xref: /linux/Documentation/admin-guide/LSM/Smack.rst (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1=====
2Smack
3=====
4
5
6    "Good for you, you've decided to clean the elevator!"
7    - The Elevator, from Dark Star
8
9Smack is the Simplified Mandatory Access Control Kernel.
10Smack is a kernel based implementation of mandatory access
11control that includes simplicity in its primary design goals.
12
13Smack is not the only Mandatory Access Control scheme
14available for Linux. Those new to Mandatory Access Control
15are encouraged to compare Smack with the other mechanisms
16available to determine which is best suited to the problem
17at hand.
18
19Smack consists of three major components:
20
21    - The kernel
22    - Basic utilities, which are helpful but not required
23    - Configuration data
24
25The kernel component of Smack is implemented as a Linux
26Security Modules (LSM) module. It requires netlabel and
27works best with file systems that support extended attributes,
28although xattr support is not strictly required.
29It is safe to run a Smack kernel under a "vanilla" distribution.
30
31Smack kernels use the CIPSO IP option. Some network
32configurations are intolerant of IP options and can impede
33access to systems that use them as Smack does.
34
35Smack is used in the Tizen operating system. Please
36go to http://wiki.tizen.org for information about how
37Smack is used in Tizen.
38
39The current git repository for Smack user space is:
40
41	git://github.com/smack-team/smack.git
42
43This should make and install on most modern distributions.
44There are five commands included in smackutil:
45
46chsmack:
47	display or set Smack extended attribute values
48
49smackctl:
50	load the Smack access rules
51
52smackaccess:
53	report if a process with one label has access
54	to an object with another
55
56These two commands are obsolete with the introduction of
57the smackfs/load2 and smackfs/cipso2 interfaces.
58
59smackload:
60	properly formats data for writing to smackfs/load
61
62smackcipso:
63	properly formats data for writing to smackfs/cipso
64
65In keeping with the intent of Smack, configuration data is
66minimal and not strictly required. The most important
67configuration step is mounting the smackfs pseudo filesystem.
68If smackutil is installed the startup script will take care
69of this, but it can be manually as well.
70
71Add this line to ``/etc/fstab``::
72
73    smackfs /sys/fs/smackfs smackfs defaults 0 0
74
75The ``/sys/fs/smackfs`` directory is created by the kernel.
76
77Smack uses extended attributes (xattrs) to store labels on filesystem
78objects. The attributes are stored in the extended attribute security
79name space. A process must have ``CAP_MAC_ADMIN`` to change any of these
80attributes.
81
82The extended attributes that Smack uses are:
83
84SMACK64
85	Used to make access control decisions. In almost all cases
86	the label given to a new filesystem object will be the label
87	of the process that created it.
88
89SMACK64EXEC
90	The Smack label of a process that execs a program file with
91	this attribute set will run with this attribute's value.
92
93SMACK64MMAP
94	Don't allow the file to be mmapped by a process whose Smack
95	label does not allow all of the access permitted to a process
96	with the label contained in this attribute. This is a very
97	specific use case for shared libraries.
98
99SMACK64TRANSMUTE
100	Can only have the value "TRUE". If this attribute is present
101	on a directory when an object is created in the directory and
102	the Smack rule (more below) that permitted the write access
103	to the directory includes the transmute ("t") mode the object
104	gets the label of the directory instead of the label of the
105	creating process. If the object being created is a directory
106	the SMACK64TRANSMUTE attribute is set as well.
107
108SMACK64IPIN
109	This attribute is only available on file descriptors for sockets.
110	Use the Smack label in this attribute for access control
111	decisions on packets being delivered to this socket.
112
113SMACK64IPOUT
114	This attribute is only available on file descriptors for sockets.
115	Use the Smack label in this attribute for access control
116	decisions on packets coming from this socket.
117
118There are multiple ways to set a Smack label on a file::
119
120    # attr -S -s SMACK64 -V "value" path
121    # chsmack -a value path
122
123A process can see the Smack label it is running with by
124reading ``/proc/self/attr/current``. A process with ``CAP_MAC_ADMIN``
125can set the process Smack by writing there.
126
127Most Smack configuration is accomplished by writing to files
128in the smackfs filesystem. This pseudo-filesystem is mounted
129on ``/sys/fs/smackfs``.
130
131access
132	Provided for backward compatibility. The access2 interface
133	is preferred and should be used instead.
134	This interface reports whether a subject with the specified
135	Smack label has a particular access to an object with a
136	specified Smack label. Write a fixed format access rule to
137	this file. The next read will indicate whether the access
138	would be permitted. The text will be either "1" indicating
139	access, or "0" indicating denial.
140
141access2
142	This interface reports whether a subject with the specified
143	Smack label has a particular access to an object with a
144	specified Smack label. Write a long format access rule to
145	this file. The next read will indicate whether the access
146	would be permitted. The text will be either "1" indicating
147	access, or "0" indicating denial.
148
149ambient
150	This contains the Smack label applied to unlabeled network
151	packets.
152
153change-rule
154	This interface allows modification of existing access control rules.
155	The format accepted on write is::
156
157		"%s %s %s %s"
158
159	where the first string is the subject label, the second the
160	object label, the third the access to allow and the fourth the
161	access to deny. The access strings may contain only the characters
162	"rwxat-". If a rule for a given subject and object exists it will be
163	modified by enabling the permissions in the third string and disabling
164	those in the fourth string. If there is no such rule it will be
165	created using the access specified in the third and the fourth strings.
166
167cipso
168	Provided for backward compatibility. The cipso2 interface
169	is preferred and should be used instead.
170	This interface allows a specific CIPSO header to be assigned
171	to a Smack label. The format accepted on write is::
172
173		"%24s%4d%4d"["%4d"]...
174
175	The first string is a fixed Smack label. The first number is
176	the level to use. The second number is the number of categories.
177	The following numbers are the categories::
178
179		"level-3-cats-5-19          3   2   5  19"
180
181cipso2
182	This interface allows a specific CIPSO header to be assigned
183	to a Smack label. The format accepted on write is::
184
185		"%s%4d%4d"["%4d"]...
186
187	The first string is a long Smack label. The first number is
188	the level to use. The second number is the number of categories.
189	The following numbers are the categories::
190
191		"level-3-cats-5-19   3   2   5  19"
192
193direct
194	This contains the CIPSO level used for Smack direct label
195	representation in network packets.
196
197doi
198	This contains the CIPSO domain of interpretation used in
199	network packets.
200
201ipv6host
202	This interface allows specific IPv6 internet addresses to be
203	treated as single label hosts. Packets are sent to single
204	label hosts only from processes that have Smack write access
205	to the host label. All packets received from single label hosts
206	are given the specified label. The format accepted on write is::
207
208		"%h:%h:%h:%h:%h:%h:%h:%h label" or
209		"%h:%h:%h:%h:%h:%h:%h:%h/%d label".
210
211	The "::" address shortcut is not supported.
212	If label is "-DELETE" a matched entry will be deleted.
213
214load
215	Provided for backward compatibility. The load2 interface
216	is preferred and should be used instead.
217	This interface allows access control rules in addition to
218	the system defined rules to be specified. The format accepted
219	on write is::
220
221		"%24s%24s%5s"
222
223	where the first string is the subject label, the second the
224	object label, and the third the requested access. The access
225	string may contain only the characters "rwxat-", and specifies
226	which sort of access is allowed. The "-" is a placeholder for
227	permissions that are not allowed. The string "r-x--" would
228	specify read and execute access. Labels are limited to 23
229	characters in length.
230
231load2
232	This interface allows access control rules in addition to
233	the system defined rules to be specified. The format accepted
234	on write is::
235
236		"%s %s %s"
237
238	where the first string is the subject label, the second the
239	object label, and the third the requested access. The access
240	string may contain only the characters "rwxat-", and specifies
241	which sort of access is allowed. The "-" is a placeholder for
242	permissions that are not allowed. The string "r-x--" would
243	specify read and execute access.
244
245load-self
246	Provided for backward compatibility. The load-self2 interface
247	is preferred and should be used instead.
248	This interface allows process specific access rules to be
249	defined. These rules are only consulted if access would
250	otherwise be permitted, and are intended to provide additional
251	restrictions on the process. The format is the same as for
252	the load interface.
253
254load-self2
255	This interface allows process specific access rules to be
256	defined. These rules are only consulted if access would
257	otherwise be permitted, and are intended to provide additional
258	restrictions on the process. The format is the same as for
259	the load2 interface.
260
261logging
262	This contains the Smack logging state.
263
264mapped
265	This contains the CIPSO level used for Smack mapped label
266	representation in network packets.
267
268netlabel
269	This interface allows specific internet addresses to be
270	treated as single label hosts. Packets are sent to single
271	label hosts without CIPSO headers, but only from processes
272	that have Smack write access to the host label. All packets
273	received from single label hosts are given the specified
274	label. The format accepted on write is::
275
276		"%d.%d.%d.%d label" or "%d.%d.%d.%d/%d label".
277
278	If the label specified is "-CIPSO" the address is treated
279	as a host that supports CIPSO headers.
280
281onlycap
282	This contains labels processes must have for CAP_MAC_ADMIN
283	and ``CAP_MAC_OVERRIDE`` to be effective. If this file is empty
284	these capabilities are effective at for processes with any
285	label. The values are set by writing the desired labels, separated
286	by spaces, to the file or cleared by writing "-" to the file.
287
288ptrace
289	This is used to define the current ptrace policy
290
291	0 - default:
292	    this is the policy that relies on Smack access rules.
293	    For the ``PTRACE_READ`` a subject needs to have a read access on
294	    object. For the ``PTRACE_ATTACH`` a read-write access is required.
295
296	1 - exact:
297	    this is the policy that limits ``PTRACE_ATTACH``. Attach is
298	    only allowed when subject's and object's labels are equal.
299	    ``PTRACE_READ`` is not affected. Can be overridden with ``CAP_SYS_PTRACE``.
300
301	2 - draconian:
302	    this policy behaves like the 'exact' above with an
303	    exception that it can't be overridden with ``CAP_SYS_PTRACE``.
304
305revoke-subject
306	Writing a Smack label here sets the access to '-' for all access
307	rules with that subject label.
308
309unconfined
310	If the kernel is configured with ``CONFIG_SECURITY_SMACK_BRINGUP``
311	a process with ``CAP_MAC_ADMIN`` can write a label into this interface.
312	Thereafter, accesses that involve that label will be logged and
313	the access permitted if it wouldn't be otherwise. Note that this
314	is dangerous and can ruin the proper labeling of your system.
315	It should never be used in production.
316
317relabel-self
318	This interface contains a list of labels to which the process can
319	transition to, by writing to ``/proc/self/attr/current``.
320	Normally a process can change its own label to any legal value, but only
321	if it has ``CAP_MAC_ADMIN``. This interface allows a process without
322	``CAP_MAC_ADMIN`` to relabel itself to one of labels from predefined list.
323	A process without ``CAP_MAC_ADMIN`` can change its label only once. When it
324	does, this list will be cleared.
325	The values are set by writing the desired labels, separated
326	by spaces, to the file or cleared by writing "-" to the file.
327
328If you are using the smackload utility
329you can add access rules in ``/etc/smack/accesses``. They take the form::
330
331    subjectlabel objectlabel access
332
333access is a combination of the letters rwxatb which specify the
334kind of access permitted a subject with subjectlabel on an
335object with objectlabel. If there is no rule no access is allowed.
336
337Look for additional programs on http://schaufler-ca.com
338
339The Simplified Mandatory Access Control Kernel (Whitepaper)
340===========================================================
341
342Casey Schaufler
343casey@schaufler-ca.com
344
345Mandatory Access Control
346------------------------
347
348Computer systems employ a variety of schemes to constrain how information is
349shared among the people and services using the machine. Some of these schemes
350allow the program or user to decide what other programs or users are allowed
351access to pieces of data. These schemes are called discretionary access
352control mechanisms because the access control is specified at the discretion
353of the user. Other schemes do not leave the decision regarding what a user or
354program can access up to users or programs. These schemes are called mandatory
355access control mechanisms because you don't have a choice regarding the users
356or programs that have access to pieces of data.
357
358Bell & LaPadula
359---------------
360
361From the middle of the 1980's until the turn of the century Mandatory Access
362Control (MAC) was very closely associated with the Bell & LaPadula security
363model, a mathematical description of the United States Department of Defense
364policy for marking paper documents. MAC in this form enjoyed a following
365within the Capital Beltway and Scandinavian supercomputer centers but was
366often sited as failing to address general needs.
367
368Domain Type Enforcement
369-----------------------
370
371Around the turn of the century Domain Type Enforcement (DTE) became popular.
372This scheme organizes users, programs, and data into domains that are
373protected from each other. This scheme has been widely deployed as a component
374of popular Linux distributions. The administrative overhead required to
375maintain this scheme and the detailed understanding of the whole system
376necessary to provide a secure domain mapping leads to the scheme being
377disabled or used in limited ways in the majority of cases.
378
379Smack
380-----
381
382Smack is a Mandatory Access Control mechanism designed to provide useful MAC
383while avoiding the pitfalls of its predecessors. The limitations of Bell &
384LaPadula are addressed by providing a scheme whereby access can be controlled
385according to the requirements of the system and its purpose rather than those
386imposed by an arcane government policy. The complexity of Domain Type
387Enforcement and avoided by defining access controls in terms of the access
388modes already in use.
389
390Smack Terminology
391-----------------
392
393The jargon used to talk about Smack will be familiar to those who have dealt
394with other MAC systems and shouldn't be too difficult for the uninitiated to
395pick up. There are four terms that are used in a specific way and that are
396especially important:
397
398  Subject:
399	A subject is an active entity on the computer system.
400	On Smack a subject is a task, which is in turn the basic unit
401	of execution.
402
403  Object:
404	An object is a passive entity on the computer system.
405	On Smack files of all types, IPC, and tasks can be objects.
406
407  Access:
408	Any attempt by a subject to put information into or get
409	information from an object is an access.
410
411  Label:
412	Data that identifies the Mandatory Access Control
413	characteristics of a subject or an object.
414
415These definitions are consistent with the traditional use in the security
416community. There are also some terms from Linux that are likely to crop up:
417
418  Capability:
419	A task that possesses a capability has permission to
420	violate an aspect of the system security policy, as identified by
421	the specific capability. A task that possesses one or more
422	capabilities is a privileged task, whereas a task with no
423	capabilities is an unprivileged task.
424
425  Privilege:
426	A task that is allowed to violate the system security
427	policy is said to have privilege. As of this writing a task can
428	have privilege either by possessing capabilities or by having an
429	effective user of root.
430
431Smack Basics
432------------
433
434Smack is an extension to a Linux system. It enforces additional restrictions
435on what subjects can access which objects, based on the labels attached to
436each of the subject and the object.
437
438Labels
439~~~~~~
440
441Smack labels are ASCII character strings. They can be up to 255 characters
442long, but keeping them to twenty-three characters is recommended.
443Single character labels using special characters, that being anything
444other than a letter or digit, are reserved for use by the Smack development
445team. Smack labels are unstructured, case sensitive, and the only operation
446ever performed on them is comparison for equality. Smack labels cannot
447contain unprintable characters, the "/" (slash), the "\" (backslash), the "'"
448(quote) and '"' (double-quote) characters.
449Smack labels cannot begin with a '-'. This is reserved for special options.
450
451There are some predefined labels::
452
453	_ 	Pronounced "floor", a single underscore character.
454	^ 	Pronounced "hat", a single circumflex character.
455	* 	Pronounced "star", a single asterisk character.
456	? 	Pronounced "huh", a single question mark character.
457	@ 	Pronounced "web", a single at sign character.
458
459Every task on a Smack system is assigned a label. The Smack label
460of a process will usually be assigned by the system initialization
461mechanism.
462
463Access Rules
464~~~~~~~~~~~~
465
466Smack uses the traditional access modes of Linux. These modes are read,
467execute, write, and occasionally append. There are a few cases where the
468access mode may not be obvious. These include:
469
470  Signals:
471	A signal is a write operation from the subject task to
472	the object task.
473
474  Internet Domain IPC:
475	Transmission of a packet is considered a
476	write operation from the source task to the destination task.
477
478Smack restricts access based on the label attached to a subject and the label
479attached to the object it is trying to access. The rules enforced are, in
480order:
481
482	1. Any access requested by a task labeled "*" is denied.
483	2. A read or execute access requested by a task labeled "^"
484	   is permitted.
485	3. A read or execute access requested on an object labeled "_"
486	   is permitted.
487	4. Any access requested on an object labeled "*" is permitted.
488	5. Any access requested by a task on an object with the same
489	   label is permitted.
490	6. Any access requested that is explicitly defined in the loaded
491	   rule set is permitted.
492	7. Any other access is denied.
493
494Smack Access Rules
495~~~~~~~~~~~~~~~~~~
496
497With the isolation provided by Smack access separation is simple. There are
498many interesting cases where limited access by subjects to objects with
499different labels is desired. One example is the familiar spy model of
500sensitivity, where a scientist working on a highly classified project would be
501able to read documents of lower classifications and anything she writes will
502be "born" highly classified. To accommodate such schemes Smack includes a
503mechanism for specifying rules allowing access between labels.
504
505Access Rule Format
506~~~~~~~~~~~~~~~~~~
507
508The format of an access rule is::
509
510	subject-label object-label access
511
512Where subject-label is the Smack label of the task, object-label is the Smack
513label of the thing being accessed, and access is a string specifying the sort
514of access allowed. The access specification is searched for letters that
515describe access modes:
516
517	a: indicates that append access should be granted.
518	r: indicates that read access should be granted.
519	w: indicates that write access should be granted.
520	x: indicates that execute access should be granted.
521	t: indicates that the rule requests transmutation.
522	b: indicates that the rule should be reported for bring-up.
523
524Uppercase values for the specification letters are allowed as well.
525Access mode specifications can be in any order. Examples of acceptable rules
526are::
527
528	TopSecret Secret  rx
529	Secret    Unclass R
530	Manager   Game    x
531	User      HR      w
532	Snap      Crackle rwxatb
533	New       Old     rRrRr
534	Closed    Off     -
535
536Examples of unacceptable rules are::
537
538	Top Secret Secret     rx
539	Ace        Ace        r
540	Odd        spells     waxbeans
541
542Spaces are not allowed in labels. Since a subject always has access to files
543with the same label specifying a rule for that case is pointless. Only
544valid letters (rwxatbRWXATB) and the dash ('-') character are allowed in
545access specifications. The dash is a placeholder, so "a-r" is the same
546as "ar". A lone dash is used to specify that no access should be allowed.
547
548Applying Access Rules
549~~~~~~~~~~~~~~~~~~~~~
550
551The developers of Linux rarely define new sorts of things, usually importing
552schemes and concepts from other systems. Most often, the other systems are
553variants of Unix. Unix has many endearing properties, but consistency of
554access control models is not one of them. Smack strives to treat accesses as
555uniformly as is sensible while keeping with the spirit of the underlying
556mechanism.
557
558File system objects including files, directories, named pipes, symbolic links,
559and devices require access permissions that closely match those used by mode
560bit access. To open a file for reading read access is required on the file. To
561search a directory requires execute access. Creating a file with write access
562requires both read and write access on the containing directory. Deleting a
563file requires read and write access to the file and to the containing
564directory. It is possible that a user may be able to see that a file exists
565but not any of its attributes by the circumstance of having read access to the
566containing directory but not to the differently labeled file. This is an
567artifact of the file name being data in the directory, not a part of the file.
568
569If a directory is marked as transmuting (SMACK64TRANSMUTE=TRUE) and the
570access rule that allows a process to create an object in that directory
571includes 't' access the label assigned to the new object will be that
572of the directory, not the creating process. This makes it much easier
573for two processes with different labels to share data without granting
574access to all of their files.
575
576IPC objects, message queues, semaphore sets, and memory segments exist in flat
577namespaces and access requests are only required to match the object in
578question.
579
580Process objects reflect tasks on the system and the Smack label used to access
581them is the same Smack label that the task would use for its own access
582attempts. Sending a signal via the kill() system call is a write operation
583from the signaler to the recipient. Debugging a process requires both reading
584and writing. Creating a new task is an internal operation that results in two
585tasks with identical Smack labels and requires no access checks.
586
587Sockets are data structures attached to processes and sending a packet from
588one process to another requires that the sender have write access to the
589receiver. The receiver is not required to have read access to the sender.
590
591Setting Access Rules
592~~~~~~~~~~~~~~~~~~~~
593
594The configuration file /etc/smack/accesses contains the rules to be set at
595system startup. The contents are written to the special file
596/sys/fs/smackfs/load2. Rules can be added at any time and take effect
597immediately. For any pair of subject and object labels there can be only
598one rule, with the most recently specified overriding any earlier
599specification.
600
601Task Attribute
602~~~~~~~~~~~~~~
603
604The Smack label of a process can be read from /proc/<pid>/attr/current. A
605process can read its own Smack label from /proc/self/attr/current. A
606privileged process can change its own Smack label by writing to
607/proc/self/attr/current but not the label of another process.
608
609File Attribute
610~~~~~~~~~~~~~~
611
612The Smack label of a filesystem object is stored as an extended attribute
613named SMACK64 on the file. This attribute is in the security namespace. It can
614only be changed by a process with privilege.
615
616Privilege
617~~~~~~~~~
618
619A process with CAP_MAC_OVERRIDE or CAP_MAC_ADMIN is privileged.
620CAP_MAC_OVERRIDE allows the process access to objects it would
621be denied otherwise. CAP_MAC_ADMIN allows a process to change
622Smack data, including rules and attributes.
623
624Smack Networking
625~~~~~~~~~~~~~~~~
626
627As mentioned before, Smack enforces access control on network protocol
628transmissions. Every packet sent by a Smack process is tagged with its Smack
629label. This is done by adding a CIPSO tag to the header of the IP packet. Each
630packet received is expected to have a CIPSO tag that identifies the label and
631if it lacks such a tag the network ambient label is assumed. Before the packet
632is delivered a check is made to determine that a subject with the label on the
633packet has write access to the receiving process and if that is not the case
634the packet is dropped.
635
636CIPSO Configuration
637~~~~~~~~~~~~~~~~~~~
638
639It is normally unnecessary to specify the CIPSO configuration. The default
640values used by the system handle all internal cases. Smack will compose CIPSO
641label values to match the Smack labels being used without administrative
642intervention. Unlabeled packets that come into the system will be given the
643ambient label.
644
645Smack requires configuration in the case where packets from a system that is
646not Smack that speaks CIPSO may be encountered. Usually this will be a Trusted
647Solaris system, but there are other, less widely deployed systems out there.
648CIPSO provides 3 important values, a Domain Of Interpretation (DOI), a level,
649and a category set with each packet. The DOI is intended to identify a group
650of systems that use compatible labeling schemes, and the DOI specified on the
651Smack system must match that of the remote system or packets will be
652discarded. The DOI is 3 by default. The value can be read from
653/sys/fs/smackfs/doi and can be changed by writing to /sys/fs/smackfs/doi.
654
655The label and category set are mapped to a Smack label as defined in
656/etc/smack/cipso.
657
658A Smack/CIPSO mapping has the form::
659
660	smack level [category [category]*]
661
662Smack does not expect the level or category sets to be related in any
663particular way and does not assume or assign accesses based on them. Some
664examples of mappings::
665
666	TopSecret 7
667	TS:A,B    7 1 2
668	SecBDE    5 2 4 6
669	RAFTERS   7 12 26
670
671The ":" and "," characters are permitted in a Smack label but have no special
672meaning.
673
674The mapping of Smack labels to CIPSO values is defined by writing to
675/sys/fs/smackfs/cipso2.
676
677In addition to explicit mappings Smack supports direct CIPSO mappings. One
678CIPSO level is used to indicate that the category set passed in the packet is
679in fact an encoding of the Smack label. The level used is 250 by default. The
680value can be read from /sys/fs/smackfs/direct and changed by writing to
681/sys/fs/smackfs/direct.
682
683Socket Attributes
684~~~~~~~~~~~~~~~~~
685
686There are two attributes that are associated with sockets. These attributes
687can only be set by privileged tasks, but any task can read them for their own
688sockets.
689
690  SMACK64IPIN:
691	The Smack label of the task object. A privileged
692	program that will enforce policy may set this to the star label.
693
694  SMACK64IPOUT:
695	The Smack label transmitted with outgoing packets.
696	A privileged program may set this to match the label of another
697	task with which it hopes to communicate.
698
699Smack Netlabel Exceptions
700~~~~~~~~~~~~~~~~~~~~~~~~~
701
702You will often find that your labeled application has to talk to the outside,
703unlabeled world. To do this there's a special file /sys/fs/smackfs/netlabel
704where you can add some exceptions in the form of::
705
706	@IP1	   LABEL1 or
707	@IP2/MASK  LABEL2
708
709It means that your application will have unlabeled access to @IP1 if it has
710write access on LABEL1, and access to the subnet @IP2/MASK if it has write
711access on LABEL2.
712
713Entries in the /sys/fs/smackfs/netlabel file are matched by longest mask
714first, like in classless IPv4 routing.
715
716A special label '@' and an option '-CIPSO' can be used there::
717
718	@      means Internet, any application with any label has access to it
719	-CIPSO means standard CIPSO networking
720
721If you don't know what CIPSO is and don't plan to use it, you can just do::
722
723	echo 127.0.0.1 -CIPSO > /sys/fs/smackfs/netlabel
724	echo 0.0.0.0/0 @      > /sys/fs/smackfs/netlabel
725
726If you use CIPSO on your 192.168.0.0/16 local network and need also unlabeled
727Internet access, you can have::
728
729	echo 127.0.0.1      -CIPSO > /sys/fs/smackfs/netlabel
730	echo 192.168.0.0/16 -CIPSO > /sys/fs/smackfs/netlabel
731	echo 0.0.0.0/0      @      > /sys/fs/smackfs/netlabel
732
733Writing Applications for Smack
734------------------------------
735
736There are three sorts of applications that will run on a Smack system. How an
737application interacts with Smack will determine what it will have to do to
738work properly under Smack.
739
740Smack Ignorant Applications
741---------------------------
742
743By far the majority of applications have no reason whatever to care about the
744unique properties of Smack. Since invoking a program has no impact on the
745Smack label associated with the process the only concern likely to arise is
746whether the process has execute access to the program.
747
748Smack Relevant Applications
749---------------------------
750
751Some programs can be improved by teaching them about Smack, but do not make
752any security decisions themselves. The utility ls(1) is one example of such a
753program.
754
755Smack Enforcing Applications
756----------------------------
757
758These are special programs that not only know about Smack, but participate in
759the enforcement of system policy. In most cases these are the programs that
760set up user sessions. There are also network services that provide information
761to processes running with various labels.
762
763File System Interfaces
764----------------------
765
766Smack maintains labels on file system objects using extended attributes. The
767Smack label of a file, directory, or other file system object can be obtained
768using getxattr(2)::
769
770	len = getxattr("/", "security.SMACK64", value, sizeof (value));
771
772will put the Smack label of the root directory into value. A privileged
773process can set the Smack label of a file system object with setxattr(2)::
774
775	len = strlen("Rubble");
776	rc = setxattr("/foo", "security.SMACK64", "Rubble", len, 0);
777
778will set the Smack label of /foo to "Rubble" if the program has appropriate
779privilege.
780
781Socket Interfaces
782-----------------
783
784The socket attributes can be read using fgetxattr(2).
785
786A privileged process can set the Smack label of outgoing packets with
787fsetxattr(2)::
788
789	len = strlen("Rubble");
790	rc = fsetxattr(fd, "security.SMACK64IPOUT", "Rubble", len, 0);
791
792will set the Smack label "Rubble" on packets going out from the socket if the
793program has appropriate privilege::
794
795	rc = fsetxattr(fd, "security.SMACK64IPIN, "*", strlen("*"), 0);
796
797will set the Smack label "*" as the object label against which incoming
798packets will be checked if the program has appropriate privilege.
799
800Administration
801--------------
802
803Smack supports some mount options:
804
805  smackfsdef=label:
806	specifies the label to give files that lack
807	the Smack label extended attribute.
808
809  smackfsroot=label:
810	specifies the label to assign the root of the
811	file system if it lacks the Smack extended attribute.
812
813  smackfshat=label:
814	specifies a label that must have read access to
815	all labels set on the filesystem. Not yet enforced.
816
817  smackfsfloor=label:
818	specifies a label to which all labels set on the
819	filesystem must have read access. Not yet enforced.
820
821  smackfstransmute=label:
822	behaves exactly like smackfsroot except that it also
823	sets the transmute flag on the root of the mount
824
825These mount options apply to all file system types.
826
827Smack auditing
828--------------
829
830If you want Smack auditing of security events, you need to set CONFIG_AUDIT
831in your kernel configuration.
832By default, all denied events will be audited. You can change this behavior by
833writing a single character to the /sys/fs/smackfs/logging file::
834
835	0 : no logging
836	1 : log denied (default)
837	2 : log accepted
838	3 : log denied & accepted
839
840Events are logged as 'key=value' pairs, for each event you at least will get
841the subject, the object, the rights requested, the action, the kernel function
842that triggered the event, plus other pairs depending on the type of event
843audited.
844
845Bringup Mode
846------------
847
848Bringup mode provides logging features that can make application
849configuration and system bringup easier. Configure the kernel with
850CONFIG_SECURITY_SMACK_BRINGUP to enable these features. When bringup
851mode is enabled accesses that succeed due to rules marked with the "b"
852access mode will logged. When a new label is introduced for processes
853rules can be added aggressively, marked with the "b". The logging allows
854tracking of which rules actual get used for that label.
855
856Another feature of bringup mode is the "unconfined" option. Writing
857a label to /sys/fs/smackfs/unconfined makes subjects with that label
858able to access any object, and objects with that label accessible to
859all subjects. Any access that is granted because a label is unconfined
860is logged. This feature is dangerous, as files and directories may
861be created in places they couldn't if the policy were being enforced.
862