xref: /linux/Documentation/arch/powerpc/kvm-nested.rst (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1.. SPDX-License-Identifier: GPL-2.0
2
3====================================
4Nested KVM on POWER
5====================================
6
7Introduction
8============
9
10This document explains how a guest operating system can act as a
11hypervisor and run nested guests through the use of hypercalls, if the
12hypervisor has implemented them. The terms L0, L1, and L2 are used to
13refer to different software entities. L0 is the hypervisor mode entity
14that would normally be called the "host" or "hypervisor". L1 is a
15guest virtual machine that is directly run under L0 and is initiated
16and controlled by L0. L2 is a guest virtual machine that is initiated
17and controlled by L1 acting as a hypervisor.
18
19Existing API
20============
21
22Linux/KVM has had support for Nesting as an L0 or L1 since 2018
23
24The L0 code was added::
25
26   commit 8e3f5fc1045dc49fd175b978c5457f5f51e7a2ce
27   Author: Paul Mackerras <paulus@ozlabs.org>
28   Date:   Mon Oct 8 16:31:03 2018 +1100
29   KVM: PPC: Book3S HV: Framework and hcall stubs for nested virtualization
30
31The L1 code was added::
32
33   commit 360cae313702cdd0b90f82c261a8302fecef030a
34   Author: Paul Mackerras <paulus@ozlabs.org>
35   Date:   Mon Oct 8 16:31:04 2018 +1100
36   KVM: PPC: Book3S HV: Nested guest entry via hypercall
37
38This API works primarily using a single hcall h_enter_nested(). This
39call made by the L1 to tell the L0 to start an L2 vCPU with the given
40state. The L0 then starts this L2 and runs until an L2 exit condition
41is reached. Once the L2 exits, the state of the L2 is given back to
42the L1 by the L0. The full L2 vCPU state is always transferred from
43and to L1 when the L2 is run. The L0 doesn't keep any state on the L2
44vCPU (except in the short sequence in the L0 on L1 -> L2 entry and L2
45-> L1 exit).
46
47The only state kept by the L0 is the partition table. The L1 registers
48it's partition table using the h_set_partition_table() hcall. All
49other state held by the L0 about the L2s is cached state (such as
50shadow page tables).
51
52The L1 may run any L2 or vCPU without first informing the L0. It
53simply starts the vCPU using h_enter_nested(). The creation of L2s and
54vCPUs is done implicitly whenever h_enter_nested() is called.
55
56In this document, we call this existing API the v1 API.
57
58New PAPR API
59===============
60
61The new PAPR API changes from the v1 API such that the creating L2 and
62associated vCPUs is explicit. In this document, we call this the v2
63API.
64
65h_enter_nested() is replaced with H_GUEST_VCPU_RUN().  Before this can
66be called the L1 must explicitly create the L2 using h_guest_create()
67and any associated vCPUs() created with h_guest_create_vCPU(). Getting
68and setting vCPU state can also be performed using h_guest_{g|s}et
69hcall.
70
71The basic execution flow is for an L1 to create an L2, run it, and
72delete it is:
73
74- L1 and L0 negotiate capabilities with H_GUEST_{G,S}ET_CAPABILITIES()
75  (normally at L1 boot time).
76
77- L1 requests the L0 create an L2 with H_GUEST_CREATE() and receives a token
78
79- L1 requests the L0 create an L2 vCPU with H_GUEST_CREATE_VCPU()
80
81- L1 and L0 communicate the vCPU state using the H_GUEST_{G,S}ET() hcall
82
83- L1 requests the L0 runs the vCPU running H_GUEST_VCPU_RUN() hcall
84
85- L1 deletes L2 with H_GUEST_DELETE()
86
87More details of the individual hcalls follows:
88
89HCALL Details
90=============
91
92This documentation is provided to give an overall understating of the
93API. It doesn't aim to provide all the details required to implement
94an L1 or L0. Latest version of PAPR can be referred to for more details.
95
96All these HCALLs are made by the L1 to the L0.
97
98H_GUEST_GET_CAPABILITIES()
99--------------------------
100
101This is called to get the capabilities of the L0 nested
102hypervisor. This includes capabilities such the CPU versions (eg
103POWER9, POWER10) that are supported as L2s::
104
105  H_GUEST_GET_CAPABILITIES(uint64 flags)
106
107  Parameters:
108    Input:
109      flags: Reserved
110    Output:
111      R3: Return code
112      R4: Hypervisor Supported Capabilities bitmap 1
113
114H_GUEST_SET_CAPABILITIES()
115--------------------------
116
117This is called to inform the L0 of the capabilities of the L1
118hypervisor. The set of flags passed here are the same as
119H_GUEST_GET_CAPABILITIES()
120
121Typically, GET will be called first and then SET will be called with a
122subset of the flags returned from GET. This process allows the L0 and
123L1 to negotiate an agreed set of capabilities::
124
125  H_GUEST_SET_CAPABILITIES(uint64 flags,
126                           uint64 capabilitiesBitmap1)
127  Parameters:
128    Input:
129      flags: Reserved
130      capabilitiesBitmap1: Only capabilities advertised through
131                           H_GUEST_GET_CAPABILITIES
132    Output:
133      R3: Return code
134      R4: If R3 = H_P2: The number of invalid bitmaps
135      R5: If R3 = H_P2: The index of first invalid bitmap
136
137H_GUEST_CREATE()
138----------------
139
140This is called to create an L2. A unique ID of the L2 created
141(similar to an LPID) is returned, which can be used on subsequent HCALLs to
142identify the L2::
143
144  H_GUEST_CREATE(uint64 flags,
145                 uint64 continueToken);
146  Parameters:
147    Input:
148      flags: Reserved
149      continueToken: Initial call set to -1. Subsequent calls,
150                     after H_Busy or H_LongBusyOrder has been
151                     returned, value that was returned in R4.
152    Output:
153      R3: Return code. Notable:
154        H_Not_Enough_Resources: Unable to create Guest VCPU due to not
155        enough Hypervisor memory. See H_GUEST_CREATE_GET_STATE(flags =
156        takeOwnershipOfVcpuState)
157      R4: If R3 = H_Busy or_H_LongBusyOrder -> continueToken
158
159H_GUEST_CREATE_VCPU()
160---------------------
161
162This is called to create a vCPU associated with an L2. The L2 id
163(returned from H_GUEST_CREATE()) should be passed it. Also passed in
164is a unique (for this L2) vCPUid. This vCPUid is allocated by the
165L1::
166
167  H_GUEST_CREATE_VCPU(uint64 flags,
168                      uint64 guestId,
169                      uint64 vcpuId);
170  Parameters:
171    Input:
172      flags: Reserved
173      guestId: ID obtained from H_GUEST_CREATE
174      vcpuId: ID of the vCPU to be created. This must be within the
175              range of 0 to 2047
176    Output:
177      R3: Return code. Notable:
178        H_Not_Enough_Resources: Unable to create Guest VCPU due to not
179        enough Hypervisor memory. See H_GUEST_CREATE_GET_STATE(flags =
180        takeOwnershipOfVcpuState)
181
182H_GUEST_GET_STATE()
183-------------------
184
185This is called to get state associated with an L2 (Guest-wide or vCPU specific).
186This info is passed via the Guest State Buffer (GSB), a standard format as
187explained later in this doc, necessary details below:
188
189This can get either L2 wide or vcpu specific information. Examples of
190L2 wide is the timebase offset or process scoped page table
191info. Examples of vCPU specific are GPRs or VSRs. A bit in the flags
192parameter specifies if this call is L2 wide or vCPU specific and the
193IDs in the GSB must match this.
194
195The L1 provides a pointer to the GSB as a parameter to this call. Also
196provided is the L2 and vCPU IDs associated with the state to set.
197
198The L1 writes only the IDs and sizes in the GSB.  L0 writes the
199associated values for each ID in the GSB::
200
201  H_GUEST_GET_STATE(uint64 flags,
202                           uint64 guestId,
203                           uint64 vcpuId,
204                           uint64 dataBuffer,
205                           uint64 dataBufferSizeInBytes);
206  Parameters:
207    Input:
208      flags:
209         Bit 0: getGuestWideState: Request state of the Guest instead
210           of an individual VCPU.
211         Bit 1: takeOwnershipOfVcpuState Indicate the L1 is taking
212           over ownership of the VCPU state and that the L0 can free
213           the storage holding the state. The VCPU state will need to
214           be returned to the Hypervisor via H_GUEST_SET_STATE prior
215           to H_GUEST_RUN_VCPU being called for this VCPU. The data
216           returned in the dataBuffer is in a Hypervisor internal
217           format.
218         Bits 2-63: Reserved
219      guestId: ID obtained from H_GUEST_CREATE
220      vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU
221      dataBuffer: A L1 real address of the GSB.
222        If takeOwnershipOfVcpuState, size must be at least the size
223        returned by ID=0x0001
224      dataBufferSizeInBytes: Size of dataBuffer
225    Output:
226      R3: Return code
227      R4: If R3 = H_Invalid_Element_Id: The array index of the bad
228            element ID.
229          If R3 = H_Invalid_Element_Size: The array index of the bad
230             element size.
231          If R3 = H_Invalid_Element_Value: The array index of the bad
232             element value.
233
234H_GUEST_SET_STATE()
235-------------------
236
237This is called to set L2 wide or vCPU specific L2 state. This info is
238passed via the Guest State Buffer (GSB), necessary details below:
239
240This can set either L2 wide or vcpu specific information. Examples of
241L2 wide is the timebase offset or process scoped page table
242info. Examples of vCPU specific are GPRs or VSRs. A bit in the flags
243parameter specifies if this call is L2 wide or vCPU specific and the
244IDs in the GSB must match this.
245
246The L1 provides a pointer to the GSB as a parameter to this call. Also
247provided is the L2 and vCPU IDs associated with the state to set.
248
249The L1 writes all values in the GSB and the L0 only reads the GSB for
250this call::
251
252  H_GUEST_SET_STATE(uint64 flags,
253                    uint64 guestId,
254                    uint64 vcpuId,
255                    uint64 dataBuffer,
256                    uint64 dataBufferSizeInBytes);
257  Parameters:
258    Input:
259      flags:
260         Bit 0: getGuestWideState: Request state of the Guest instead
261           of an individual VCPU.
262         Bit 1: returnOwnershipOfVcpuState Return Guest VCPU state. See
263           GET_STATE takeOwnershipOfVcpuState
264         Bits 2-63: Reserved
265      guestId: ID obtained from H_GUEST_CREATE
266      vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU
267      dataBuffer: A L1 real address of the GSB.
268        If takeOwnershipOfVcpuState, size must be at least the size
269        returned by ID=0x0001
270      dataBufferSizeInBytes: Size of dataBuffer
271    Output:
272      R3: Return code
273      R4: If R3 = H_Invalid_Element_Id: The array index of the bad
274            element ID.
275          If R3 = H_Invalid_Element_Size: The array index of the bad
276             element size.
277          If R3 = H_Invalid_Element_Value: The array index of the bad
278             element value.
279
280H_GUEST_RUN_VCPU()
281------------------
282
283This is called to run an L2 vCPU. The L2 and vCPU IDs are passed in as
284parameters. The vCPU runs with the state set previously using
285H_GUEST_SET_STATE(). When the L2 exits, the L1 will resume from this
286hcall.
287
288This hcall also has associated input and output GSBs. Unlike
289H_GUEST_{S,G}ET_STATE(), these GSB pointers are not passed in as
290parameters to the hcall (This was done in the interest of
291performance). The locations of these GSBs must be preregistered using
292the H_GUEST_SET_STATE() call with ID 0x0c00 and 0x0c01 (see table
293below).
294
295The input GSB may contain only VCPU specific elements to be set. This
296GSB may also contain zero elements (ie 0 in the first 4 bytes of the
297GSB) if nothing needs to be set.
298
299On exit from the hcall, the output buffer is filled with elements
300determined by the L0. The reason for the exit is contained in GPR4 (ie
301NIP is put in GPR4).  The elements returned depend on the exit
302type. For example, if the exit reason is the L2 doing a hcall (GPR4 =
3030xc00), then GPR3-12 are provided in the output GSB as this is the
304state likely needed to service the hcall. If additional state is
305needed, H_GUEST_GET_STATE() may be called by the L1.
306
307To synthesize interrupts in the L2, when calling H_GUEST_RUN_VCPU()
308the L1 may set a flag (as a hcall parameter) and the L0 will
309synthesize the interrupt in the L2. Alternatively, the L1 may
310synthesize the interrupt itself using H_GUEST_SET_STATE() or the
311H_GUEST_RUN_VCPU() input GSB to set the state appropriately::
312
313  H_GUEST_RUN_VCPU(uint64 flags,
314                   uint64 guestId,
315                   uint64 vcpuId,
316                   uint64 dataBuffer,
317                   uint64 dataBufferSizeInBytes);
318  Parameters:
319    Input:
320      flags:
321         Bit 0: generateExternalInterrupt: Generate an external interrupt
322         Bit 1: generatePrivilegedDoorbell: Generate a Privileged Doorbell
323         Bit 2: sendToSystemReset”: Generate a System Reset Interrupt
324         Bits 3-63: Reserved
325      guestId: ID obtained from H_GUEST_CREATE
326      vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU
327    Output:
328      R3: Return code
329      R4: If R3 = H_Success: The reason L1 VCPU exited (ie. NIA)
330            0x000: The VCPU stopped running for an unspecified reason. An
331              example of this is the Hypervisor stopping a VCPU running
332              due to an outstanding interrupt for the Host Partition.
333            0x980: HDEC
334            0xC00: HCALL
335            0xE00: HDSI
336            0xE20: HISI
337            0xE40: HEA
338            0xF80: HV Fac Unavail
339          If R3 = H_Invalid_Element_Id, H_Invalid_Element_Size, or
340            H_Invalid_Element_Value: R4 is offset of the invalid element
341            in the input buffer.
342
343H_GUEST_DELETE()
344----------------
345
346This is called to delete an L2. All associated vCPUs are also
347deleted. No specific vCPU delete call is provided.
348
349A flag may be provided to delete all guests. This is used to reset the
350L0 in the case of kdump/kexec::
351
352  H_GUEST_DELETE(uint64 flags,
353                 uint64 guestId)
354  Parameters:
355    Input:
356      flags:
357         Bit 0: deleteAllGuests: deletes all guests
358         Bits 1-63: Reserved
359      guestId: ID obtained from H_GUEST_CREATE
360    Output:
361      R3: Return code
362
363Guest State Buffer
364==================
365
366The Guest State Buffer (GSB) is the main method of communicating state
367about the L2 between the L1 and L0 via H_GUEST_{G,S}ET() and
368H_GUEST_VCPU_RUN() calls.
369
370State may be associated with a whole L2 (eg timebase offset) or a
371specific L2 vCPU (eg. GPR state). Only L2 VCPU state maybe be set by
372H_GUEST_VCPU_RUN().
373
374All data in the GSB is big endian (as is standard in PAPR)
375
376The Guest state buffer has a header which gives the number of
377elements, followed by the GSB elements themselves.
378
379GSB header:
380
381+----------+----------+-------------------------------------------+
382|  Offset  |  Size    |  Purpose                                  |
383|  Bytes   |  Bytes   |                                           |
384+==========+==========+===========================================+
385|    0     |    4     |  Number of elements                       |
386+----------+----------+-------------------------------------------+
387|    4     |          |  Guest state buffer elements              |
388+----------+----------+-------------------------------------------+
389
390GSB element:
391
392+----------+----------+-------------------------------------------+
393|  Offset  |  Size    |  Purpose                                  |
394|  Bytes   |  Bytes   |                                           |
395+==========+==========+===========================================+
396|    0     |    2     |  ID                                       |
397+----------+----------+-------------------------------------------+
398|    2     |    2     |  Size of Value                            |
399+----------+----------+-------------------------------------------+
400|    4     | As above |  Value                                    |
401+----------+----------+-------------------------------------------+
402
403The ID in the GSB element specifies what is to be set. This includes
404archtected state like GPRs, VSRs, SPRs, plus also some meta data about
405the partition like the timebase offset and partition scoped page
406table information.
407
408+--------+-------+----+--------+----------------------------------+
409|   ID   | Size  | RW | Thread | Details                          |
410|        | Bytes |    | Guest  |                                  |
411|        |       |    | Scope  |                                  |
412+========+=======+====+========+==================================+
413| 0x0000 |       | RW |   TG   | NOP element                      |
414+--------+-------+----+--------+----------------------------------+
415| 0x0001 | 0x08  | R  |   G    | Size of L0 vCPU state. See:      |
416|        |       |    |        | H_GUEST_GET_STATE:               |
417|        |       |    |        | flags = takeOwnershipOfVcpuState |
418+--------+-------+----+--------+----------------------------------+
419| 0x0002 | 0x08  | R  |   G    | Size Run vCPU out buffer         |
420+--------+-------+----+--------+----------------------------------+
421| 0x0003 | 0x04  | RW |   G    | Logical PVR                      |
422+--------+-------+----+--------+----------------------------------+
423| 0x0004 | 0x08  | RW |   G    | TB Offset (L1 relative)          |
424+--------+-------+----+--------+----------------------------------+
425| 0x0005 | 0x18  | RW |   G    |Partition scoped page tbl info:   |
426|        |       |    |        |                                  |
427|        |       |    |        |- 0x00 Addr part scope table      |
428|        |       |    |        |- 0x08 Num addr bits              |
429|        |       |    |        |- 0x10 Size root dir              |
430+--------+-------+----+--------+----------------------------------+
431| 0x0006 | 0x10  | RW |   G    |Process Table Information:        |
432|        |       |    |        |                                  |
433|        |       |    |        |- 0x0 Addr proc scope table       |
434|        |       |    |        |- 0x8 Table size.                 |
435+--------+-------+----+--------+----------------------------------+
436| 0x0007-|       |    |        | Reserved                         |
437| 0x0BFF |       |    |        |                                  |
438+--------+-------+----+--------+----------------------------------+
439| 0x0C00 | 0x10  | RW |   T    |Run vCPU Input Buffer:            |
440|        |       |    |        |                                  |
441|        |       |    |        |- 0x0 Addr of buffer              |
442|        |       |    |        |- 0x8 Buffer Size.                |
443+--------+-------+----+--------+----------------------------------+
444| 0x0C01 | 0x10  | RW |   T    |Run vCPU Output Buffer:           |
445|        |       |    |        |                                  |
446|        |       |    |        |- 0x0 Addr of buffer              |
447|        |       |    |        |- 0x8 Buffer Size.                |
448+--------+-------+----+--------+----------------------------------+
449| 0x0C02 | 0x08  | RW |   T    | vCPU VPA Address                 |
450+--------+-------+----+--------+----------------------------------+
451| 0x0C03-|       |    |        | Reserved                         |
452| 0x0FFF |       |    |        |                                  |
453+--------+-------+----+--------+----------------------------------+
454| 0x1000-| 0x08  | RW |   T    | GPR 0-31                         |
455| 0x101F |       |    |        |                                  |
456+--------+-------+----+--------+----------------------------------+
457| 0x1020 |  0x08 | T  |   T    | HDEC expiry TB                   |
458+--------+-------+----+--------+----------------------------------+
459| 0x1021 | 0x08  | RW |   T    | NIA                              |
460+--------+-------+----+--------+----------------------------------+
461| 0x1022 | 0x08  | RW |   T    | MSR                              |
462+--------+-------+----+--------+----------------------------------+
463| 0x1023 | 0x08  | RW |   T    | LR                               |
464+--------+-------+----+--------+----------------------------------+
465| 0x1024 | 0x08  | RW |   T    | XER                              |
466+--------+-------+----+--------+----------------------------------+
467| 0x1025 | 0x08  | RW |   T    | CTR                              |
468+--------+-------+----+--------+----------------------------------+
469| 0x1026 | 0x08  | RW |   T    | CFAR                             |
470+--------+-------+----+--------+----------------------------------+
471| 0x1027 | 0x08  | RW |   T    | SRR0                             |
472+--------+-------+----+--------+----------------------------------+
473| 0x1028 | 0x08  | RW |   T    | SRR1                             |
474+--------+-------+----+--------+----------------------------------+
475| 0x1029 | 0x08  | RW |   T    | DAR                              |
476+--------+-------+----+--------+----------------------------------+
477| 0x102A | 0x08  | RW |   T    | DEC expiry TB                    |
478+--------+-------+----+--------+----------------------------------+
479| 0x102B | 0x08  | RW |   T    | VTB                              |
480+--------+-------+----+--------+----------------------------------+
481| 0x102C | 0x08  | RW |   T    | LPCR                             |
482+--------+-------+----+--------+----------------------------------+
483| 0x102D | 0x08  | RW |   T    | HFSCR                            |
484+--------+-------+----+--------+----------------------------------+
485| 0x102E | 0x08  | RW |   T    | FSCR                             |
486+--------+-------+----+--------+----------------------------------+
487| 0x102F | 0x08  | RW |   T    | FPSCR                            |
488+--------+-------+----+--------+----------------------------------+
489| 0x1030 | 0x08  | RW |   T    | DAWR0                            |
490+--------+-------+----+--------+----------------------------------+
491| 0x1031 | 0x08  | RW |   T    | DAWR1                            |
492+--------+-------+----+--------+----------------------------------+
493| 0x1032 | 0x08  | RW |   T    | CIABR                            |
494+--------+-------+----+--------+----------------------------------+
495| 0x1033 | 0x08  | RW |   T    | PURR                             |
496+--------+-------+----+--------+----------------------------------+
497| 0x1034 | 0x08  | RW |   T    | SPURR                            |
498+--------+-------+----+--------+----------------------------------+
499| 0x1035 | 0x08  | RW |   T    | IC                               |
500+--------+-------+----+--------+----------------------------------+
501| 0x1036-| 0x08  | RW |   T    | SPRG 0-3                         |
502| 0x1039 |       |    |        |                                  |
503+--------+-------+----+--------+----------------------------------+
504| 0x103A | 0x08  | W  |   T    | PPR                              |
505+--------+-------+----+--------+----------------------------------+
506| 0x103B | 0x08  | RW |   T    | MMCR 0-3                         |
507| 0x103E |       |    |        |                                  |
508+--------+-------+----+--------+----------------------------------+
509| 0x103F | 0x08  | RW |   T    | MMCRA                            |
510+--------+-------+----+--------+----------------------------------+
511| 0x1040 | 0x08  | RW |   T    | SIER                             |
512+--------+-------+----+--------+----------------------------------+
513| 0x1041 | 0x08  | RW |   T    | SIER 2                           |
514+--------+-------+----+--------+----------------------------------+
515| 0x1042 | 0x08  | RW |   T    | SIER 3                           |
516+--------+-------+----+--------+----------------------------------+
517| 0x1043 | 0x08  | RW |   T    | BESCR                            |
518+--------+-------+----+--------+----------------------------------+
519| 0x1044 | 0x08  | RW |   T    | EBBHR                            |
520+--------+-------+----+--------+----------------------------------+
521| 0x1045 | 0x08  | RW |   T    | EBBRR                            |
522+--------+-------+----+--------+----------------------------------+
523| 0x1046 | 0x08  | RW |   T    | AMR                              |
524+--------+-------+----+--------+----------------------------------+
525| 0x1047 | 0x08  | RW |   T    | IAMR                             |
526+--------+-------+----+--------+----------------------------------+
527| 0x1048 | 0x08  | RW |   T    | AMOR                             |
528+--------+-------+----+--------+----------------------------------+
529| 0x1049 | 0x08  | RW |   T    | UAMOR                            |
530+--------+-------+----+--------+----------------------------------+
531| 0x104A | 0x08  | RW |   T    | SDAR                             |
532+--------+-------+----+--------+----------------------------------+
533| 0x104B | 0x08  | RW |   T    | SIAR                             |
534+--------+-------+----+--------+----------------------------------+
535| 0x104C | 0x08  | RW |   T    | DSCR                             |
536+--------+-------+----+--------+----------------------------------+
537| 0x104D | 0x08  | RW |   T    | TAR                              |
538+--------+-------+----+--------+----------------------------------+
539| 0x104E | 0x08  | RW |   T    | DEXCR                            |
540+--------+-------+----+--------+----------------------------------+
541| 0x104F | 0x08  | RW |   T    | HDEXCR                           |
542+--------+-------+----+--------+----------------------------------+
543| 0x1050 | 0x08  | RW |   T    | HASHKEYR                         |
544+--------+-------+----+--------+----------------------------------+
545| 0x1051 | 0x08  | RW |   T    | HASHPKEYR                        |
546+--------+-------+----+--------+----------------------------------+
547| 0x1052 | 0x08  | RW |   T    | CTRL                             |
548+--------+-------+----+--------+----------------------------------+
549| 0x1053-|       |    |        | Reserved                         |
550| 0x1FFF |       |    |        |                                  |
551+--------+-------+----+--------+----------------------------------+
552| 0x2000 | 0x04  | RW |   T    | CR                               |
553+--------+-------+----+--------+----------------------------------+
554| 0x2001 | 0x04  | RW |   T    | PIDR                             |
555+--------+-------+----+--------+----------------------------------+
556| 0x2002 | 0x04  | RW |   T    | DSISR                            |
557+--------+-------+----+--------+----------------------------------+
558| 0x2003 | 0x04  | RW |   T    | VSCR                             |
559+--------+-------+----+--------+----------------------------------+
560| 0x2004 | 0x04  | RW |   T    | VRSAVE                           |
561+--------+-------+----+--------+----------------------------------+
562| 0x2005 | 0x04  | RW |   T    | DAWRX0                           |
563+--------+-------+----+--------+----------------------------------+
564| 0x2006 | 0x04  | RW |   T    | DAWRX1                           |
565+--------+-------+----+--------+----------------------------------+
566| 0x2007-| 0x04  | RW |   T    | PMC 1-6                          |
567| 0x200c |       |    |        |                                  |
568+--------+-------+----+--------+----------------------------------+
569| 0x200D | 0x04  | RW |   T    | WORT                             |
570+--------+-------+----+--------+----------------------------------+
571| 0x200E | 0x04  | RW |   T    | PSPB                             |
572+--------+-------+----+--------+----------------------------------+
573| 0x200F-|       |    |        | Reserved                         |
574| 0x2FFF |       |    |        |                                  |
575+--------+-------+----+--------+----------------------------------+
576| 0x3000-| 0x10  | RW |   T    | VSR 0-63                         |
577| 0x303F |       |    |        |                                  |
578+--------+-------+----+--------+----------------------------------+
579| 0x3040-|       |    |        | Reserved                         |
580| 0xEFFF |       |    |        |                                  |
581+--------+-------+----+--------+----------------------------------+
582| 0xF000 | 0x08  | R  |   T    | HDAR                             |
583+--------+-------+----+--------+----------------------------------+
584| 0xF001 | 0x04  | R  |   T    | HDSISR                           |
585+--------+-------+----+--------+----------------------------------+
586| 0xF002 | 0x04  | R  |   T    | HEIR                             |
587+--------+-------+----+--------+----------------------------------+
588| 0xF003 | 0x08  | R  |   T    | ASDR                             |
589+--------+-------+----+--------+----------------------------------+
590
591
592Miscellaneous info
593==================
594
595State not in ptregs/hvregs
596--------------------------
597
598In the v1 API, some state is not in the ptregs/hvstate. This includes
599the vector register and some SPRs. For the L1 to set this state for
600the L2, the L1 loads up these hardware registers before the
601h_enter_nested() call and the L0 ensures they end up as the L2 state
602(by not touching them).
603
604The v2 API removes this and explicitly sets this state via the GSB.
605
606L1 Implementation details: Caching state
607----------------------------------------
608
609In the v1 API, all state is sent from the L1 to the L0 and vice versa
610on every h_enter_nested() hcall. If the L0 is not currently running
611any L2s, the L0 has no state information about them. The only
612exception to this is the location of the partition table, registered
613via h_set_partition_table().
614
615The v2 API changes this so that the L0 retains the L2 state even when
616it's vCPUs are no longer running. This means that the L1 only needs to
617communicate with the L0 about L2 state when it needs to modify the L2
618state, or when it's value is out of date. This provides an opportunity
619for performance optimisation.
620
621When a vCPU exits from a H_GUEST_RUN_VCPU() call, the L1 internally
622marks all L2 state as invalid. This means that if the L1 wants to know
623the L2 state (say via a kvm_get_one_reg() call), it needs call
624H_GUEST_GET_STATE() to get that state. Once it's read, it's marked as
625valid in L1 until the L2 is run again.
626
627Also, when an L1 modifies L2 vcpu state, it doesn't need to write it
628to the L0 until that L2 vcpu runs again. Hence when the L1 updates
629state (say via a kvm_set_one_reg() call), it writes to an internal L1
630copy and only flushes this copy to the L0 when the L2 runs again via
631the H_GUEST_VCPU_RUN() input buffer.
632
633This lazy updating of state by the L1 avoids unnecessary
634H_GUEST_{G|S}ET_STATE() calls.
635