & 0x0f000000) >> 24) 137 #define BTF_INT_OFFSET(VAL) (((VAL) & 0x00ff0000) >> 16) 138 #define BTF_INT_BITS(VAL) ((VAL) & 0x000000ff) 139 140The ``BTF_INT_ENCODING`` has the following attributes:: 141 142 #define BTF_INT_SIGNED (1 << 0) 143 #define BTF_INT_CHAR (1 << 1) 144 #define BTF_INT_BOOL (1 << 2) 145 146The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or 147bool, for the int type. The char and bool encoding are mostly useful for 148pretty print. At most one encoding can be specified for the int type. 149 150The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int 151type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4. 152The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()`` 153for the type. The maximum value of ``BTF_INT_BITS()`` is 128. 154 155The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values 156for this int. For example, a bitfield struct member has: 157 158 * btf member bit offset 100 from the start of the structure, 159 * btf member pointing to an int type, 160 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4`` 161 162Then in the struct memory layout, this member will occupy ``4`` bits starting 163from bits ``100 + 2 = 102``. 164 165Alternatively, the bitfield struct member can be the following to access the 166same bits as the above: 167 168 * btf member bit offset 102, 169 * btf member pointing to an int type, 170 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4`` 171 172The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of 173bitfield encoding. Currently, both llvm and pahole generate 174``BTF_INT_OFFSET() = 0`` for all int types. 175 1762.2.2 BTF_KIND_PTR 177~~~~~~~~~~~~~~~~~~ 178 179``struct btf_type`` encoding requirement: 180 * ``name_off``: 0 181 * ``info.kind_flag``: 0 182 * ``info.kind``: BTF_KIND_PTR 183 * ``info.vlen``: 0 184 * ``type``: the pointee type of the pointer 185 186No additional type data follow ``btf_type``. 187 1882.2.3 BTF_KIND_ARRAY 189~~~~~~~~~~~~~~~~~~~~ 190 191``struct btf_type`` encoding requirement: 192 * ``name_off``: 0 193 * ``info.kind_flag``: 0 194 * ``info.kind``: BTF_KIND_ARRAY 195 * ``info.vlen``: 0 196 * ``size/type``: 0, not used 197 198``btf_type`` is followed by one ``struct btf_array``:: 199 200 struct btf_array { 201 __u32 type; 202 __u32 index_type; 203 __u32 nelems; 204 }; 205 206The ``struct btf_array`` encoding: 207 * ``type``: the element type 208 * ``index_type``: the index type 209 * ``nelems``: the number of elements for this array (``0`` is also allowed). 210 211The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``, 212``u64``, ``unsigned __int128``). The original design of including 213``index_type`` follows DWARF, which has an ``index_type`` for its array type. 214Currently in BTF, beyond type verification, the ``index_type`` is not used. 215 216The ``struct btf_array`` allows chaining through element type to represent 217multidimensional arrays. For example, for ``int a[5][6]``, the following type 218information illustrates the chaining: 219 220 * [1]: int 221 * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6`` 222 * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5`` 223 224Currently, both pahole and llvm collapse multidimensional array into 225one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is 226equal to ``30``. This is because the original use case is map pretty print 227where the whole array is dumped out so one-dimensional array is enough. As 228more BTF usage is explored, pahole and llvm can be changed to generate proper 229chained representation for multidimensional arrays. 230 2312.2.4 BTF_KIND_STRUCT 232~~~~~~~~~~~~~~~~~~~~~ 2332.2.5 BTF_KIND_UNION 234~~~~~~~~~~~~~~~~~~~~ 235 236``struct btf_type`` encoding requirement: 237 * ``name_off``: 0 or offset to a valid C identifier 238 * ``info.kind_flag``: 0 or 1 239 * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION 240 * ``info.vlen``: the number of struct/union members 241 * ``info.size``: the size of the struct/union in bytes 242 243``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.:: 244 245 struct btf_member { 246 __u32 name_off; 247 __u32 type; 248 __u32 offset; 249 }; 250 251``struct btf_member`` encoding: 252 * ``name_off``: offset to a valid C identifier 253 * ``type``: the member type 254 * ``offset``: <see below> 255 256If the type info ``kind_flag`` is not set, the offset contains only bit offset 257of the member. Note that the base type of the bitfield can only be int or enum 258type. If the bitfield size is 32, the base type can be either int or enum 259type. If the bitfield size is not 32, the base type must be int, and int type 260``BTF_INT_BITS()`` encodes the bitfield size. 261 262If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member 263bitfield size and bit offset. The bitfield size and bit offset are calculated 264as below.:: 265 266 #define BTF_MEMBER_BITFIELD_SIZE(val) ((val) >> 24) 267 #define BTF_MEMBER_BIT_OFFSET(val) ((val) & 0xffffff) 268 269In this case, if the base type is an int type, it must be a regular int type: 270 271 * ``BTF_INT_OFFSET()`` must be 0. 272 * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``. 273 274The following kernel patch introduced ``kind_flag`` and explained why both 275modes exist: 276 277 https://github.com/torvalds/linux/commit/9d5f9f701b1891466fb3dbb1806ad97716f95cc3#diff-fa650a64fdd3968396883d2fe8215ff3 278 2792.2.6 BTF_KIND_ENUM 280~~~~~~~~~~~~~~~~~~~ 281 282``struct btf_type`` encoding requirement: 283 * ``name_off``: 0 or offset to a valid C identifier 284 * ``info.kind_flag``: 0 285 * ``info.kind``: BTF_KIND_ENUM 286 * ``info.vlen``: number of enum values 287 * ``size``: 4 288 289``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.:: 290 291 struct btf_enum { 292 __u32 name_off; 293 __s32 val; 294 }; 295 296The ``btf_enum`` encoding: 297 * ``name_off``: offset to a valid C identifier 298 * ``val``: any value 299 3002.2.7 BTF_KIND_FWD 301~~~~~~~~~~~~~~~~~~ 302 303``struct btf_type`` encoding requirement: 304 * ``name_off``: offset to a valid C identifier 305 * ``info.kind_flag``: 0 for struct, 1 for union 306 * ``info.kind``: BTF_KIND_FWD 307 * ``info.vlen``: 0 308 * ``type``: 0 309 310No additional type data follow ``btf_type``. 311 3122.2.8 BTF_KIND_TYPEDEF 313~~~~~~~~~~~~~~~~~~~~~~ 314 315``struct btf_type`` encoding requirement: 316 * ``name_off``: offset to a valid C identifier 317 * ``info.kind_flag``: 0 318 * ``info.kind``: BTF_KIND_TYPEDEF 319 * ``info.vlen``: 0 320 * ``type``: the type which can be referred by name at ``name_off`` 321 322No additional type data follow ``btf_type``. 323 3242.2.9 BTF_KIND_VOLATILE 325~~~~~~~~~~~~~~~~~~~~~~~ 326 327``struct btf_type`` encoding requirement: 328 * ``name_off``: 0 329 * ``info.kind_flag``: 0 330 * ``info.kind``: BTF_KIND_VOLATILE 331 * ``info.vlen``: 0 332 * ``type``: the type with ``volatile`` qualifier 333 334No additional type data follow ``btf_type``. 335 3362.2.10 BTF_KIND_CONST 337~~~~~~~~~~~~~~~~~~~~~ 338 339``struct btf_type`` encoding requirement: 340 * ``name_off``: 0 341 * ``info.kind_flag``: 0 342 * ``info.kind``: BTF_KIND_CONST 343 * ``info.vlen``: 0 344 * ``type``: the type with ``const`` qualifier 345 346No additional type data follow ``btf_type``. 347 3482.2.11 BTF_KIND_RESTRICT 349~~~~~~~~~~~~~~~~~~~~~~~~ 350 351``struct btf_type`` encoding requirement: 352 * ``name_off``: 0 353 * ``info.kind_flag``: 0 354 * ``info.kind``: BTF_KIND_RESTRICT 355 * ``info.vlen``: 0 356 * ``type``: the type with ``restrict`` qualifier 357 358No additional type data follow ``btf_type``. 359 3602.2.12 BTF_KIND_FUNC 361~~~~~~~~~~~~~~~~~~~~ 362 363``struct btf_type`` encoding requirement: 364 * ``name_off``: offset to a valid C identifier 365 * ``info.kind_flag``: 0 366 * ``info.kind``: BTF_KIND_FUNC 367 * ``info.vlen``: 0 368 * ``type``: a BTF_KIND_FUNC_PROTO type 369 370No additional type data follow ``btf_type``. 371 372A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose 373signature is defined by ``type``. The subprogram is thus an instance of that 374type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the 375:ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load` 376(ABI). 377 3782.2.13 BTF_KIND_FUNC_PROTO 379~~~~~~~~~~~~~~~~~~~~~~~~~~ 380 381``struct btf_type`` encoding requirement: 382 * ``name_off``: 0 383 * ``info.kind_flag``: 0 384 * ``info.kind``: BTF_KIND_FUNC_PROTO 385 * ``info.vlen``: # of parameters 386 * ``type``: the return type 387 388``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.:: 389 390 struct btf_param { 391 __u32 name_off; 392 __u32 type; 393 }; 394 395If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then 396``btf_param.name_off`` must point to a valid C identifier except for the 397possible last argument representing the variable argument. The btf_param.type 398refers to parameter type. 399 400If the function has variable arguments, the last parameter is encoded with 401``name_off = 0`` and ``type = 0``. 402 4032.2.14 BTF_KIND_VAR 404~~~~~~~~~~~~~~~~~~~ 405 406``struct btf_type`` encoding requirement: 407 * ``name_off``: offset to a valid C identifier 408 * ``info.kind_flag``: 0 409 * ``info.kind``: BTF_KIND_VAR 410 * ``info.vlen``: 0 411 * ``type``: the type of the variable 412 413``btf_type`` is followed by a single ``struct btf_variable`` with the 414following data:: 415 416 struct btf_var { 417 __u32 linkage; 418 }; 419 420``struct btf_var`` encoding: 421 * ``linkage``: currently only static variable 0, or globally allocated 422 variable in ELF sections 1 423 424Not all type of global variables are supported by LLVM at this point. 425The following is currently available: 426 427 * static variables with or without section attributes 428 * global variables with section attributes 429 430The latter is for future extraction of map key/value type id's from a 431map definition. 432 4332.2.15 BTF_KIND_DATASEC 434~~~~~~~~~~~~~~~~~~~~~~~ 435 436``struct btf_type`` encoding requirement: 437 * ``name_off``: offset to a valid name associated with a variable or 438 one of .data/.bss/.rodata 439 * ``info.kind_flag``: 0 440 * ``info.kind``: BTF_KIND_DATASEC 441 * ``info.vlen``: # of variables 442 * ``size``: total section size in bytes (0 at compilation time, patched 443 to actual size by BPF loaders such as libbpf) 444 445``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.:: 446 447 struct btf_var_secinfo { 448 __u32 type; 449 __u32 offset; 450 __u32 size; 451 }; 452 453``struct btf_var_secinfo`` encoding: 454 * ``type``: the type of the BTF_KIND_VAR variable 455 * ``offset``: the in-section offset of the variable 456 * ``size``: the size of the variable in bytes 457 4582.2.16 BTF_KIND_FLOAT 459~~~~~~~~~~~~~~~~~~~~~ 460 461``struct btf_type`` encoding requirement: 462 * ``name_off``: any valid offset 463 * ``info.kind_flag``: 0 464 * ``info.kind``: BTF_KIND_FLOAT 465 * ``info.vlen``: 0 466 * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16. 467 468No additional type data follow ``btf_type``. 469 4702.2.17 BTF_KIND_DECL_TAG 471~~~~~~~~~~~~~~~~~~~~~~~~ 472 473``struct btf_type`` encoding requirement: 474 * ``name_off``: offset to a non-empty string 475 * ``info.kind_flag``: 0 476 * ``info.kind``: BTF_KIND_DECL_TAG 477 * ``info.vlen``: 0 478 * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef`` 479 480``btf_type`` is followed by ``struct btf_decl_tag``.:: 481 482 struct btf_decl_tag { 483 __u32 component_idx; 484 }; 485 486The ``name_off`` encodes btf_decl_tag attribute string. 487The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``. 488For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``. 489For the other three types, if the btf_decl_tag attribute is 490applied to the ``struct``, ``union`` or ``func`` itself, 491``btf_decl_tag.component_idx`` must be ``-1``. Otherwise, 492the attribute is applied to a ``struct``/``union`` member or 493a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a 494valid index (starting from 0) pointing to a member or an argument. 495 4962.2.17 BTF_KIND_TYPE_TAG 497~~~~~~~~~~~~~~~~~~~~~~~~ 498 499``struct btf_type`` encoding requirement: 500 * ``name_off``: offset to a non-empty string 501 * ``info.kind_flag``: 0 502 * ``info.kind``: BTF_KIND_TYPE_TAG 503 * ``info.vlen``: 0 504 * ``type``: the type with ``btf_type_tag`` attribute 505 5063. BTF Kernel API 507================= 508 509The following bpf syscall command involves BTF: 510 * BPF_BTF_LOAD: load a blob of BTF data into kernel 511 * BPF_MAP_CREATE: map creation with btf key and value type info. 512 * BPF_PROG_LOAD: prog load with btf function and line info. 513 * BPF_BTF_GET_FD_BY_ID: get a btf fd 514 * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info 515 and other btf related info are returned. 516 517The workflow typically looks like: 518:: 519 520 Application: 521 BPF_BTF_LOAD 522 | 523 v 524 BPF_MAP_CREATE and BPF_PROG_LOAD 525 | 526 V 527 ...... 528 529 Introspection tool: 530 ...... 531 BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's) 532 | 533 V 534 BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd) 535 | 536 V 537 BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id) 538 | | 539 V | 540 BPF_BTF_GET_FD_BY_ID (get btf_fd) | 541 | | 542 V | 543 BPF_OBJ_GET_INFO_BY_FD (get btf) | 544 | | 545 V V 546 pretty print types, dump func signatures and line info, etc. 547 548 5493.1 BPF_BTF_LOAD 550---------------- 551 552Load a blob of BTF data into kernel. A blob of data, described in 553:ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd`` 554is returned to a userspace. 555 5563.2 BPF_MAP_CREATE 557------------------ 558 559A map can be created with ``btf_fd`` and specified key/value type id.:: 560 561 __u32 btf_fd; /* fd pointing to a BTF type data */ 562 __u32 btf_key_type_id; /* BTF type_id of the key */ 563 __u32 btf_value_type_id; /* BTF type_id of the value */ 564 565In libbpf, the map can be defined with extra annotation like below: 566:: 567 568 struct { 569 __uint(type, BPF_MAP_TYPE_ARRAY); 570 __type(key, int); 571 __type(value, struct ipv_counts); 572 __uint(max_entries, 4); 573 } btf_map SEC(".maps"); 574 575During ELF parsing, libbpf is able to extract key/value type_id's and assign 576them to BPF_MAP_CREATE attributes automatically. 577 578.. _BPF_Prog_Load: 579 5803.3 BPF_PROG_LOAD 581----------------- 582 583During prog_load, func_info and line_info can be passed to kernel with proper 584values for the following attributes: 585:: 586 587 __u32 insn_cnt; 588 __aligned_u64 insns; 589 ...... 590 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 591 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 592 __aligned_u64 func_info; /* func info */ 593 __u32 func_info_cnt; /* number of bpf_func_info records */ 594 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 595 __aligned_u64 line_info; /* line info */ 596 __u32 line_info_cnt; /* number of bpf_line_info records */ 597 598The func_info and line_info are an array of below, respectively.:: 599 600 struct bpf_func_info { 601 __u32 insn_off; /* [0, insn_cnt - 1] */ 602 __u32 type_id; /* pointing to a BTF_KIND_FUNC type */ 603 }; 604 struct bpf_line_info { 605 __u32 insn_off; /* [0, insn_cnt - 1] */ 606 __u32 file_name_off; /* offset to string table for the filename */ 607 __u32 line_off; /* offset to string table for the source line */ 608 __u32 line_col; /* line number and column number */ 609 }; 610 611func_info_rec_size is the size of each func_info record, and 612line_info_rec_size is the size of each line_info record. Passing the record 613size to kernel make it possible to extend the record itself in the future. 614 615Below are requirements for func_info: 616 * func_info[0].insn_off must be 0. 617 * the func_info insn_off is in strictly increasing order and matches 618 bpf func boundaries. 619 620Below are requirements for line_info: 621 * the first insn in each func must have a line_info record pointing to it. 622 * the line_info insn_off is in strictly increasing order. 623 624For line_info, the line number and column number are defined as below: 625:: 626 627 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 628 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 629 6303.4 BPF_{PROG,MAP}_GET_NEXT_ID 631------------------------------ 632 633In kernel, every loaded program, map or btf has a unique id. The id won't 634change during the lifetime of a program, map, or btf. 635 636The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for 637each command, to user space, for bpf program or maps, respectively, so an 638inspection tool can inspect all programs and maps. 639 6403.5 BPF_{PROG,MAP}_GET_FD_BY_ID 641------------------------------- 642 643An introspection tool cannot use id to get details about program or maps. 644A file descriptor needs to be obtained first for reference-counting purpose. 645 6463.6 BPF_OBJ_GET_INFO_BY_FD 647-------------------------- 648 649Once a program/map fd is acquired, an introspection tool can get the detailed 650information from kernel about this fd, some of which are BTF-related. For 651example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids. 652``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated 653bpf byte codes, and jited_line_info. 654 6553.7 BPF_BTF_GET_FD_BY_ID 656------------------------ 657 658With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf 659syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with 660command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the 661kernel with BPF_BTF_LOAD, can be retrieved. 662 663With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection 664tool has full btf knowledge and is able to pretty print map key/values, dump 665func signatures and line info, along with byte/jit codes. 666 6674. ELF File Format Interface 668============================ 669 6704.1 .BTF section 671---------------- 672 673The .BTF section contains type and string data. The format of this section is 674same as the one describe in :ref:`BTF_Type_String`. 675 676.. _BTF_Ext_Section: 677 6784.2 .BTF.ext section 679-------------------- 680 681The .BTF.ext section encodes func_info and line_info which needs loader 682manipulation before loading into the kernel. 683 684The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h`` 685and ``tools/lib/bpf/btf.c``. 686 687The current header of .BTF.ext section:: 688 689 struct btf_ext_header { 690 __u16 magic; 691 __u8 version; 692 __u8 flags; 693 __u32 hdr_len; 694 695 /* All offsets are in bytes relative to the end of this header */ 696 __u32 func_info_off; 697 __u32 func_info_len; 698 __u32 line_info_off; 699 __u32 line_info_len; 700 }; 701 702It is very similar to .BTF section. Instead of type/string section, it 703contains func_info and line_info section. See :ref:`BPF_Prog_Load` for details 704about func_info and line_info record format. 705 706The func_info is organized as below.:: 707 708 func_info_rec_size 709 btf_ext_info_sec for section #1 /* func_info for section #1 */ 710 btf_ext_info_sec for section #2 /* func_info for section #2 */ 711 ... 712 713``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when 714.BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of 715func_info for each specific ELF section.:: 716 717 struct btf_ext_info_sec { 718 __u32 sec_name_off; /* offset to section name */ 719 __u32 num_info; 720 /* Followed by num_info * record_size number of bytes */ 721 __u8 data[0]; 722 }; 723 724Here, num_info must be greater than 0. 725 726The line_info is organized as below.:: 727 728 line_info_rec_size 729 btf_ext_info_sec for section #1 /* line_info for section #1 */ 730 btf_ext_info_sec for section #2 /* line_info for section #2 */ 731 ... 732 733``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when 734.BTF.ext is generated. 735 736The interpretation of ``bpf_func_info->insn_off`` and 737``bpf_line_info->insn_off`` is different between kernel API and ELF API. For 738kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct 739bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the 740beginning of section (``btf_ext_info_sec->sec_name_off``). 741 7424.2 .BTF_ids section 743-------------------- 744 745The .BTF_ids section encodes BTF ID values that are used within the kernel. 746 747This section is created during the kernel compilation with the help of 748macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can 749use them to create lists and sets (sorted lists) of BTF ID values. 750 751The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values, 752with following syntax:: 753 754 BTF_ID_LIST(list) 755 BTF_ID(type1, name1) 756 BTF_ID(type2, name2) 757 758resulting in following layout in .BTF_ids section:: 759 760 __BTF_ID__type1__name1__1: 761 .zero 4 762 __BTF_ID__type2__name2__2: 763 .zero 4 764 765The ``u32 list[];`` variable is defined to access the list. 766 767The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we 768want to define unused entry in BTF_ID_LIST, like:: 769 770 BTF_ID_LIST(bpf_skb_output_btf_ids) 771 BTF_ID(struct, sk_buff) 772 BTF_ID_UNUSED 773 BTF_ID(struct, task_struct) 774 775The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values 776and their count, with following syntax:: 777 778 BTF_SET_START(set) 779 BTF_ID(type1, name1) 780 BTF_ID(type2, name2) 781 BTF_SET_END(set) 782 783resulting in following layout in .BTF_ids section:: 784 785 __BTF_ID__set__set: 786 .zero 4 787 __BTF_ID__type1__name1__3: 788 .zero 4 789 __BTF_ID__type2__name2__4: 790 .zero 4 791 792The ``struct btf_id_set set;`` variable is defined to access the list. 793 794The ``typeX`` name can be one of following:: 795 796 struct, union, typedef, func 797 798and is used as a filter when resolving the BTF ID value. 799 800All the BTF ID lists and sets are compiled in the .BTF_ids section and 801resolved during the linking phase of kernel build by ``resolve_btfids`` tool. 802 8035. Using BTF 804============ 805 8065.1 bpftool map pretty print 807---------------------------- 808 809With BTF, the map key/value can be printed based on fields rather than simply 810raw bytes. This is especially valuable for large structure or if your data 811structure has bitfields. For example, for the following map,:: 812 813 enum A { A1, A2, A3, A4, A5 }; 814 typedef enum A ___A; 815 struct tmp_t { 816 char a1:4; 817 int a2:4; 818 int :4; 819 __u32 a3:4; 820 int b; 821 ___A b1:4; 822 enum A b2:4; 823 }; 824 struct { 825 __uint(type, BPF_MAP_TYPE_ARRAY); 826 __type(key, int); 827 __type(value, struct tmp_t); 828 __uint(max_entries, 1); 829 } tmpmap SEC(".maps"); 830 831bpftool is able to pretty print like below: 832:: 833 834 [{ 835 "key": 0, 836 "value": { 837 "a1": 0x2, 838 "a2": 0x4, 839 "a3": 0x6, 840 "b": 7, 841 "b1": 0x8, 842 "b2": 0xa 843 } 844 } 845 ] 846 8475.2 bpftool prog dump 848--------------------- 849 850The following is an example showing how func_info and line_info can help prog 851dump with better kernel symbol names, function prototypes and line 852information.:: 853 854 $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv 855 [...] 856 int test_long_fname_2(struct dummy_tracepoint_args * arg): 857 bpf_prog_44a040bf25481309_test_long_fname_2: 858 ; static int test_long_fname_2(struct dummy_tracepoint_args *arg) 859 0: push %rbp 860 1: mov %rsp,%rbp 861 4: sub $0x30,%rsp 862 b: sub $0x28,%rbp 863 f: mov %rbx,0x0(%rbp) 864 13: mov %r13,0x8(%rbp) 865 17: mov %r14,0x10(%rbp) 866 1b: mov %r15,0x18(%rbp) 867 1f: xor %eax,%eax 868 21: mov %rax,0x20(%rbp) 869 25: xor %esi,%esi 870 ; int key = 0; 871 27: mov %esi,-0x4(%rbp) 872 ; if (!arg->sock) 873 2a: mov 0x8(%rdi),%rdi 874 ; if (!arg->sock) 875 2e: cmp $0x0,%rdi 876 32: je 0x0000000000000070 877 34: mov %rbp,%rsi 878 ; counts = bpf_map_lookup_elem(&btf_map, &key); 879 [...] 880 8815.3 Verifier Log 882---------------- 883 884The following is an example of how line_info can help debugging verification 885failure.:: 886 887 /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c 888 * is modified as below. 889 */ 890 data = (void *)(long)xdp->data; 891 data_end = (void *)(long)xdp->data_end; 892 /* 893 if (data + 4 > data_end) 894 return XDP_DROP; 895 */ 896 *(u32 *)data = dst->dst; 897 898 $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp 899 ; data = (void *)(long)xdp->data; 900 224: (79) r2 = *(u64 *)(r10 -112) 901 225: (61) r2 = *(u32 *)(r2 +0) 902 ; *(u32 *)data = dst->dst; 903 226: (63) *(u32 *)(r2 +0) = r1 904 invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0) 905 R2 offset is outside of the packet 906 9076. BTF Generation 908================= 909 910You need latest pahole 911 912 https://git.kernel.org/pub/scm/devel/pahole/pahole.git/ 913 914or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't 915support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,:: 916 917 -bash-4.4$ cat t.c 918 struct t { 919 int a:2; 920 int b:3; 921 int c:2; 922 } g; 923 -bash-4.4$ gcc -c -O2 -g t.c 924 -bash-4.4$ pahole -JV t.o 925 File t.o: 926 [1] STRUCT t kind_flag=1 size=4 vlen=3 927 a type_id=2 bitfield_size=2 bits_offset=0 928 b type_id=2 bitfield_size=3 bits_offset=2 929 c type_id=2 bitfield_size=2 bits_offset=5 930 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED 931 932The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target 933only. The assembly code (-S) is able to show the BTF encoding in assembly 934format.:: 935 936 -bash-4.4$ cat t2.c 937 typedef int __int32; 938 struct t2 { 939 int a2; 940 int (*f2)(char q1, __int32 q2, ...); 941 int (*f3)(); 942 } g2; 943 int main() { return 0; } 944 int test() { return 0; } 945 -bash-4.4$ clang -c -g -O2 -target bpf t2.c 946 -bash-4.4$ readelf -S t2.o 947 ...... 948 [ 8] .BTF PROGBITS 0000000000000000 00000247 949 000000000000016e 0000000000000000 0 0 1 950 [ 9] .BTF.ext PROGBITS 0000000000000000 000003b5 951 0000000000000060 0000000000000000 0 0 1 952 [10] .rel.BTF.ext REL 0000000000000000 000007e0 953 0000000000000040 0000000000000010 16 9 8 954 ...... 955 -bash-4.4$ clang -S -g -O2 -target bpf t2.c 956 -bash-4.4$ cat t2.s 957 ...... 958 .section .BTF,"",@progbits 959 .short 60319 # 0xeb9f 960 .byte 1 961 .byte 0 962 .long 24 963 .long 0 964 .long 220 965 .long 220 966 .long 122 967 .long 0 # BTF_KIND_FUNC_PROTO(id = 1) 968 .long 218103808 # 0xd000000 969 .long 2 970 .long 83 # BTF_KIND_INT(id = 2) 971 .long 16777216 # 0x1000000 972 .long 4 973 .long 16777248 # 0x1000020 974 ...... 975 .byte 0 # string offset=0 976 .ascii ".text" # string offset=1 977 .byte 0 978 .ascii "/home/yhs/tmp-pahole/t2.c" # string offset=7 979 .byte 0 980 .ascii "int main() { return 0; }" # string offset=33 981 .byte 0 982 .ascii "int test() { return 0; }" # string offset=58 983 .byte 0 984 .ascii "int" # string offset=83 985 ...... 986 .section .BTF.ext,"",@progbits 987 .short 60319 # 0xeb9f 988 .byte 1 989 .byte 0 990 .long 24 991 .long 0 992 .long 28 993 .long 28 994 .long 44 995 .long 8 # FuncInfo 996 .long 1 # FuncInfo section string offset=1 997 .long 2 998 .long .Lfunc_begin0 999 .long 3 1000 .long .Lfunc_begin1 1001 .long 5 1002 .long 16 # LineInfo 1003 .long 1 # LineInfo section string offset=1 1004 .long 2 1005 .long .Ltmp0 1006 .long 7 1007 .long 33 1008 .long 7182 # Line 7 Col 14 1009 .long .Ltmp3 1010 .long 7 1011 .long 58 1012 .long 8206 # Line 8 Col 14 1013 10147. Testing 1015========== 1016 1017Kernel bpf selftest `test_btf.c` provides extensive set of BTF-related tests. 1018