1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * VM - Hardware Address Translation management. 28 * 29 * This file describes the contents of the sun-reference-mmu(sfmmu)- 30 * specific hat data structures and the sfmmu-specific hat procedures. 31 * The machine-independent interface is described in <vm/hat.h>. 32 */ 33 34 #ifndef _VM_HAT_SFMMU_H 35 #define _VM_HAT_SFMMU_H 36 37 #ifdef __cplusplus 38 extern "C" { 39 #endif 40 41 #ifndef _ASM 42 43 #include <sys/types.h> 44 45 #endif /* _ASM */ 46 47 #ifdef _KERNEL 48 49 #include <sys/pte.h> 50 #include <vm/mach_sfmmu.h> 51 #include <sys/mmu.h> 52 53 /* 54 * Don't alter these without considering changes to ism_map_t. 55 */ 56 #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M 57 #define DEFAULT_ISM_PAGESZC TTE4M 58 #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift) 59 #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1) 60 #define ISM_MAP_SLOTS 8 /* Change this carefully. */ 61 62 #ifndef _ASM 63 64 #include <sys/t_lock.h> 65 #include <vm/hat.h> 66 #include <vm/seg.h> 67 #include <sys/machparam.h> 68 #include <sys/systm.h> 69 #include <sys/x_call.h> 70 #include <vm/page.h> 71 #include <sys/ksynch.h> 72 73 typedef struct hat sfmmu_t; 74 typedef struct sf_scd sf_scd_t; 75 76 /* 77 * SFMMU attributes for hat_memload/hat_devload 78 */ 79 #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */ 80 #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */ 81 #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */ 82 #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \ 83 HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \ 84 SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT) 85 86 87 /* 88 * sfmmu flags for hat_memload/hat_devload 89 */ 90 #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */ 91 #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \ 92 HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \ 93 HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \ 94 HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT) 95 96 /* 97 * sfmmu internal flag to hat_pageunload that spares locked mappings 98 */ 99 #define SFMMU_KERNEL_RELOC 0x8000 100 101 /* 102 * mode for sfmmu_chgattr 103 */ 104 #define SFMMU_SETATTR 0x0 105 #define SFMMU_CLRATTR 0x1 106 #define SFMMU_CHGATTR 0x2 107 108 /* 109 * sfmmu specific flags for page_t 110 */ 111 #define P_PNC 0x8 /* non-caching is permanent bit */ 112 #define P_TNC 0x10 /* non-caching is temporary bit */ 113 #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */ 114 #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */ 115 116 #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO)) 117 #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD) 118 #define PP_ISREF(pp) ((pp)->p_nrm & P_REF) 119 #define PP_ISRO(pp) ((pp)->p_nrm & P_RO) 120 #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC)) 121 #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC) 122 #ifdef VAC 123 #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC) 124 #endif 125 #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS) 126 #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC) 127 128 #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD) 129 #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF) 130 #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD)) 131 #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO) 132 #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO)) 133 #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC) 134 #ifdef VAC 135 #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC) 136 #endif 137 #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS) 138 #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC) 139 140 #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD) 141 #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF) 142 #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD)) 143 #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO) 144 #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC) 145 #ifdef VAC 146 #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC) 147 #endif 148 #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS) 149 #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC) 150 151 /* 152 * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM) 153 * will be constrained to a 4M, 32M or 256M alignment. Also since every newly- 154 * created ISM segment is created out of a new address space at base va 155 * of 0 we don't need to store it. 156 */ 157 #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to <n>M */ 158 #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0) 159 #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift)) 160 161 /* 162 * Pad locks out to cache sub-block boundaries to prevent 163 * false sharing, so several processes don't contend for 164 * the same line if they aren't using the same lock. Since 165 * this is a typedef we also have a bit of freedom in 166 * changing lock implementations later if we decide it 167 * is necessary. 168 */ 169 typedef struct hat_lock { 170 kmutex_t hl_mutex; 171 uchar_t hl_pad[64 - sizeof (kmutex_t)]; 172 } hatlock_t; 173 174 #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex)) 175 176 /* 177 * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned. 178 * Also size is guaranteed to be in 4M, 32M or 256M chunks. 179 * ism_seg consists of the following members: 180 * [XX..22] base address of ism segment. XX is 63 or 31 depending whether 181 * caddr_t is 64 bits or 32 bits. 182 * [21..0] size of segment. 183 * 184 * NOTE: Don't alter this structure without changing defines above and 185 * the tsb_miss and protection handlers. 186 */ 187 typedef struct ism_map { 188 uintptr_t imap_seg; /* base va + sz of ISM segment */ 189 uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */ 190 uchar_t imap_rid; /* region id for ism */ 191 ushort_t imap_hatflags; /* primary ism page size */ 192 uint_t imap_sz_mask; /* mmu_pagemask for ism page size */ 193 sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */ 194 struct ism_ment *imap_ment; /* pointer to mapping list entry */ 195 } ism_map_t; 196 197 #define ism_start(map) ((caddr_t)((map).imap_seg & \ 198 ~ISM_SZ_MASK((map).imap_vb_shift))) 199 #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift)) 200 #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \ 201 ISM_PG_SIZE((map).imap_vb_shift)))) 202 /* 203 * ISM mapping entry. Used to link all hat's sharing a ism_hat. 204 * Same function as the p_mapping list for a page. 205 */ 206 typedef struct ism_ment { 207 sfmmu_t *iment_hat; /* back pointer to hat_share() hat */ 208 caddr_t iment_base_va; /* hat's va base for this ism seg */ 209 struct ism_ment *iment_next; /* next ism map entry */ 210 struct ism_ment *iment_prev; /* prev ism map entry */ 211 } ism_ment_t; 212 213 /* 214 * ISM segment block. One will be hung off the sfmmu structure if a 215 * a process uses ISM. More will be linked using ismblk_next if more 216 * than ISM_MAP_SLOTS segments are attached to this proc. 217 * 218 * All modifications to fields in this structure will be protected 219 * by the hat mutex. In order to avoid grabbing this lock in low level 220 * routines (tsb miss/protection handlers and vatopfn) while not 221 * introducing any race conditions with hat_unshare, we will set 222 * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur 223 * for this ctx while this bit is set will be handled in sfmmu_tsb_excption 224 * where it will synchronize behind the hat mutex. 225 */ 226 typedef struct ism_blk { 227 ism_map_t iblk_maps[ISM_MAP_SLOTS]; 228 struct ism_blk *iblk_next; 229 uint64_t iblk_nextpa; 230 } ism_blk_t; 231 232 /* 233 * TSB access information. All fields are protected by the process's 234 * hat lock. 235 */ 236 237 struct tsb_info { 238 caddr_t tsb_va; /* tsb base virtual address */ 239 uint64_t tsb_pa; /* tsb base physical address */ 240 struct tsb_info *tsb_next; /* next tsb used by this process */ 241 uint16_t tsb_szc; /* tsb size code */ 242 uint16_t tsb_flags; /* flags for this tsb; see below */ 243 uint_t tsb_ttesz_mask; /* page size masks; see below */ 244 245 tte_t tsb_tte; /* tte to lock into DTLB */ 246 sfmmu_t *tsb_sfmmu; /* sfmmu */ 247 kmem_cache_t *tsb_cache; /* cache from which mem allocated */ 248 vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */ 249 }; 250 251 /* 252 * Values for "tsb_ttesz_mask" bitmask. 253 */ 254 #define TSB8K (1 << TTE8K) 255 #define TSB64K (1 << TTE64K) 256 #define TSB512K (1 << TTE512K) 257 #define TSB4M (1 << TTE4M) 258 #define TSB32M (1 << TTE32M) 259 #define TSB256M (1 << TTE256M) 260 261 /* 262 * Values for "tsb_flags" field. 263 */ 264 #define TSB_RELOC_FLAG 0x1 265 #define TSB_FLUSH_NEEDED 0x2 266 #define TSB_SWAPPED 0x4 267 #define TSB_SHAREDCTX 0x8 268 269 #endif /* !_ASM */ 270 271 /* 272 * Data structures for shared hmeblk support. 273 */ 274 275 /* 276 * Do not increase the maximum number of ism/hme regions without checking first 277 * the impact on ism_map_t, TSB miss area, hblk tag and region id type in 278 * sf_region structure. 279 * Initially, shared hmes will only be used for the main text segment 280 * therefore this value will be set to 64, it will be increased when shared 281 * libraries are included. 282 */ 283 284 #define SFMMU_MAX_HME_REGIONS (64) 285 #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS) 286 287 #define SFMMU_PRIVATE 0 288 #define SFMMU_SHARED 1 289 290 #ifndef _ASM 291 292 #define SFMMU_MAX_ISM_REGIONS (64) 293 #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS) 294 295 #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS) 296 297 #define SFMMU_MAX_REGION_BUCKETS (128) 298 #define SFMMU_MAX_SRD_BUCKETS (2048) 299 300 typedef struct sf_hmeregion_map { 301 ulong_t bitmap[SFMMU_HMERGNMAP_WORDS]; 302 } sf_hmeregion_map_t; 303 304 typedef struct sf_ismregion_map { 305 ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS]; 306 } sf_ismregion_map_t; 307 308 typedef union sf_region_map_u { 309 struct _h_rmap_s { 310 sf_hmeregion_map_t hmeregion_map; 311 sf_ismregion_map_t ismregion_map; 312 } h_rmap_s; 313 ulong_t bitmap[SFMMU_RGNMAP_WORDS]; 314 } sf_region_map_t; 315 316 #define SF_RGNMAP_ZERO(map) { \ 317 int _i; \ 318 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 319 (map).bitmap[_i] = 0; \ 320 } \ 321 } 322 323 /* 324 * Returns 1 if map1 and map2 are equal. 325 */ 326 #define SF_RGNMAP_EQUAL(map1, map2, rval) { \ 327 int _i; \ 328 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 329 if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \ 330 break; \ 331 } \ 332 if (_i < SFMMU_RGNMAP_WORDS) \ 333 rval = 0; \ 334 else \ 335 rval = 1; \ 336 } 337 338 #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r) 339 #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r) 340 #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r) 341 342 /* 343 * Tests whether map2 is a subset of map1, returns 1 if 344 * this assertion is true. 345 */ 346 #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \ 347 int _i; \ 348 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 349 if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \ 350 != (map2)->bitmap[_i]) { \ 351 break; \ 352 } \ 353 } \ 354 if (_i < SFMMU_RGNMAP_WORDS) \ 355 rval = 0; \ 356 else \ 357 rval = 1; \ 358 } 359 360 #define SF_SCD_INCR_REF(scdp) { \ 361 atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1); \ 362 } 363 364 #define SF_SCD_DECR_REF(srdp, scdp) { \ 365 sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \ 366 if (!atomic_add_32_nv( \ 367 (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) { \ 368 sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \ 369 } \ 370 } 371 372 /* 373 * A sfmmup link in the link list of sfmmups that share the same region. 374 */ 375 typedef struct sf_rgn_link { 376 sfmmu_t *next; 377 sfmmu_t *prev; 378 } sf_rgn_link_t; 379 380 /* 381 * rgn_flags values. 382 */ 383 #define SFMMU_REGION_HME 0x1 384 #define SFMMU_REGION_ISM 0x2 385 #define SFMMU_REGION_FREE 0x8 386 387 #define SFMMU_REGION_TYPE_MASK (0x3) 388 389 /* 390 * sf_region defines a text or (D)ISM segment which map 391 * the same underlying physical object. 392 */ 393 typedef struct sf_region { 394 caddr_t rgn_saddr; /* base addr of attached seg */ 395 size_t rgn_size; /* size of attached seg */ 396 void *rgn_obj; /* the underlying object id */ 397 u_offset_t rgn_objoff; /* offset in the object mapped */ 398 uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */ 399 uchar_t rgn_pgszc; /* page size of the region */ 400 uchar_t rgn_flags; /* region type, free flag */ 401 uchar_t rgn_id; 402 int rgn_refcnt; /* # of hats sharing the region */ 403 /* callback function for hat_unload_callback */ 404 hat_rgn_cb_func_t rgn_cb_function; 405 struct sf_region *rgn_hash; /* hash chain linking the rgns */ 406 kmutex_t rgn_mutex; /* protect region sfmmu list */ 407 /* A link list of processes attached to this region */ 408 sfmmu_t *rgn_sfmmu_head; 409 ulong_t rgn_ttecnt[MMU_PAGE_SIZES]; 410 uint16_t rgn_hmeflags; /* rgn tte size flags */ 411 } sf_region_t; 412 413 #define rgn_next rgn_hash 414 415 /* srd */ 416 typedef struct sf_shared_region_domain { 417 vnode_t *srd_evp; /* executable vnode */ 418 /* hme region table */ 419 sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS]; 420 /* ism region table */ 421 sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS]; 422 /* hash chain linking srds */ 423 struct sf_shared_region_domain *srd_hash; 424 /* pointer to the next free hme region */ 425 sf_region_t *srd_hmergnfree; 426 /* pointer to the next free ism region */ 427 sf_region_t *srd_ismrgnfree; 428 /* id of next ism region created */ 429 uint16_t srd_next_ismrid; 430 /* id of next hme region created */ 431 uint16_t srd_next_hmerid; 432 uint16_t srd_ismbusyrgns; /* # of ism rgns in use */ 433 uint16_t srd_hmebusyrgns; /* # of hme rgns in use */ 434 int srd_refcnt; /* # of procs in the srd */ 435 kmutex_t srd_mutex; /* sync add/remove rgns */ 436 kmutex_t srd_scd_mutex; 437 sf_scd_t *srd_scdp; /* list of scds in srd */ 438 /* hash of regions associated with the same executable */ 439 sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS]; 440 } sf_srd_t; 441 442 typedef struct sf_srd_bucket { 443 kmutex_t srdb_lock; 444 sf_srd_t *srdb_srdp; 445 } sf_srd_bucket_t; 446 447 /* 448 * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased 449 * to 16 when the use of shared hmes for shared libraries is enabled. 450 */ 451 452 #define SFMMU_L1_HMERLINKS (8) 453 #define SFMMU_L2_HMERLINKS (8) 454 #define SFMMU_L1_HMERLINKS_SHIFT (3) 455 #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1) 456 #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1) 457 #define SFMMU_L1_HMERLINKS_SIZE \ 458 (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *)) 459 #define SFMMU_L2_HMERLINKS_SIZE \ 460 (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t)) 461 462 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS) 463 #error Not Enough HMERLINKS 464 #endif 465 466 /* 467 * This macro grabs hat lock and allocates level 2 hat chain 468 * associated with a shme rgn. In the majority of cases, the macro 469 * is called with alloc = 0, and lock = 0. 470 * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp 471 * parameter. 472 */ 473 #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \ 474 { \ 475 int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \ 476 SFMMU_L1_HMERLINKS_MASK; \ 477 int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \ 478 hatlock_t *_hatlockp; \ 479 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 480 if (lnkp != NULL) { \ 481 lnkp = &lnkp[_l2ix]; \ 482 } else if (alloc && lock) { \ 483 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 484 _hatlockp = sfmmu_hat_enter(sfmmup); \ 485 if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \ 486 sfmmu_hat_exit(_hatlockp); \ 487 kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \ 488 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 489 ASSERT(lnkp != NULL); \ 490 } else { \ 491 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 492 sfmmu_hat_exit(_hatlockp); \ 493 } \ 494 lnkp = &lnkp[_l2ix]; \ 495 } else if (alloc) { \ 496 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 497 ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \ 498 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 499 lnkp = &lnkp[_l2ix]; \ 500 } \ 501 } 502 503 /* 504 * Per-MMU context domain kstats. 505 * 506 * TSB Miss Exceptions 507 * Number of times a TSB miss exception is handled in an MMU. See 508 * sfmmu_tsbmiss_exception() for more details. 509 * TSB Raise Exception 510 * Number of times the CPUs within an MMU are cross-called 511 * to invalidate either a specific process context (when the process 512 * switches MMU contexts) or the context of any process that is 513 * running on those CPUs (as part of the MMU context wrap-around). 514 * Wrap Around 515 * The number of times a wrap-around of MMU context happens. 516 */ 517 typedef enum mmu_ctx_stat_types { 518 MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */ 519 MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */ 520 MMU_CTX_WRAP_AROUND, /* wraparounds */ 521 MMU_CTX_NUM_STATS 522 } mmu_ctx_stat_t; 523 524 /* 525 * Per-MMU context domain structure. This is instantiated the first time a CPU 526 * belonging to the MMU context domain is configured into the system, at boot 527 * time or at DR time. 528 * 529 * mmu_gnum 530 * The current generation number for the context IDs on this MMU context 531 * domain. It is protected by mmu_lock. 532 * mmu_cnum 533 * The current cnum to be allocated on this MMU context domain. It 534 * is protected via CAS. 535 * mmu_nctxs 536 * The max number of context IDs supported on every CPU in this 537 * MMU context domain. It is 8K except for Rock where it is 64K. 538 * This is needed here in case the system supports mixed type of 539 * processors/MMUs. It also helps to make ctx switch code access 540 * fewer cache lines i.e. no need to retrieve it from some global nctxs. 541 * mmu_lock 542 * The mutex spin lock used to serialize context ID wrap around 543 * mmu_idx 544 * The index for this MMU context domain structure in the global array 545 * mmu_ctxdoms. 546 * mmu_ncpus 547 * The actual number of CPUs that have been configured in this 548 * MMU context domain. This also acts as a reference count for the 549 * structure. When the last CPU in an MMU context domain is unconfigured, 550 * the structure is freed. It is protected by mmu_lock. 551 * mmu_cpuset 552 * The CPU set of configured CPUs for this MMU context domain. Used 553 * to cross-call all the CPUs in the MMU context domain to invalidate 554 * context IDs during a wraparound operation. It is protected by mmu_lock. 555 */ 556 557 typedef struct mmu_ctx { 558 uint64_t mmu_gnum; 559 uint_t mmu_cnum; 560 uint_t mmu_nctxs; 561 kmutex_t mmu_lock; 562 uint_t mmu_idx; 563 uint_t mmu_ncpus; 564 cpuset_t mmu_cpuset; 565 kstat_t *mmu_kstat; 566 kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS]; 567 } mmu_ctx_t; 568 569 #define mmu_tsb_exceptions \ 570 mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64 571 #define mmu_tsb_raise_exception \ 572 mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64 573 #define mmu_wrap_around \ 574 mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64 575 576 extern uint_t max_mmu_ctxdoms; 577 extern mmu_ctx_t **mmu_ctxs_tbl; 578 579 extern void sfmmu_cpu_init(cpu_t *); 580 extern void sfmmu_cpu_cleanup(cpu_t *); 581 582 /* 583 * The following structure is used to get MMU context domain information for 584 * a CPU from the platform. 585 * 586 * mmu_idx 587 * The MMU context domain index within the global array mmu_ctxs 588 * mmu_nctxs 589 * The number of context IDs supported in the MMU context domain 590 * (64K for Rock) 591 */ 592 typedef struct mmu_ctx_info { 593 uint_t mmu_idx; 594 uint_t mmu_nctxs; 595 } mmu_ctx_info_t; 596 597 #pragma weak plat_cpuid_to_mmu_ctx_info 598 599 extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *); 600 601 /* 602 * Each address space has an array of sfmmu_ctx_t structures, one structure 603 * per MMU context domain. 604 * 605 * cnum 606 * The context ID allocated for an address space on an MMU context domain 607 * gnum 608 * The generation number for the context ID in the MMU context domain. 609 * 610 * This structure needs to be a power-of-two in size. 611 */ 612 typedef struct sfmmu_ctx { 613 uint64_t gnum:48; 614 uint64_t cnum:16; 615 } sfmmu_ctx_t; 616 617 618 /* 619 * The platform dependent hat structure. 620 * tte counts should be protected by cas. 621 * cpuset is protected by cas. 622 * 623 * ttecnt accounting for mappings which do not use shared hme is carried out 624 * during pagefault handling. In the shared hme case, only the first process 625 * to access a mapping generates a pagefault, subsequent processes simply 626 * find the shared hme entry during trap handling and therefore there is no 627 * corresponding event to initiate ttecnt accounting. Currently, as shared 628 * hmes are only used for text segments, when joining a region we assume the 629 * worst case and add the the number of ttes required to map the entire region 630 * to the ttecnt corresponding to the region pagesize. However, if the region 631 * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail 632 * then 8K pages will be allocated instead and the first TSB which stores 8K 633 * mappings will potentially be undersized. To compensate for the potential 634 * underaccounting in this case we always add 1/4 of the region size to the 8K 635 * ttecnt. 636 * 637 * Note that sfmmu_xhat_provider MUST be the first element. 638 */ 639 640 struct hat { 641 void *sfmmu_xhat_provider; /* NULL for CPU hat */ 642 cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */ 643 struct as *sfmmu_as; /* as this hat provides mapping for */ 644 /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */ 645 ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES]; 646 /* shme rgns ttecnt for rgns in SCD */ 647 ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES]; 648 /* est. ism ttes that are NOT in a SCD */ 649 ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES]; 650 /* ttecnt for isms that are in a SCD */ 651 ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES]; 652 /* inflate tsb0 to allow for large page alloc failure in region */ 653 ulong_t sfmmu_tsb0_4minflcnt; 654 union _h_un { 655 ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */ 656 ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */ 657 } h_un; 658 uint_t sfmmu_free:1; /* hat to be freed - set on as_free */ 659 uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */ 660 uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */ 661 uchar_t sfmmu_rmstat; /* refmod stats refcnt */ 662 ushort_t sfmmu_clrstart; /* start color bin for page coloring */ 663 ushort_t sfmmu_clrbin; /* per as phys page coloring bin */ 664 ushort_t sfmmu_flags; /* flags */ 665 uchar_t sfmmu_tteflags; /* pgsz flags */ 666 uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */ 667 struct tsb_info *sfmmu_tsb; /* list of per as tsbs */ 668 uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */ 669 lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */ 670 kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */ 671 uchar_t sfmmu_cext; /* context page size encoding */ 672 uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */ 673 sf_srd_t *sfmmu_srdp; 674 sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */ 675 sf_region_map_t sfmmu_region_map; 676 sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS]; 677 sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */ 678 #ifdef sun4v 679 struct hv_tsb_block sfmmu_hvblock; 680 #endif 681 /* 682 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of 683 * elements. max_mmu_ctxdoms is determined at run-time. 684 * sfmmu_ctxs[1] is just the fist element of an array, it always 685 * has to be the last field to ensure that the memory allocated 686 * for sfmmu_ctxs is consecutive with the memory of the rest of 687 * the hat data structure. 688 */ 689 sfmmu_ctx_t sfmmu_ctxs[1]; 690 691 }; 692 693 #define sfmmu_iblk h_un.sfmmu_iblkp 694 #define sfmmu_iment h_un.sfmmu_imentp 695 696 #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map 697 #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map 698 699 #define SF_RGNMAP_ISNULL(sfmmup) \ 700 (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map)) 701 #define SF_HMERGNMAP_ISNULL(sfmmup) \ 702 (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map)) 703 704 struct sf_scd { 705 sfmmu_t *scd_sfmmup; /* shared context hat */ 706 /* per pgsz ttecnt for shme rgns in SCD */ 707 ulong_t scd_rttecnt[MMU_PAGE_SIZES]; 708 uint_t scd_refcnt; /* address spaces attached to scd */ 709 sf_region_map_t scd_region_map; /* bit mask of attached segments */ 710 sf_scd_t *scd_next; /* link pointers for srd_scd list */ 711 sf_scd_t *scd_prev; 712 sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */ 713 kmutex_t scd_mutex; 714 /* 715 * Link used to add an scd to the sfmmu_iment list. 716 */ 717 ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS]; 718 }; 719 720 #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map 721 #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map 722 723 extern int disable_shctx; 724 extern int shctx_on; 725 726 /* 727 * bit mask for managing vac conflicts on large pages. 728 * bit 1 is for uncache flag. 729 * bits 2 through min(num of cache colors + 1,31) are 730 * for cache colors that have already been flushed. 731 */ 732 #ifdef VAC 733 #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT) 734 #else 735 #define CACHE_NUM_COLOR 1 736 #endif 737 738 #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1))) 739 740 #define CacheColor_IsFlushed(flag, vcolor) \ 741 ((flag) & CACHE_VCOLOR_MASK(vcolor)) 742 743 #define CacheColor_SetFlushed(flag, vcolor) \ 744 ((flag) |= CACHE_VCOLOR_MASK(vcolor)) 745 /* 746 * Flags passed to sfmmu_page_cache to flush page from vac or not. 747 */ 748 #define CACHE_FLUSH 0 749 #define CACHE_NO_FLUSH 1 750 751 /* 752 * Flags passed to sfmmu_tlbcache_demap 753 */ 754 #define FLUSH_NECESSARY_CPUS 0 755 #define FLUSH_ALL_CPUS 1 756 757 #ifdef DEBUG 758 /* 759 * For debugging purpose only. Maybe removed later. 760 */ 761 struct ctx_trace { 762 sfmmu_t *sc_sfmmu_stolen; 763 sfmmu_t *sc_sfmmu_stealing; 764 clock_t sc_time; 765 ushort_t sc_type; 766 ushort_t sc_cnum; 767 }; 768 #define CTX_TRC_STEAL 0x1 769 #define CTX_TRC_FREE 0x0 770 #define TRSIZE 0x400 771 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \ 772 ctx_trace_first : ((ptr) + 1)) 773 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \ 774 mutex_enter(mutex); \ 775 (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \ 776 (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \ 777 (ptr)->sc_cnum = (cnum); \ 778 (ptr)->sc_type = (type); \ 779 (ptr)->sc_time = lbolt; \ 780 (ptr) = NEXT_CTXTR(ptr); \ 781 num_ctx_stolen += (type); \ 782 mutex_exit(mutex); 783 #else 784 785 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) 786 787 #endif /* DEBUG */ 788 789 #endif /* !_ASM */ 790 791 /* 792 * Macros for sfmmup->sfmmu_flags access. The macros that change the flags 793 * ASSERT() that we're holding the HAT lock before changing the flags; 794 * however callers that read the flags may do so without acquiring the lock 795 * in a fast path, and then recheck the flag after acquiring the lock in 796 * a slow path. 797 */ 798 #define SFMMU_FLAGS_ISSET(sfmmup, flags) \ 799 (((sfmmup)->sfmmu_flags & (flags)) == (flags)) 800 801 #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \ 802 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 803 (sfmmup)->sfmmu_flags &= ~(flags)) 804 805 #define SFMMU_FLAGS_SET(sfmmup, flags) \ 806 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 807 (sfmmup)->sfmmu_flags |= (flags)) 808 809 #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \ 810 ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \ 811 (flags)) 812 813 814 /* 815 * sfmmu tte HAT flags, must fit in 8 bits 816 */ 817 #define HAT_CHKCTX1_FLAG 0x1 818 #define HAT_64K_FLAG (0x1 << TTE64K) 819 #define HAT_512K_FLAG (0x1 << TTE512K) 820 #define HAT_4M_FLAG (0x1 << TTE4M) 821 #define HAT_32M_FLAG (0x1 << TTE32M) 822 #define HAT_256M_FLAG (0x1 << TTE256M) 823 824 /* 825 * sfmmu HAT flags, 16 bits at the moment. 826 */ 827 #define HAT_4MTEXT_FLAG 0x01 828 #define HAT_32M_ISM 0x02 829 #define HAT_256M_ISM 0x04 830 #define HAT_SWAPPED 0x08 /* swapped out */ 831 #define HAT_SWAPIN 0x10 /* swapping in */ 832 #define HAT_BUSY 0x20 /* replacing TSB(s) */ 833 #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */ 834 835 #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */ 836 #define HAT_JOIN_SCD 0x200 /* region is joining scd */ 837 #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */ 838 839 #define SFMMU_LGPGS_INUSE(sfmmup) \ 840 (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \ 841 ((sfmmup)->sfmmu_iblk != NULL)) 842 843 /* 844 * Starting with context 0, the first NUM_LOCKED_CTXS contexts 845 * are locked so that sfmmu_getctx can't steal any of these 846 * contexts. At the time this software was being developed, the 847 * only context that needs to be locked is context 0 (the kernel 848 * context), and context 1 (reserved for stolen context). So this constant 849 * was originally defined to be 2. 850 * 851 * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many 852 * routines only care whether the context is kernel, invalid or user. 853 */ 854 855 #define NUM_LOCKED_CTXS 2 856 #define INVALID_CONTEXT 1 857 858 #ifdef sun4v 859 #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS 860 #endif 861 #if defined(sun4v) || defined(UTSB_PHYS) 862 /* 863 * Get the location in the 4MB base TSB of the tsbe for this fault. 864 * Assumes that the second TSB only contains 4M mappings. 865 * 866 * In: 867 * tagacc = tag access register (not clobbered) 868 * tsbe = 2nd TSB base register 869 * tmp1, tmp2 = scratch registers 870 * Out: 871 * tsbe = pointer to the tsbe in the 2nd TSB 872 */ 873 874 #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 875 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 876 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 877 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 878 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 879 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 880 srlx tagacc, MMU_PAGESHIFT4M, tmp2; \ 881 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 882 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 883 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 884 885 #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 886 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 887 888 /* 889 * Get the location in the 3rd TSB of the tsbe for this fault. 890 * The 3rd TSB corresponds to the shared context, and is used 891 * for 8K - 512k pages. 892 * 893 * In: 894 * tagacc = tag access register (not clobbered) 895 * tsbe, tmp1, tmp2 = scratch registers 896 * Out: 897 * tsbe = pointer to the tsbe in the 3rd TSB 898 */ 899 900 #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 901 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 902 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 903 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 904 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 905 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 906 srlx tagacc, MMU_PAGESHIFT, tmp2; \ 907 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 908 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 909 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 910 911 #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 912 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 913 /* 914 * Copy the sfmmu_region_map or scd_region_map to the tsbmiss 915 * shmermap or scd_shmermap, from sfmmu_load_mmustate. 916 */ 917 #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \ 918 /* BEGIN CSTYLED */ \ 919 label: ;\ 920 ldx [rgn_map], tmp ;\ 921 dec cnt ;\ 922 add rgn_map, CLONGSIZE, rgn_map ;\ 923 stx tmp, [tsbmiss_map] ;\ 924 brnz,pt cnt, label ;\ 925 add tsbmiss_map, CLONGSIZE, tsbmiss_map \ 926 /* END CSTYLED */ 927 928 /* 929 * If there is no scd, then zero the tsbmiss scd_shmermap, 930 * from sfmmu_load_mmustate. 931 */ 932 #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \ 933 /* BEGIN CSTYLED */ \ 934 label: ;\ 935 dec cnt ;\ 936 stx %g0, [tsbmiss_map] ;\ 937 brnz,pt cnt, label ;\ 938 add tsbmiss_map, CLONGSIZE, tsbmiss_map 939 /* END CSTYLED */ 940 941 /* 942 * Set hmemisc to 1 if the shared hme is also part of an scd. 943 * In: 944 * tsbarea = tsbmiss area (not clobbered) 945 * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered) 946 * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered) 947 * Out: 948 * use_shctx = 1 if shme is in scd and 0 otherwise 949 */ 950 #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \ 951 /* BEGIN CSTYLED */ \ 952 sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\ 953 add hmentoff, HMEBLK_TAG, hmentoff ;\ 954 ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\ 955 and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\ 956 and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\ 957 srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\ 958 sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\ 959 add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\ 960 ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\ 961 srlx hmentoff, use_shctx, use_shctx ;\ 962 and use_shctx, 0x1, use_shctx \ 963 /* END CSTYLED */ 964 965 /* 966 * Synthesize a TSB base register contents for a process. 967 * 968 * In: 969 * tsbinfo = TSB info pointer (ro) 970 * tsbreg, tmp1 = scratch registers 971 * Out: 972 * tsbreg = value to program into TSB base register 973 */ 974 975 #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \ 976 ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \ 977 lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \ 978 and tmp1, TSB_SOFTSZ_MASK, tmp1; \ 979 or tsbreg, tmp1, tsbreg; 980 981 982 /* 983 * Load TSB base register to TSBMISS area for privte contexts. 984 * This register contains utsb_pabase in bits 63:13, and TSB size 985 * code in bits 2:0. 986 * 987 * For private context 988 * In: 989 * tsbreg = value to load (ro) 990 * regnum = constant or register 991 * tmp1 = scratch register 992 * Out: 993 * Specified scratchpad register updated 994 * 995 */ 996 #define SET_UTSBREG(regnum, tsbreg, tmp1) \ 997 mov regnum, tmp1; \ 998 stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */ 999 /* 1000 * Get TSB base register from the scratchpad for private contexts 1001 * 1002 * In: 1003 * regnum = constant or register 1004 * tsbreg = scratch 1005 * Out: 1006 * tsbreg = tsbreg from the specified scratchpad register 1007 */ 1008 #define GET_UTSBREG(regnum, tsbreg) \ 1009 mov regnum, tsbreg; \ 1010 ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg 1011 1012 /* 1013 * Load TSB base register to TSBMISS area for shared contexts. 1014 * This register contains utsb_pabase in bits 63:13, and TSB size 1015 * code in bits 2:0. 1016 * 1017 * In: 1018 * tsbmiss = pointer to tsbmiss area 1019 * tsbmissoffset = offset to right tsb pointer 1020 * tsbreg = value to load (ro) 1021 * Out: 1022 * Specified tsbmiss area updated 1023 * 1024 */ 1025 #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1026 stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */ 1027 1028 /* 1029 * Get TSB base register from the scratchpad for 1030 * shared contexts 1031 * 1032 * In: 1033 * tsbmiss = pointer to tsbmiss area 1034 * tsbmissoffset = offset to right tsb pointer 1035 * tsbreg = scratch 1036 * Out: 1037 * tsbreg = tsbreg from the specified scratchpad register 1038 */ 1039 #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1040 ldx [tsbmiss + tsbmissoffset], tsbreg 1041 1042 #endif /* defined(sun4v) || defined(UTSB_PHYS) */ 1043 1044 #ifndef _ASM 1045 1046 /* 1047 * Kernel page relocation stuff. 1048 */ 1049 struct sfmmu_callback { 1050 int key; 1051 int (*prehandler)(caddr_t, uint_t, uint_t, void *); 1052 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t); 1053 int (*errhandler)(caddr_t, uint_t, uint_t, void *); 1054 int capture_cpus; 1055 }; 1056 1057 extern int sfmmu_max_cb_id; 1058 extern struct sfmmu_callback *sfmmu_cb_table; 1059 1060 extern int hat_kpr_enabled; 1061 1062 struct pa_hment; 1063 1064 /* 1065 * RFE: With multihat gone we gain back an int. We could use this to 1066 * keep ref bits on a per cpu basis to eliminate xcalls. 1067 */ 1068 struct sf_hment { 1069 tte_t hme_tte; /* tte for this hment */ 1070 1071 union { 1072 struct page *page; /* what page this maps */ 1073 struct pa_hment *data; /* pa_hment */ 1074 } sf_hment_un; 1075 1076 struct sf_hment *hme_next; /* next hment */ 1077 struct sf_hment *hme_prev; /* prev hment */ 1078 }; 1079 1080 struct pa_hment { 1081 caddr_t addr; /* va */ 1082 uint_t len; /* bytes */ 1083 ushort_t flags; /* internal flags */ 1084 ushort_t refcnt; /* reference count */ 1085 id_t cb_id; /* callback id, table index */ 1086 void *pvt; /* handler's private data */ 1087 struct sf_hment sfment; /* corresponding dummy sf_hment */ 1088 }; 1089 1090 #define hme_page sf_hment_un.page 1091 #define hme_data sf_hment_un.data 1092 #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte))) 1093 #define PAHME_SZ (sizeof (struct pa_hment)) 1094 #define SFHME_SZ (sizeof (struct sf_hment)) 1095 1096 #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0) 1097 1098 /* 1099 * hmeblk_tag structure 1100 * structure used to obtain a match on a hme_blk. Currently consists of 1101 * the address of the sfmmu struct (or hatid), the base page address of the 1102 * hme_blk, and the rehash count. The rehash count is actually only 2 bits 1103 * and has the following meaning: 1104 * 1 = 8k or 64k hash sequence. 1105 * 2 = 512k hash sequence. 1106 * 3 = 4M hash sequence. 1107 * We require this count because we don't want to get a false hit on a 512K or 1108 * 4M rehash with a base address corresponding to a 8k or 64k hmeblk. 1109 * Note: The ordering and size of the hmeblk_tag members are implictly known 1110 * by the tsb miss handlers written in assembly. Do not change this structure 1111 * without checking those routines. See HTAG_SFMMUPSZ define. 1112 */ 1113 1114 /* 1115 * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID. 1116 */ 1117 typedef union { 1118 struct { 1119 uint64_t hblk_basepg: 51, /* hme_blk base pg # */ 1120 hblk_rehash: 3, /* rehash number */ 1121 hblk_rid: 10; /* hme_blk region id */ 1122 void *hblk_id; 1123 } hblk_tag_un; 1124 uint64_t htag_tag[2]; 1125 } hmeblk_tag; 1126 1127 #define htag_id hblk_tag_un.hblk_id 1128 #define htag_bspage hblk_tag_un.hblk_basepg 1129 #define htag_rehash hblk_tag_un.hblk_rehash 1130 #define htag_rid hblk_tag_un.hblk_rid 1131 1132 #endif /* !_ASM */ 1133 1134 #define HTAG_REHASH_SHIFT 10 1135 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1)) 1136 #define HTAG_RID_MASK HTAG_MAX_RID 1137 1138 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */ 1139 #define SFMMU_INVALID_SHMERID HTAG_MAX_RID 1140 1141 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1142 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1143 #endif 1144 1145 #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID) 1146 1147 /* ISM regions */ 1148 #define SFMMU_INVALID_ISMRID 0xff 1149 1150 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1151 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1152 #endif 1153 1154 #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID) 1155 1156 1157 #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \ 1158 (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0) 1159 1160 /* 1161 * this macro must only be used for comparing tags in shared hmeblks. 1162 */ 1163 #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \ 1164 (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \ 1165 (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \ 1166 ~HTAG_RID_MASK) | \ 1167 ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \ 1168 SF_RGNMAP_TEST(hrmap, hmetag.htag_rid)) 1169 1170 #define HME_REHASH(sfmmup) \ 1171 ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \ 1172 (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \ 1173 (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \ 1174 (sfmmup)->sfmmu_ttecnt[TTE256M] != 0) 1175 1176 #define NHMENTS 8 /* # of hments in an 8k hme_blk */ 1177 /* needs to be multiple of 2 */ 1178 1179 #ifndef _ASM 1180 1181 #ifdef HBLK_TRACE 1182 1183 #define HBLK_LOCK 1 1184 #define HBLK_UNLOCK 0 1185 #define HBLK_STACK_DEPTH 6 1186 #define HBLK_AUDIT_CACHE_SIZE 16 1187 #define HBLK_LOCK_PATTERN 0xaaaaaaaa 1188 #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb 1189 1190 struct hblk_lockcnt_audit { 1191 int flag; /* lock or unlock */ 1192 kthread_id_t thread; 1193 int depth; 1194 pc_t stack[HBLK_STACK_DEPTH]; 1195 }; 1196 1197 #endif /* HBLK_TRACE */ 1198 1199 1200 /* 1201 * Hment block structure. 1202 * The hme_blk is the node data structure which the hash structure 1203 * mantains. An hme_blk can have 2 different sizes depending on the 1204 * number of hments it implicitly contains. When dealing with 64K, 512K, 1205 * or 4M hments there is one hment per hme_blk. When dealing with 1206 * 8k hments we allocate an hme_blk plus an additional 7 hments to 1207 * give us a total of 8 (NHMENTS) hments that can be referenced through a 1208 * hme_blk. 1209 * 1210 * The hmeblk structure contains 2 tte reference counters used to determine if 1211 * it is ok to free up the hmeblk. Both counters have to be zero in order 1212 * to be able to free up hmeblk. They are protected by cas. 1213 * hblk_hmecnt is the number of hments present on pp mapping lists. 1214 * hblk_vcnt reflects number of valid ttes in hmeblk. 1215 * 1216 * The hmeblk now also has per tte lock cnts. This is required because 1217 * the counts can be high and there are not enough bits in the tte. When 1218 * physio is fixed to not lock the translations we should be able to move 1219 * the lock cnt back to the tte. See bug id 1198554. 1220 * 1221 * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc 1222 * and sf_hment are at the same offsets in both structures. Whenever 1223 * hme_blk is changed, xhat_hme_blk may need to be updated as well. 1224 */ 1225 1226 struct hme_blk_misc { 1227 uint_t notused:25; 1228 uint_t shared_bit:1; /* set for SRD shared hmeblk */ 1229 uint_t xhat_bit:1; /* set for an xhat hme_blk */ 1230 uint_t shadow_bit:1; /* set for a shadow hme_blk */ 1231 uint_t nucleus_bit:1; /* set for a nucleus hme_blk */ 1232 uint_t ttesize:3; /* contains ttesz of hmeblk */ 1233 }; 1234 1235 struct hme_blk { 1236 uint64_t hblk_nextpa; /* physical address for hash list */ 1237 1238 hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */ 1239 1240 struct hme_blk *hblk_next; /* on free list or on hash list */ 1241 /* protected by hash lock */ 1242 1243 struct hme_blk *hblk_shadow; /* pts to shadow hblk */ 1244 /* protected by hash lock */ 1245 uint_t hblk_span; /* span of memory hmeblk maps */ 1246 1247 struct hme_blk_misc hblk_misc; 1248 1249 union { 1250 struct { 1251 ushort_t hblk_hmecount; /* hment on mlists counter */ 1252 ushort_t hblk_validcnt; /* valid tte reference count */ 1253 } hblk_counts; 1254 uint_t hblk_shadow_mask; 1255 } hblk_un; 1256 1257 uint_t hblk_lckcnt; 1258 1259 #ifdef HBLK_TRACE 1260 kmutex_t hblk_audit_lock; /* lock to protect index */ 1261 uint_t hblk_audit_index; /* index into audit_cache */ 1262 struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE]; 1263 #endif /* HBLK_AUDIT */ 1264 1265 struct sf_hment hblk_hme[1]; /* hment array */ 1266 }; 1267 1268 #define hblk_shared hblk_misc.shared_bit 1269 #define hblk_xhat_bit hblk_misc.xhat_bit 1270 #define hblk_shw_bit hblk_misc.shadow_bit 1271 #define hblk_nuc_bit hblk_misc.nucleus_bit 1272 #define hblk_ttesz hblk_misc.ttesize 1273 #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount 1274 #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt 1275 #define hblk_shw_mask hblk_un.hblk_shadow_mask 1276 1277 #define MAX_HBLK_LCKCNT 0xFFFFFFFF 1278 #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */ 1279 1280 #ifdef HBLK_TRACE 1281 1282 #define HBLK_STACK_TRACE(hmeblkp, lock) \ 1283 { \ 1284 int flag = lock; /* to pacify lint */ \ 1285 int audit_index; \ 1286 \ 1287 mutex_enter(&hmeblkp->hblk_audit_lock); \ 1288 audit_index = hmeblkp->hblk_audit_index; \ 1289 hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \ 1290 (HBLK_AUDIT_CACHE_SIZE - 1)); \ 1291 mutex_exit(&hmeblkp->hblk_audit_lock); \ 1292 \ 1293 if (flag) \ 1294 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1295 HBLK_LOCK_PATTERN; \ 1296 else \ 1297 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1298 HBLK_UNLOCK_PATTERN; \ 1299 \ 1300 hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \ 1301 hmeblkp->hblk_audit_cache[audit_index].depth = \ 1302 getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \ 1303 HBLK_STACK_DEPTH); \ 1304 } 1305 1306 #else 1307 1308 #define HBLK_STACK_TRACE(hmeblkp, lock) 1309 1310 #endif /* HBLK_TRACE */ 1311 1312 #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */ 1313 1314 /* 1315 * A maximum number of user hmeblks is defined in order to place an upper 1316 * limit on how much nucleus memory is required and to avoid overflowing the 1317 * tsbmiss uhashsz and khashsz data areas. The number below corresponds to 1318 * the number of buckets required, for an average hash chain length of 4 on 1319 * a 16TB machine. 1320 */ 1321 1322 #define MAX_UHME_BUCKETS (0x1 << 30) 1323 #define MAX_KHME_BUCKETS (0x1 << 30) 1324 1325 /* 1326 * The minimum number of kernel hash buckets. 1327 */ 1328 #define MIN_KHME_BUCKETS 0x800 1329 1330 /* 1331 * The number of hash buckets must be a power of 2. If the initial calculated 1332 * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater 1333 * power of 2, otherwise we round down to avoid huge over allocations. 1334 */ 1335 #define USER_BUCKETS_THRESHOLD (1<<22) 1336 1337 #define MAX_NUCUHME_BUCKETS 0x4000 1338 #define MAX_NUCKHME_BUCKETS 0x2000 1339 1340 /* 1341 * There are 2 locks in the hmehash bucket. The hmehash_mutex is 1342 * a regular mutex used to make sure operations on a hash link are only 1343 * done by one thread. Any operation which comes into the hat with 1344 * a <vaddr, as> will grab the hmehash_mutex. Normally one would expect 1345 * the tsb miss handlers to grab the hash lock to make sure the hash list 1346 * is consistent while we traverse it. Unfortunately this can lead to 1347 * deadlocks or recursive mutex enters since it is possible for 1348 * someone holding the lock to take a tlb/tsb miss. 1349 * To solve this problem we have added the hmehash_listlock. This lock 1350 * is only grabbed by the tsb miss handlers, vatopfn, and while 1351 * adding/removing a hmeblk from the hash list. The code is written to 1352 * guarantee we won't take a tlb miss while holding this lock. 1353 */ 1354 struct hmehash_bucket { 1355 kmutex_t hmehash_mutex; 1356 uint64_t hmeh_nextpa; /* physical address for hash list */ 1357 struct hme_blk *hmeblkp; 1358 uint_t hmeh_listlock; 1359 }; 1360 1361 #endif /* !_ASM */ 1362 1363 #define SFMMU_PGCNT_MASK 0x3f 1364 #define SFMMU_PGCNT_SHIFT 6 1365 #define INVALID_MMU_ID -1 1366 #define SFMMU_MMU_GNUM_RSHIFT 16 1367 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT) 1368 #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */ 1369 #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1) 1370 1371 /* 1372 * The tsb miss handlers written in assembly know that sfmmup 1373 * is a 64 bit ptr. 1374 * 1375 * The bspage and re-hash part is 64 bits, with the sfmmup being another 64 1376 * bits. 1377 */ 1378 #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */ 1379 #define HTAG_BSPAGE_SHIFT 13 1380 1381 /* 1382 * Assembly routines need to be able to get to ttesz 1383 */ 1384 #define HBLK_SZMASK 0x7 1385 1386 #ifndef _ASM 1387 1388 /* 1389 * Returns the number of bytes that an hmeblk spans given its tte size 1390 */ 1391 #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span) 1392 #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz) 1393 #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \ 1394 sfmmu8_cache : sfmmu1_cache) 1395 #define HMEBLK_SPAN(ttesz) \ 1396 ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz)) 1397 1398 #define set_hblk_sz(hmeblkp, ttesz) \ 1399 (hmeblkp)->hblk_ttesz = (ttesz); \ 1400 (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz) 1401 1402 #define get_hblk_base(hmeblkp) \ 1403 ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT) 1404 1405 #define get_hblk_endaddr(hmeblkp) \ 1406 ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp))) 1407 1408 #define in_hblk_range(hmeblkp, vaddr) \ 1409 (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \ 1410 ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \ 1411 get_hblk_span(hmeblkp)))) 1412 1413 #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \ 1414 + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum))) 1415 1416 #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \ 1417 + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1)))) 1418 1419 #define vaddr_to_vshift(hblktag, vaddr, shwsz) \ 1420 ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\ 1421 TTE_BSZS_SHIFT((shwsz) - 1)) 1422 1423 #define HME8BLK_SZ (sizeof (struct hme_blk) + \ 1424 (NHMENTS - 1) * sizeof (struct sf_hment)) 1425 #define HME1BLK_SZ (sizeof (struct hme_blk)) 1426 #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */ 1427 1428 /* 1429 * Hme_blk hash structure 1430 * Active mappings are kept in a hash structure of hme_blks. The hash 1431 * function is based on (ctx, vaddr) The size of the hash table size is a 1432 * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN. 1433 * The hash actually consists of 2 separate hashes. One hash is for the user 1434 * address space and the other hash is for the kernel address space. 1435 * The number of buckets are calculated at boot time and stored in the global 1436 * variables "uhmehash_num" and "khmehash_num". By making the hash table size 1437 * a power of 2 we can use a simply & function to derive an index instead of 1438 * a divide. 1439 * 1440 * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash 1441 * bucket. 1442 * An hme hash bucket contains a pointer to an hme_blk and the mutex that 1443 * protects the link list. 1444 * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash. 1445 * 512K pages need 2 hashes and 4M pages need 3 hashes. 1446 * The 'shift' parameter controls how many bits the vaddr will be shifted in 1447 * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function 1448 * and it varies depending on the page size as follows: 1449 * 8k pages: HBLK_RANGE_SHIFT 1450 * 64k pages: MMU_PAGESHIFT64K 1451 * 512K pages: MMU_PAGESHIFT512K 1452 * 4M pages: MMU_PAGESHIFT4M 1453 * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All 1454 * changes should be reflected in both versions. This function and the TSB 1455 * miss handlers are the only places which know about the two hashes. 1456 * 1457 * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall 1458 * into the same bucket for a particular process. It is currently set to 1459 * be equivalent to 64K range or one hme_blk. 1460 * 1461 * The hme_blks in the hash are protected by a per hash bucket mutex 1462 * known as SFMMU_HASH_LOCK. 1463 * You need to acquire this lock before traversing the hash bucket link 1464 * list, while adding/removing a hme_blk to the list, and while 1465 * modifying an hme_blk. A possible optimization is to replace these 1466 * mutexes by readers/writer lock but right now it is not clear whether 1467 * this is a win or not. 1468 * 1469 * The HME_HASH_TABLE_SEARCH will search the hash table for the 1470 * hme_blk that contains the hment that corresponds to the passed 1471 * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held. 1472 */ 1473 1474 #endif /* ! _ASM */ 1475 1476 #define KHATID ksfmmup 1477 #define UHMEHASH_SZ uhmehash_num 1478 #define KHMEHASH_SZ khmehash_num 1479 #define HMENT_HASHAVELEN 4 1480 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */ 1481 #define HBLK_MIN_TTESZ 1 1482 #define HBLK_MIN_BYTES MMU_PAGESIZE64K 1483 #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K 1484 #define MAX_HASHCNT 5 1485 #define DEFAULT_MAX_HASHCNT 3 1486 1487 #ifndef _ASM 1488 1489 #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno) 1490 1491 #define HME_HASH_SHIFT(ttesz) \ 1492 ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz)) 1493 1494 #define HME_HASH_ADDR(vaddr, hmeshift) \ 1495 ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift))) 1496 1497 #define HME_HASH_BSPAGE(vaddr, hmeshift) \ 1498 (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT)) 1499 1500 #define HME_HASH_REHASH(ttesz) \ 1501 (((ttesz) < TTE512K)? 1 : (ttesz)) 1502 1503 #define HME_HASH_FUNCTION(hatid, vaddr, shift) \ 1504 ((((void *)hatid) != ((void *)KHATID)) ? \ 1505 (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1506 UHMEHASH_SZ) ]): \ 1507 (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1508 KHMEHASH_SZ) ])) 1509 1510 /* 1511 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1512 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1513 * will be set to NULL, otherwise it will point to the correct hme_blk. 1514 * This macro also cleans empty hblks. 1515 */ 1516 #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, \ 1517 pr_hblk, prevpa, listp) \ 1518 { \ 1519 struct hme_blk *nx_hblk; \ 1520 uint64_t nx_pa; \ 1521 \ 1522 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1523 hblkp = hmebp->hmeblkp; \ 1524 hblkpa = hmebp->hmeh_nextpa; \ 1525 prevpa = 0; \ 1526 pr_hblk = NULL; \ 1527 while (hblkp) { \ 1528 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1529 /* found hme_blk */ \ 1530 break; \ 1531 } \ 1532 nx_hblk = hblkp->hblk_next; \ 1533 nx_pa = hblkp->hblk_nextpa; \ 1534 if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \ 1535 sfmmu_hblk_hash_rm(hmebp, hblkp, prevpa, pr_hblk); \ 1536 sfmmu_hblk_free(hmebp, hblkp, hblkpa, listp); \ 1537 } else { \ 1538 pr_hblk = hblkp; \ 1539 prevpa = hblkpa; \ 1540 } \ 1541 hblkp = nx_hblk; \ 1542 hblkpa = nx_pa; \ 1543 } \ 1544 } 1545 1546 #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \ 1547 { \ 1548 struct hme_blk *pr_hblk; \ 1549 uint64_t hblkpa, prevpa; \ 1550 \ 1551 HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, pr_hblk, \ 1552 prevpa, listp); \ 1553 } 1554 1555 /* 1556 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1557 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1558 * will be set to NULL, otherwise it will point to the correct hme_blk. 1559 * It doesn't remove empty hblks. 1560 */ 1561 #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \ 1562 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1563 for (hblkp = hmebp->hmeblkp; hblkp; \ 1564 hblkp = hblkp->hblk_next) { \ 1565 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1566 /* found hme_blk */ \ 1567 break; \ 1568 } \ 1569 } 1570 1571 #define SFMMU_HASH_LOCK(hmebp) \ 1572 (mutex_enter(&hmebp->hmehash_mutex)) 1573 1574 #define SFMMU_HASH_UNLOCK(hmebp) \ 1575 (mutex_exit(&hmebp->hmehash_mutex)) 1576 1577 #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \ 1578 (mutex_tryenter(&hmebp->hmehash_mutex)) 1579 1580 #define SFMMU_HASH_LOCK_ISHELD(hmebp) \ 1581 (mutex_owned(&hmebp->hmehash_mutex)) 1582 1583 #define SFMMU_XCALL_STATS(sfmmup) \ 1584 { \ 1585 if (sfmmup == ksfmmup) { \ 1586 SFMMU_STAT(sf_kernel_xcalls); \ 1587 } else { \ 1588 SFMMU_STAT(sf_user_xcalls); \ 1589 } \ 1590 } 1591 1592 #define astosfmmu(as) ((as)->a_hat) 1593 #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id) 1594 #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id) 1595 #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as) 1596 1597 #define sfmmutohtagid(sfmmup, rid) \ 1598 (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \ 1599 (void *)((sfmmup)->sfmmu_srdp)) 1600 1601 /* 1602 * We use the sfmmu data structure to keep the per as page coloring info. 1603 */ 1604 #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin) 1605 #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart) 1606 1607 typedef struct { 1608 char h8[HME8BLK_SZ]; 1609 } hblk8_t; 1610 1611 typedef struct { 1612 char h1[HME1BLK_SZ]; 1613 } hblk1_t; 1614 1615 typedef struct { 1616 ulong_t index; 1617 ulong_t len; 1618 hblk8_t *list; 1619 } nucleus_hblk8_info_t; 1620 1621 typedef struct { 1622 ulong_t index; 1623 ulong_t len; 1624 hblk1_t *list; 1625 } nucleus_hblk1_info_t; 1626 1627 /* 1628 * This struct is used for accumlating information about a range 1629 * of pages that are unloading so that a single xcall can flush 1630 * the entire range from remote tlbs. A function that must demap 1631 * a range of virtual addresses declares one of these structures 1632 * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this 1633 * struct to the appropriate sfmmu_hblk_* level function which does 1634 * all the bookkeeping using the other macros. When the function has 1635 * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH() 1636 * macro to take care of any remaining unflushed mappings. 1637 * 1638 * The maximum range this struct can represent is the number of bits 1639 * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only 1640 * MMU_PAGESIZE pages are supported. 1641 * 1642 * Since there are now cases where it's no longer necessary to do 1643 * flushes (e.g. when the process isn't runnable because it's swapping 1644 * out or exiting) we allow these macros to take a NULL dmr input and do 1645 * nothing in that case. 1646 */ 1647 typedef struct { 1648 sfmmu_t *dmr_sfmmup; /* relevant hat */ 1649 caddr_t dmr_addr; /* beginning address */ 1650 caddr_t dmr_endaddr; /* ending address */ 1651 ulong_t dmr_bitvec; /* valid pages found */ 1652 ulong_t dmr_bit; /* next page to examine */ 1653 ulong_t dmr_maxbit; /* highest page in range */ 1654 ulong_t dmr_pgsz; /* page size in range */ 1655 } demap_range_t; 1656 1657 #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */ 1658 1659 #define DEMAP_RANGE_INIT(sfmmup, dmrp) \ 1660 if ((dmrp) != NULL) { \ 1661 (dmrp)->dmr_sfmmup = (sfmmup); \ 1662 (dmrp)->dmr_bitvec = 0; \ 1663 (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \ 1664 (dmrp)->dmr_pgsz = MMU_PAGESIZE; \ 1665 } 1666 1667 #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE) 1668 1669 #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \ 1670 if ((dmrp) != NULL) { \ 1671 if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \ 1672 sfmmu_tlb_range_demap(dmrp); \ 1673 (dmrp)->dmr_endaddr = (endaddr); \ 1674 } 1675 1676 #define DEMAP_RANGE_FLUSH(dmrp) \ 1677 if ((dmrp) != NULL) { \ 1678 if ((dmrp)->dmr_bitvec != 0) \ 1679 sfmmu_tlb_range_demap(dmrp); \ 1680 } 1681 1682 #define DEMAP_RANGE_MARKPG(dmrp, addr) \ 1683 if ((dmrp) != NULL) { \ 1684 if ((dmrp)->dmr_bitvec == 0) { \ 1685 (dmrp)->dmr_addr = (addr); \ 1686 (dmrp)->dmr_bit = 1; \ 1687 } \ 1688 (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \ 1689 } 1690 1691 #define DEMAP_RANGE_NEXTPG(dmrp) \ 1692 if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \ 1693 if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \ 1694 sfmmu_tlb_range_demap(dmrp); \ 1695 } else { \ 1696 (dmrp)->dmr_bit <<= 1; \ 1697 } \ 1698 } 1699 1700 /* 1701 * TSB related structures 1702 * 1703 * The TSB is made up of tte entries. Both the tag and data are present 1704 * in the TSB. The TSB locking is managed as follows: 1705 * A software bit in the tsb tag is used to indicate that entry is locked. 1706 * If a cpu servicing a tsb miss reads a locked entry the tag compare will 1707 * fail forcing the cpu to go to the hat hash for the translation. 1708 * The cpu who holds the lock can then modify the data side, and the tag side. 1709 * The last write should be to the word containing the lock bit which will 1710 * clear the lock and allow the tsb entry to be read. It is assumed that all 1711 * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128 1712 * bit load is required to prevent the following from happening: 1713 * 1714 * cpu 0 cpu 1 comments 1715 * 1716 * ldx tag tag unlocked 1717 * ldstub lock set lock 1718 * stx data 1719 * stx tag unlock 1720 * ldx tag incorrect tte!!! 1721 * 1722 * The software also maintains a bit in the tag to indicate an invalid 1723 * tsb entry. The purpose of this bit is to allow the tsb invalidate code 1724 * to invalidate a tsb entry with a single cas. See code for details. 1725 */ 1726 1727 union tsb_tag { 1728 struct { 1729 uint32_t tag_res0:16; /* reserved - context area */ 1730 uint32_t tag_inv:1; /* sw - invalid tsb entry */ 1731 uint32_t tag_lock:1; /* sw - locked tsb entry */ 1732 uint32_t tag_res1:4; /* reserved */ 1733 uint32_t tag_va_hi:10; /* va[63:54] */ 1734 uint32_t tag_va_lo; /* va[53:22] */ 1735 } tagbits; 1736 struct tsb_tagints { 1737 uint32_t inthi; 1738 uint32_t intlo; 1739 } tagints; 1740 }; 1741 #define tag_invalid tagbits.tag_inv 1742 #define tag_locked tagbits.tag_lock 1743 #define tag_vahi tagbits.tag_va_hi 1744 #define tag_valo tagbits.tag_va_lo 1745 #define tag_inthi tagints.inthi 1746 #define tag_intlo tagints.intlo 1747 1748 struct tsbe { 1749 union tsb_tag tte_tag; 1750 tte_t tte_data; 1751 }; 1752 1753 /* 1754 * A per cpu struct is kept that duplicates some info 1755 * used by the tl>0 tsb miss handlers plus it provides 1756 * a scratch area. Its purpose is to minimize cache misses 1757 * in the tsb miss handler and is 128 bytes (2 e$ lines). 1758 * 1759 * There should be one allocated per cpu in nucleus memory 1760 * and should be aligned on an ecache line boundary. 1761 */ 1762 struct tsbmiss { 1763 sfmmu_t *ksfmmup; /* kernel hat id */ 1764 sfmmu_t *usfmmup; /* user hat id */ 1765 sf_srd_t *usrdp; /* user's SRD hat id */ 1766 struct tsbe *tsbptr; /* hardware computed ptr */ 1767 struct tsbe *tsbptr4m; /* hardware computed ptr */ 1768 struct tsbe *tsbscdptr; /* hardware computed ptr */ 1769 struct tsbe *tsbscdptr4m; /* hardware computed ptr */ 1770 uint64_t ismblkpa; 1771 struct hmehash_bucket *khashstart; 1772 struct hmehash_bucket *uhashstart; 1773 uint_t khashsz; 1774 uint_t uhashsz; 1775 uint16_t dcache_line_mask; /* used to flush dcache */ 1776 uchar_t uhat_tteflags; /* private page sizes */ 1777 uchar_t uhat_rtteflags; /* SHME pagesizes */ 1778 uint32_t utsb_misses; 1779 uint32_t ktsb_misses; 1780 uint16_t uprot_traps; 1781 uint16_t kprot_traps; 1782 /* 1783 * scratch[0] -> TSB_TAGACC 1784 * scratch[1] -> TSBMISS_HMEBP 1785 * scratch[2] -> TSBMISS_HATID 1786 */ 1787 uintptr_t scratch[3]; 1788 ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1789 ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1790 uint8_t pad[48]; /* pad to 64 bytes */ 1791 }; 1792 1793 /* 1794 * A per cpu struct is kept for the use within the tl>0 kpm tsb 1795 * miss handler. Some members are duplicates of common data or 1796 * the physical addresses of common data. A few members are also 1797 * written by the tl>0 kpm tsb miss handler. Its purpose is to 1798 * minimize cache misses in the kpm tsb miss handler and occupies 1799 * one ecache line. There should be one allocated per cpu in 1800 * nucleus memory and it should be aligned on an ecache line 1801 * boundary. It is not merged w/ struct tsbmiss since there is 1802 * not much to share and the tsbmiss pathes are different, so 1803 * a kpm tlbmiss/tsbmiss only touches one cacheline, except for 1804 * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter 1805 * of struct tsbmiss is used on every dtlb miss. 1806 */ 1807 struct kpmtsbm { 1808 caddr_t vbase; /* start of address kpm range */ 1809 caddr_t vend; /* end of address kpm range */ 1810 uchar_t flags; /* flags needed in TL tsbmiss handler */ 1811 uchar_t sz_shift; /* for single kpm window */ 1812 uchar_t kpmp_shift; /* hash lock shift */ 1813 uchar_t kpmp2pshft; /* kpm page to page shift */ 1814 uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */ 1815 uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */ 1816 uint64_t msegphashpa; /* paddr of memseg_phash */ 1817 struct tsbe *tsbptr; /* saved ktsb pointer */ 1818 uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */ 1819 uint_t kpm_tsb_misses; /* kpm tsbmiss counter */ 1820 uintptr_t pad[1]; 1821 }; 1822 1823 extern size_t tsb_slab_size; 1824 extern uint_t tsb_slab_shift; 1825 extern size_t tsb_slab_mask; 1826 1827 #endif /* !_ASM */ 1828 1829 /* 1830 * Flags for TL kpm tsbmiss handler 1831 */ 1832 #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */ 1833 #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */ 1834 #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */ 1835 1836 /* 1837 * The TSB 1838 * All TSB sizes supported by the hardware are now supported (8K - 1M). 1839 * For kernel TSBs we may go beyond the hardware supported sizes and support 1840 * larger TSBs via software. 1841 * All TTE sizes are supported in the TSB; the manner in which this is 1842 * done is cpu dependent. 1843 */ 1844 #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */ 1845 #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE)) 1846 1847 #ifdef sun4v 1848 #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */ 1849 #else /* sun4u */ 1850 #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */ 1851 #endif /* sun4v */ 1852 1853 #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE)) 1854 1855 #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */ 1856 #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */ 1857 #define TSB_8K_SZCODE 0 /* 512 entries */ 1858 #define TSB_16K_SZCODE 1 /* 1k entries */ 1859 #define TSB_32K_SZCODE 2 /* 2k entries */ 1860 #define TSB_64K_SZCODE 3 /* 4k entries */ 1861 #define TSB_128K_SZCODE 4 /* 8k entries */ 1862 #define TSB_256K_SZCODE 5 /* 16k entries */ 1863 #define TSB_512K_SZCODE 6 /* 32k entries */ 1864 #define TSB_1M_SZCODE 7 /* 64k entries */ 1865 #define TSB_2M_SZCODE 8 /* 128k entries */ 1866 #define TSB_4M_SZCODE 9 /* 256k entries */ 1867 #define TSB_8M_SZCODE 10 /* 512k entries */ 1868 #define TSB_16M_SZCODE 11 /* 1M entries */ 1869 #define TSB_32M_SZCODE 12 /* 2M entries */ 1870 #define TSB_64M_SZCODE 13 /* 4M entries */ 1871 #define TSB_128M_SZCODE 14 /* 8M entries */ 1872 #define TSB_256M_SZCODE 15 /* 16M entries */ 1873 #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */ 1874 #define TSB_ENTRY_SIZE (1 << 4) 1875 #define TSB_START_SIZE 9 1876 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz)) 1877 #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT) 1878 #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1) 1879 #define TSB_BASEADDR_MASK ((1 << 12) - 1) 1880 1881 /* 1882 * sun4u platforms 1883 * --------------- 1884 * We now support two user TSBs with one TSB base register. 1885 * Hence the TSB base register is split up as follows: 1886 * 1887 * When only one TSB present: 1888 * [63 62..42 41..13 12..4 3..0] 1889 * ^ ^ ^ ^ ^ 1890 * | | | | | 1891 * | | | | |_ TSB size code 1892 * | | | | 1893 * | | | |_ Reserved 0 1894 * | | | 1895 * | | |_ TSB VA[41..13] 1896 * | | 1897 * | |_ VA hole (Spitfire), zeros (Cheetah and beyond) 1898 * | 1899 * |_ 0 1900 * 1901 * When second TSB present: 1902 * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0] 1903 * ^ ^ ^ ^ ^ ^ ^ ^ 1904 * | | | | | | | | 1905 * | | | | | | | |_ First TSB size code 1906 * | | | | | | | 1907 * | | | | | | |_ Reserved 0 1908 * | | | | | | 1909 * | | | | | |_ First TSB's VA[21..13] 1910 * | | | | | 1911 * | | | | |_ Reserved for future use 1912 * | | | | 1913 * | | | |_ Second TSB's size code 1914 * | | | 1915 * | | |_ Second TSB's VA[21..13] 1916 * | | 1917 * | |_ VA hole (Spitfire) / ones (Cheetah and beyond) 1918 * | 1919 * |_ 1 1920 * 1921 * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs 1922 * may be up to 4M in size. For now, only hardware supported TSB sizes 1923 * are supported, though the slabs are usually 4M in size. 1924 * 1925 * sun4u platforms that define UTSB_PHYS use physical addressing to access 1926 * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base 1927 * registers. The second TSB base uses a dedicated scratchpad register which 1928 * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for 1929 * both registers is equivalent to sun4v below, except the TSB PA range is 1930 * [46..13] for sun4u. 1931 * 1932 * sun4v platforms 1933 * --------------- 1934 * On sun4v platforms, we use two dedicated scratchpad registers as pseudo 1935 * hardware TSB base registers to hold up to two different user TSBs. 1936 * 1937 * Each register contains TSB's physical base and size code information 1938 * as follows: 1939 * 1940 * [63..56 55..13 12..4 3..0] 1941 * ^ ^ ^ ^ 1942 * | | | | 1943 * | | | |_ TSB size code 1944 * | | | 1945 * | | |_ Reserved 0 1946 * | | 1947 * | |_ TSB PA[55..13] 1948 * | 1949 * | 1950 * | 1951 * |_ 0 for valid TSB 1952 * 1953 * Absence of a user TSB (primarily the second user TSB) is indicated by 1954 * storing a negative value in the TSB base register. This allows us to 1955 * check for presence of a user TSB by simply checking bit# 63. 1956 */ 1957 #define TSBREG_MSB_SHIFT 32 /* set upper bits */ 1958 #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */ 1959 #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */ 1960 #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */ 1961 #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */ 1962 #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT) 1963 /* sectsb va -> bits 21:13 */ 1964 /* after clearing upper bits */ 1965 #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */ 1966 #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */ 1967 1968 #define BIGKTSB_SZ_MASK 0xf 1969 #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK 1970 #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */ 1971 #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */ 1972 #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M) 1973 1974 #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */ 1975 /* 1976 * sw bits used on tsb_tag - bit masks used only in assembly 1977 * use only a sethi for these fields. 1978 */ 1979 #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */ 1980 #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */ 1981 1982 #ifdef _ASM 1983 1984 /* 1985 * Marker to indicate that this instruction will be hot patched at runtime 1986 * to some other value. 1987 * This value must be zero since it fills in the imm bits of the target 1988 * instructions to be patched 1989 */ 1990 #define RUNTIME_PATCH (0) 1991 1992 /* 1993 * V9 defines nop instruction as the following, which we use 1994 * at runtime to nullify some instructions we don't want to 1995 * execute in the trap handlers on certain platforms. 1996 */ 1997 #define MAKE_NOP_INSTR(reg) \ 1998 sethi %hi(0x1000000), reg 1999 2000 /* 2001 * This macro constructs a SPARC V9 "jmpl <source reg>, %g0" 2002 * instruction, with the source register specified by the jump_reg_number. 2003 * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14]. 2004 * The instruction is returned in reg. The macro is used to patch in a jmpl 2005 * instruction at runtime. 2006 */ 2007 #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \ 2008 sethi %hi(0x81c00000), reg; \ 2009 mov jump_reg_number, tmp; \ 2010 sll tmp, 14, tmp; \ 2011 or reg, tmp, reg 2012 2013 /* 2014 * Macro to get hat per-MMU cnum on this CPU. 2015 * sfmmu - In, pass in "sfmmup" from the caller. 2016 * cnum - Out, return 'cnum' to the caller 2017 * scr - scratch 2018 */ 2019 #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \ 2020 CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \ 2021 ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \ 2022 add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \ 2023 sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \ 2024 add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \ 2025 ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \ 2026 sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \ 2027 srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2028 2029 /* 2030 * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry 2031 * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller. 2032 * gnum - Out, return sfmmu gnum 2033 * cnum - Out, return sfmmu cnum 2034 * reg - scratch 2035 */ 2036 #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \ 2037 ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \ 2038 srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \ 2039 sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \ 2040 srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2041 2042 /* 2043 * Macro to get this CPU's tsbmiss area. 2044 */ 2045 #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \ 2046 CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \ 2047 sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \ 2048 mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \ 2049 or tsbmiss, %lo(tsbmiss_area), tsbmiss; \ 2050 add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */ 2051 2052 2053 /* 2054 * Macro to set kernel context + page size codes in DMMU primary context 2055 * register. It is only necessary for sun4u because sun4v does not need 2056 * page size codes 2057 */ 2058 #ifdef sun4v 2059 2060 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) 2061 2062 #else 2063 2064 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \ 2065 sethi %hi(kcontextreg), reg0; \ 2066 ldx [reg0 + %lo(kcontextreg)], reg0; \ 2067 mov MMU_PCONTEXT, reg1; \ 2068 ldxa [reg1]ASI_MMU_CTX, reg2; \ 2069 xor reg0, reg2, reg2; \ 2070 brz reg2, label3; \ 2071 srlx reg2, CTXREG_NEXT_SHIFT, reg2; \ 2072 rdpr %pstate, reg3; /* disable interrupts */ \ 2073 btst PSTATE_IE, reg3; \ 2074 /*CSTYLED*/ \ 2075 bnz,a,pt %icc, label1; \ 2076 wrpr reg3, PSTATE_IE, %pstate; \ 2077 /*CSTYLED*/ \ 2078 label1:; \ 2079 brz reg2, label2; /* need demap if N_pgsz0/1 change */ \ 2080 sethi %hi(FLUSH_ADDR), reg4; \ 2081 mov DEMAP_ALL_TYPE, reg2; \ 2082 stxa %g0, [reg2]ASI_DTLB_DEMAP; \ 2083 stxa %g0, [reg2]ASI_ITLB_DEMAP; \ 2084 /*CSTYLED*/ \ 2085 label2:; \ 2086 stxa reg0, [reg1]ASI_MMU_CTX; \ 2087 flush reg4; \ 2088 btst PSTATE_IE, reg3; \ 2089 /*CSTYLED*/ \ 2090 bnz,a,pt %icc, label3; \ 2091 wrpr %g0, reg3, %pstate; /* restore interrupt state */ \ 2092 label3:; 2093 2094 #endif 2095 2096 /* 2097 * Macro to setup arguments with kernel sfmmup context + page size before 2098 * calling sfmmu_setctx_sec() 2099 */ 2100 #ifdef sun4v 2101 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2102 set KCONTEXT, arg0; \ 2103 set 0, arg1; 2104 #else 2105 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2106 ldub [sfmmup + SFMMU_CEXT], arg1; \ 2107 set KCONTEXT, arg0; \ 2108 sll arg1, CTXREG_EXT_SHIFT, arg1; 2109 #endif 2110 2111 #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \ 2112 andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \ 2113 /*CSTYLED*/ \ 2114 bnz,pt %icc, label; /* already disabled */ \ 2115 nop; \ 2116 \ 2117 sethi %hi(panicstr), scr; \ 2118 ldx [scr + %lo(panicstr)], scr; \ 2119 tst scr; \ 2120 /*CSTYLED*/ \ 2121 bnz,pt %xcc, label; \ 2122 nop; \ 2123 \ 2124 save %sp, -SA(MINFRAME), %sp; \ 2125 sethi %hi(sfmmu_panic1), %o0; \ 2126 call panic; \ 2127 or %o0, %lo(sfmmu_panic1), %o0; \ 2128 /*CSTYLED*/ \ 2129 label: 2130 2131 #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \ 2132 /* \ 2133 * The caller must have disabled interrupts. \ 2134 * If interrupts are not disabled, panic \ 2135 */ \ 2136 rdpr %pstate, scr; \ 2137 andcc scr, PSTATE_IE, %g0; \ 2138 /*CSTYLED*/ \ 2139 bz,pt %icc, label; \ 2140 nop; \ 2141 \ 2142 sethi %hi(panicstr), scr; \ 2143 ldx [scr + %lo(panicstr)], scr; \ 2144 tst scr; \ 2145 /*CSTYLED*/ \ 2146 bnz,pt %xcc, label; \ 2147 nop; \ 2148 \ 2149 sethi %hi(sfmmu_panic6), %o0; \ 2150 call panic; \ 2151 or %o0, %lo(sfmmu_panic6), %o0; \ 2152 /*CSTYLED*/ \ 2153 label: 2154 2155 #endif /* _ASM */ 2156 2157 #ifndef _ASM 2158 2159 #ifdef VAC 2160 /* 2161 * Page coloring 2162 * The p_vcolor field of the page struct (1 byte) is used to store the 2163 * virtual page color. This provides for 255 colors. The value zero is 2164 * used to mean the page has no color - never been mapped or somehow 2165 * purified. 2166 */ 2167 2168 #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1) 2169 #define PP_NEWPAGE(pp) (!(pp)->p_vcolor) 2170 #define PP_SET_VCOLOR(pp, color) \ 2171 ((pp)->p_vcolor = ((color) + 1)) 2172 2173 /* 2174 * As mentioned p_vcolor == 0 means there is no color for this page. 2175 * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus 2176 * one so we define this constant. 2177 */ 2178 #define NO_VCOLOR (-1) 2179 2180 #define addr_to_vcolor(addr) \ 2181 (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask) 2182 #else /* VAC */ 2183 #define addr_to_vcolor(addr) (0) 2184 #endif /* VAC */ 2185 2186 /* 2187 * The field p_index in the psm page structure is for large pages support. 2188 * P_index is a bit-vector of the different mapping sizes that a given page 2189 * is part of. An hme structure for a large mapping is only added in the 2190 * group leader page (first page). All pages covered by a given large mapping 2191 * have the corrosponding mapping bit set in their p_index field. This allows 2192 * us to only store an explicit hme structure in the leading page which 2193 * simplifies the mapping link list management. Furthermore, it provides us 2194 * a fast mechanism for determining the largest mapping a page is part of. For 2195 * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A. 2196 * 2197 * Implementation note: even though the first bit in p_index is reserved 2198 * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set. 2199 * In addition, the upper four bits of the p_index field are used by the 2200 * code as temporaries 2201 */ 2202 2203 /* 2204 * Defines for psm page struct fields and large page support 2205 */ 2206 #define SFMMU_INDEX_SHIFT 6 2207 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1) 2208 2209 /* Return the mapping index */ 2210 #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK) 2211 2212 /* 2213 * These macros rely on the following property: 2214 * All pages constituting a large page are covered by a virtually 2215 * contiguous set of page_t's. 2216 */ 2217 2218 /* Return the leader for this mapping size */ 2219 #define PP_GROUPLEADER(pp, sz) \ 2220 (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))]) 2221 2222 /* Return the root page for this page based on p_szc */ 2223 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 2224 PP_GROUPLEADER((pp), (pp)->p_szc)) 2225 2226 #define PP_PAGENEXT_N(pp, n) ((pp) + (n)) 2227 #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1) 2228 2229 #define PP_PAGEPREV_N(pp, n) ((pp) - (n)) 2230 #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1) 2231 2232 #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0) 2233 2234 /* Need function to test the page mappping which takes p_index into account */ 2235 #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp)) 2236 2237 /* 2238 * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT 2239 * set p_index field. 2240 */ 2241 #define PAGESZ_TO_INDEX(sz) (1 << (sz)) 2242 2243 2244 /* 2245 * prototypes for hat assembly routines. Some of these are 2246 * known to machine dependent VM code. 2247 */ 2248 extern uint64_t sfmmu_make_tsbtag(caddr_t); 2249 extern struct tsbe * 2250 sfmmu_get_tsbe(uint64_t, caddr_t, int, int); 2251 extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int); 2252 extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int); 2253 extern void sfmmu_load_mmustate(sfmmu_t *); 2254 extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t); 2255 #ifndef sun4v 2256 extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *); 2257 extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *); 2258 #endif /* sun4v */ 2259 extern void sfmmu_copytte(tte_t *, tte_t *); 2260 extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *); 2261 extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *); 2262 extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t); 2263 extern void sfmmu_hblk_hash_rm(struct hmehash_bucket *, 2264 struct hme_blk *, uint64_t, struct hme_blk *); 2265 extern void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *, 2266 uint64_t); 2267 extern uint_t sfmmu_disable_intrs(void); 2268 extern void sfmmu_enable_intrs(uint_t); 2269 /* 2270 * functions exported to machine dependent VM code 2271 */ 2272 extern void sfmmu_patch_ktsb(void); 2273 #ifndef UTSB_PHYS 2274 extern void sfmmu_patch_utsb(void); 2275 #endif /* UTSB_PHYS */ 2276 extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *); 2277 extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *); 2278 extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int); 2279 #ifdef DEBUG 2280 extern void sfmmu_check_kpfn(pfn_t); 2281 #else 2282 #define sfmmu_check_kpfn(pfn) /* disabled */ 2283 #endif /* DEBUG */ 2284 extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 2285 extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t); 2286 extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t); 2287 extern void sfmmu_init_tsbs(void); 2288 extern caddr_t sfmmu_ktsb_alloc(caddr_t); 2289 extern int sfmmu_getctx_pri(void); 2290 extern int sfmmu_getctx_sec(void); 2291 extern void sfmmu_setctx_sec(uint_t); 2292 extern void sfmmu_inv_tsb(caddr_t, uint_t); 2293 extern void sfmmu_init_ktsbinfo(void); 2294 extern int sfmmu_setup_4lp(void); 2295 extern void sfmmu_patch_mmu_asi(int); 2296 extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int); 2297 extern void sfmmu_cache_flushall(void); 2298 extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t); 2299 extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int); 2300 extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t); 2301 extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *); 2302 2303 extern void hat_kern_setup(void); 2304 extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *); 2305 extern int sfmmu_get_ppvcolor(struct page *); 2306 extern int sfmmu_get_addrvcolor(caddr_t); 2307 extern int sfmmu_hat_lock_held(sfmmu_t *); 2308 extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int); 2309 2310 /* 2311 * Functions exported to xhat_sfmmu.c 2312 */ 2313 extern kmutex_t *sfmmu_mlist_enter(page_t *); 2314 extern void sfmmu_mlist_exit(kmutex_t *); 2315 extern int sfmmu_mlist_held(struct page *); 2316 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *); 2317 2318 /* 2319 * MMU-specific functions optionally imported from the CPU module 2320 */ 2321 #pragma weak mmu_large_pages_disabled 2322 #pragma weak mmu_set_ctx_page_sizes 2323 #pragma weak mmu_check_page_sizes 2324 2325 extern uint_t mmu_large_pages_disabled(uint_t); 2326 extern void mmu_set_ctx_page_sizes(sfmmu_t *); 2327 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *); 2328 2329 extern sfmmu_t *ksfmmup; 2330 extern caddr_t ktsb_base; 2331 extern uint64_t ktsb_pbase; 2332 extern int ktsb_sz; 2333 extern int ktsb_szcode; 2334 extern caddr_t ktsb4m_base; 2335 extern uint64_t ktsb4m_pbase; 2336 extern int ktsb4m_sz; 2337 extern int ktsb4m_szcode; 2338 extern uint64_t kpm_tsbbase; 2339 extern int kpm_tsbsz; 2340 extern int ktsb_phys; 2341 extern int enable_bigktsb; 2342 #ifndef sun4v 2343 extern int utsb_dtlb_ttenum; 2344 extern int utsb4m_dtlb_ttenum; 2345 #endif /* sun4v */ 2346 extern int uhmehash_num; 2347 extern int khmehash_num; 2348 extern struct hmehash_bucket *uhme_hash; 2349 extern struct hmehash_bucket *khme_hash; 2350 extern kmutex_t *mml_table; 2351 extern uint_t mml_table_sz; 2352 extern uint_t mml_shift; 2353 extern uint_t hblk_alloc_dynamic; 2354 extern struct tsbmiss tsbmiss_area[NCPU]; 2355 extern struct kpmtsbm kpmtsbm_area[NCPU]; 2356 2357 #ifndef sun4v 2358 extern int dtlb_resv_ttenum; 2359 extern caddr_t utsb_vabase; 2360 extern caddr_t utsb4m_vabase; 2361 #endif /* sun4v */ 2362 extern vmem_t *kmem_tsb_default_arena[]; 2363 extern int tsb_lgrp_affinity; 2364 2365 extern uint_t disable_large_pages; 2366 extern uint_t disable_ism_large_pages; 2367 extern uint_t disable_auto_data_large_pages; 2368 extern uint_t disable_auto_text_large_pages; 2369 2370 /* kpm externals */ 2371 extern pfn_t sfmmu_kpm_vatopfn(caddr_t); 2372 extern void sfmmu_kpm_patch_tlbm(void); 2373 extern void sfmmu_kpm_patch_tsbm(void); 2374 extern void sfmmu_patch_shctx(void); 2375 extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int); 2376 extern void sfmmu_kpm_unload_tsb(caddr_t, int); 2377 extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int); 2378 extern int sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int); 2379 extern caddr_t kpm_vbase; 2380 extern size_t kpm_size; 2381 extern struct memseg *memseg_hash[]; 2382 extern uint64_t memseg_phash[]; 2383 extern kpm_hlk_t *kpmp_table; 2384 extern kpm_shlk_t *kpmp_stable; 2385 extern uint_t kpmp_table_sz; 2386 extern uint_t kpmp_stable_sz; 2387 extern uchar_t kpmp_shift; 2388 2389 #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0) 2390 2391 #define IS_KPM_ALIAS_RANGE(vaddr) \ 2392 (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0) 2393 2394 #endif /* !_ASM */ 2395 2396 /* sfmmu_kpm_tsbmtl flags */ 2397 #define KPMTSBM_STOP 0 2398 #define KPMTSBM_START 1 2399 2400 /* 2401 * For kpm_smallpages, the state about how a kpm page is mapped and whether 2402 * it is ready to go is indicated by the two 4-bit fields defined in the 2403 * kpm_spage structure as follows: 2404 * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not 2405 * kp_mapped_flag bit[4:7] - the mapping is ready to go or not 2406 * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss 2407 * handler can drop the mapping in regardless of the caching state of the 2408 * mapping. Otherwise, we will have C handler resolve the VAC conflict no 2409 * matter the page is currently mapped cacheable or non-cacheable. 2410 */ 2411 #define KPM_MAPPEDS 0x1 /* small mapping valid, no conflict */ 2412 #define KPM_MAPPEDSC 0x2 /* small mapping valid, conflict */ 2413 #define KPM_MAPPED_GO 0x10 /* the mapping is ready to go */ 2414 #define KPM_MAPPED_MASK 0xf 2415 2416 /* Physical memseg address NULL marker */ 2417 #define MSEG_NULLPTR_PA -1 2418 2419 /* 2420 * Memseg hash defines for kpm trap level tsbmiss handler. 2421 * Must be in sync w/ page.h . 2422 */ 2423 #define SFMMU_MEM_HASH_SHIFT 0x9 2424 #define SFMMU_N_MEM_SLOTS 0x200 2425 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3 2426 2427 #ifndef _ASM 2428 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT) 2429 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT 2430 #endif 2431 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS) 2432 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS 2433 #endif 2434 2435 /* Physical memseg address NULL marker */ 2436 #define SFMMU_MEMSEG_NULLPTR_PA -1 2437 2438 /* 2439 * Check KCONTEXT to be zero, asm parts depend on that assumption. 2440 */ 2441 #if (KCONTEXT != 0) 2442 #error KCONTEXT != 0 2443 #endif 2444 #endif /* !_ASM */ 2445 2446 2447 #endif /* _KERNEL */ 2448 2449 #ifndef _ASM 2450 /* 2451 * ctx, hmeblk, mlistlock and other stats for sfmmu 2452 */ 2453 struct sfmmu_global_stat { 2454 int sf_tsb_exceptions; /* # of tsb exceptions */ 2455 int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */ 2456 2457 int sf_pagefaults; /* # of pagefaults */ 2458 2459 int sf_uhash_searches; /* # of user hash searches */ 2460 int sf_uhash_links; /* # of user hash links */ 2461 int sf_khash_searches; /* # of kernel hash searches */ 2462 int sf_khash_links; /* # of kernel hash links */ 2463 2464 int sf_swapout; /* # times hat swapped out */ 2465 2466 int sf_tsb_alloc; /* # TSB allocations */ 2467 int sf_tsb_allocfail; /* # times TSB alloc fail */ 2468 int sf_tsb_sectsb_create; /* # times second TSB added */ 2469 2470 int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */ 2471 int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */ 2472 int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */ 2473 int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */ 2474 2475 2476 int sf_tteload8k; /* calls to sfmmu_tteload */ 2477 int sf_tteload64k; /* calls to sfmmu_tteload */ 2478 int sf_tteload512k; /* calls to sfmmu_tteload */ 2479 int sf_tteload4m; /* calls to sfmmu_tteload */ 2480 int sf_tteload32m; /* calls to sfmmu_tteload */ 2481 int sf_tteload256m; /* calls to sfmmu_tteload */ 2482 2483 int sf_tsb_load8k; /* # times loaded 8K tsbent */ 2484 int sf_tsb_load4m; /* # times loaded 4M tsbent */ 2485 2486 int sf_hblk_hit; /* found hblk during tteload */ 2487 int sf_hblk8_ncreate; /* static hblk8's created */ 2488 int sf_hblk8_nalloc; /* static hblk8's allocated */ 2489 int sf_hblk1_ncreate; /* static hblk1's created */ 2490 int sf_hblk1_nalloc; /* static hblk1's allocated */ 2491 int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */ 2492 int sf_hblk_reserve_cnt; /* hblk_reserve usage */ 2493 int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */ 2494 int sf_hblk_reserve_hit; /* hblk_reserve hash hits */ 2495 int sf_get_free_success; /* reserve list allocs */ 2496 int sf_get_free_throttle; /* fails due to throttling */ 2497 int sf_get_free_fail; /* fails due to empty list */ 2498 int sf_put_free_success; /* reserve list frees */ 2499 int sf_put_free_fail; /* fails due to full list */ 2500 2501 int sf_pgcolor_conflict; /* VAC conflict resolution */ 2502 int sf_uncache_conflict; /* VAC conflict resolution */ 2503 int sf_unload_conflict; /* VAC unload resolution */ 2504 int sf_ism_uncache; /* VAC conflict resolution */ 2505 int sf_ism_recache; /* VAC conflict resolution */ 2506 int sf_recache; /* VAC conflict resolution */ 2507 2508 int sf_steal_count; /* # of hblks stolen */ 2509 2510 int sf_pagesync; /* # of pagesyncs */ 2511 int sf_clrwrt; /* # of clear write perms */ 2512 int sf_pagesync_invalid; /* pagesync with inv tte */ 2513 2514 int sf_kernel_xcalls; /* # of kernel cross calls */ 2515 int sf_user_xcalls; /* # of user cross calls */ 2516 2517 int sf_tsb_grow; /* # of user tsb grows */ 2518 int sf_tsb_shrink; /* # of user tsb shrinks */ 2519 int sf_tsb_resize_failures; /* # of user tsb resize */ 2520 int sf_tsb_reloc; /* # of user tsb relocations */ 2521 2522 int sf_user_vtop; /* # of user vatopfn calls */ 2523 2524 int sf_ctx_inv; /* #times invalidate MMU ctx */ 2525 2526 int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */ 2527 2528 int sf_region_remap_demap; /* # times shme remap demap */ 2529 2530 int sf_create_scd; /* # times SCD is created */ 2531 int sf_join_scd; /* # process joined scd */ 2532 int sf_leave_scd; /* # process left scd */ 2533 int sf_destroy_scd; /* # times SCD is destroyed */ 2534 }; 2535 2536 struct sfmmu_tsbsize_stat { 2537 int sf_tsbsz_8k; 2538 int sf_tsbsz_16k; 2539 int sf_tsbsz_32k; 2540 int sf_tsbsz_64k; 2541 int sf_tsbsz_128k; 2542 int sf_tsbsz_256k; 2543 int sf_tsbsz_512k; 2544 int sf_tsbsz_1m; 2545 int sf_tsbsz_2m; 2546 int sf_tsbsz_4m; 2547 int sf_tsbsz_8m; 2548 int sf_tsbsz_16m; 2549 int sf_tsbsz_32m; 2550 int sf_tsbsz_64m; 2551 int sf_tsbsz_128m; 2552 int sf_tsbsz_256m; 2553 }; 2554 2555 struct sfmmu_percpu_stat { 2556 int sf_itlb_misses; /* # of itlb misses */ 2557 int sf_dtlb_misses; /* # of dtlb misses */ 2558 int sf_utsb_misses; /* # of user tsb misses */ 2559 int sf_ktsb_misses; /* # of kernel tsb misses */ 2560 int sf_tsb_hits; /* # of tsb hits */ 2561 int sf_umod_faults; /* # of mod (prot viol) flts */ 2562 int sf_kmod_faults; /* # of mod (prot viol) flts */ 2563 }; 2564 2565 #define SFMMU_STAT(stat) sfmmu_global_stat.stat++ 2566 #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount) 2567 #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count) 2568 2569 #define SFMMU_MMU_STAT(stat) CPU->cpu_m.cpu_mmu_ctxp->stat++ 2570 2571 #endif /* !_ASM */ 2572 2573 #ifdef __cplusplus 2574 } 2575 #endif 2576 2577 #endif /* _VM_HAT_SFMMU_H */ 2578