/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * VM - Hardware Address Translation management. * * This file describes the contents of the sun-reference-mmu(sfmmu)- * specific hat data structures and the sfmmu-specific hat procedures. * The machine-independent interface is described in . */ #ifndef _VM_HAT_SFMMU_H #define _VM_HAT_SFMMU_H #ifdef __cplusplus extern "C" { #endif #ifndef _ASM #include #endif /* _ASM */ #ifdef _KERNEL #include #include #include /* * Don't alter these without considering changes to ism_map_t. */ #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M #define DEFAULT_ISM_PAGESZC TTE4M #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift) #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1) #define ISM_MAP_SLOTS 8 /* Change this carefully. */ #ifndef _ASM #include #include #include #include #include #include #include #include typedef struct hat sfmmu_t; typedef struct sf_scd sf_scd_t; /* * SFMMU attributes for hat_memload/hat_devload */ #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */ #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */ #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */ #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \ HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \ SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT) /* * sfmmu flags for hat_memload/hat_devload */ #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */ #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \ HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \ HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \ HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT) /* * sfmmu internal flag to hat_pageunload that spares locked mappings */ #define SFMMU_KERNEL_RELOC 0x8000 /* * mode for sfmmu_chgattr */ #define SFMMU_SETATTR 0x0 #define SFMMU_CLRATTR 0x1 #define SFMMU_CHGATTR 0x2 /* * sfmmu specific flags for page_t */ #define P_PNC 0x8 /* non-caching is permanent bit */ #define P_TNC 0x10 /* non-caching is temporary bit */ #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */ #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */ #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO)) #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD) #define PP_ISREF(pp) ((pp)->p_nrm & P_REF) #define PP_ISRO(pp) ((pp)->p_nrm & P_RO) #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC)) #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC) #ifdef VAC #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC) #endif #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS) #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC) #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD) #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF) #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD)) #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO) #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO)) #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC) #ifdef VAC #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC) #endif #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS) #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC) #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD) #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF) #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD)) #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO) #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC) #ifdef VAC #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC) #endif #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS) #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC) /* * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM) * will be constrained to a 4M, 32M or 256M alignment. Also since every newly- * created ISM segment is created out of a new address space at base va * of 0 we don't need to store it. */ #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to M */ #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0) #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift)) /* * Pad locks out to cache sub-block boundaries to prevent * false sharing, so several processes don't contend for * the same line if they aren't using the same lock. Since * this is a typedef we also have a bit of freedom in * changing lock implementations later if we decide it * is necessary. */ typedef struct hat_lock { kmutex_t hl_mutex; uchar_t hl_pad[64 - sizeof (kmutex_t)]; } hatlock_t; #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex)) /* * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned. * Also size is guaranteed to be in 4M, 32M or 256M chunks. * ism_seg consists of the following members: * [XX..22] base address of ism segment. XX is 63 or 31 depending whether * caddr_t is 64 bits or 32 bits. * [21..0] size of segment. * * NOTE: Don't alter this structure without changing defines above and * the tsb_miss and protection handlers. */ typedef struct ism_map { uintptr_t imap_seg; /* base va + sz of ISM segment */ uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */ uchar_t imap_rid; /* region id for ism */ ushort_t imap_hatflags; /* primary ism page size */ uint_t imap_sz_mask; /* mmu_pagemask for ism page size */ sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */ struct ism_ment *imap_ment; /* pointer to mapping list entry */ } ism_map_t; #define ism_start(map) ((caddr_t)((map).imap_seg & \ ~ISM_SZ_MASK((map).imap_vb_shift))) #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift)) #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \ ISM_PG_SIZE((map).imap_vb_shift)))) /* * ISM mapping entry. Used to link all hat's sharing a ism_hat. * Same function as the p_mapping list for a page. */ typedef struct ism_ment { sfmmu_t *iment_hat; /* back pointer to hat_share() hat */ caddr_t iment_base_va; /* hat's va base for this ism seg */ struct ism_ment *iment_next; /* next ism map entry */ struct ism_ment *iment_prev; /* prev ism map entry */ } ism_ment_t; /* * ISM segment block. One will be hung off the sfmmu structure if a * a process uses ISM. More will be linked using ismblk_next if more * than ISM_MAP_SLOTS segments are attached to this proc. * * All modifications to fields in this structure will be protected * by the hat mutex. In order to avoid grabbing this lock in low level * routines (tsb miss/protection handlers and vatopfn) while not * introducing any race conditions with hat_unshare, we will set * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur * for this ctx while this bit is set will be handled in sfmmu_tsb_excption * where it will synchronize behind the hat mutex. */ typedef struct ism_blk { ism_map_t iblk_maps[ISM_MAP_SLOTS]; struct ism_blk *iblk_next; uint64_t iblk_nextpa; } ism_blk_t; /* * TSB access information. All fields are protected by the process's * hat lock. */ struct tsb_info { caddr_t tsb_va; /* tsb base virtual address */ uint64_t tsb_pa; /* tsb base physical address */ struct tsb_info *tsb_next; /* next tsb used by this process */ uint16_t tsb_szc; /* tsb size code */ uint16_t tsb_flags; /* flags for this tsb; see below */ uint_t tsb_ttesz_mask; /* page size masks; see below */ tte_t tsb_tte; /* tte to lock into DTLB */ sfmmu_t *tsb_sfmmu; /* sfmmu */ kmem_cache_t *tsb_cache; /* cache from which mem allocated */ vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */ }; /* * Values for "tsb_ttesz_mask" bitmask. */ #define TSB8K (1 << TTE8K) #define TSB64K (1 << TTE64K) #define TSB512K (1 << TTE512K) #define TSB4M (1 << TTE4M) #define TSB32M (1 << TTE32M) #define TSB256M (1 << TTE256M) /* * Values for "tsb_flags" field. */ #define TSB_RELOC_FLAG 0x1 #define TSB_FLUSH_NEEDED 0x2 #define TSB_SWAPPED 0x4 #define TSB_SHAREDCTX 0x8 #endif /* !_ASM */ /* * Data structures for shared hmeblk support. */ /* * Do not increase the maximum number of ism/hme regions without checking first * the impact on ism_map_t, TSB miss area, hblk tag and region id type in * sf_region structure. * Initially, shared hmes will only be used for the main text segment * therefore this value will be set to 64, it will be increased when shared * libraries are included. */ #define SFMMU_MAX_HME_REGIONS (64) #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS) #define SFMMU_PRIVATE 0 #define SFMMU_SHARED 1 #ifndef _ASM #define SFMMU_MAX_ISM_REGIONS (64) #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS) #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS) #define SFMMU_MAX_REGION_BUCKETS (128) #define SFMMU_MAX_SRD_BUCKETS (2048) typedef struct sf_hmeregion_map { ulong_t bitmap[SFMMU_HMERGNMAP_WORDS]; } sf_hmeregion_map_t; typedef struct sf_ismregion_map { ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS]; } sf_ismregion_map_t; typedef union sf_region_map_u { struct _h_rmap_s { sf_hmeregion_map_t hmeregion_map; sf_ismregion_map_t ismregion_map; } h_rmap_s; ulong_t bitmap[SFMMU_RGNMAP_WORDS]; } sf_region_map_t; #define SF_RGNMAP_ZERO(map) { \ int _i; \ for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ (map).bitmap[_i] = 0; \ } \ } /* * Returns 1 if map1 and map2 are equal. */ #define SF_RGNMAP_EQUAL(map1, map2, rval) { \ int _i; \ for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \ break; \ } \ if (_i < SFMMU_RGNMAP_WORDS) \ rval = 0; \ else \ rval = 1; \ } #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r) #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r) #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r) /* * Tests whether map2 is a subset of map1, returns 1 if * this assertion is true. */ #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \ int _i; \ for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \ != (map2)->bitmap[_i]) { \ break; \ } \ } \ if (_i < SFMMU_RGNMAP_WORDS) \ rval = 0; \ else \ rval = 1; \ } #define SF_SCD_INCR_REF(scdp) { \ atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1); \ } #define SF_SCD_DECR_REF(srdp, scdp) { \ sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \ if (!atomic_add_32_nv( \ (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) { \ sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \ } \ } /* * A sfmmup link in the link list of sfmmups that share the same region. */ typedef struct sf_rgn_link { sfmmu_t *next; sfmmu_t *prev; } sf_rgn_link_t; /* * rgn_flags values. */ #define SFMMU_REGION_HME 0x1 #define SFMMU_REGION_ISM 0x2 #define SFMMU_REGION_FREE 0x8 #define SFMMU_REGION_TYPE_MASK (0x3) /* * sf_region defines a text or (D)ISM segment which map * the same underlying physical object. */ typedef struct sf_region { caddr_t rgn_saddr; /* base addr of attached seg */ size_t rgn_size; /* size of attached seg */ void *rgn_obj; /* the underlying object id */ u_offset_t rgn_objoff; /* offset in the object mapped */ uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */ uchar_t rgn_pgszc; /* page size of the region */ uchar_t rgn_flags; /* region type, free flag */ uchar_t rgn_id; int rgn_refcnt; /* # of hats sharing the region */ /* callback function for hat_unload_callback */ hat_rgn_cb_func_t rgn_cb_function; struct sf_region *rgn_hash; /* hash chain linking the rgns */ kmutex_t rgn_mutex; /* protect region sfmmu list */ /* A link list of processes attached to this region */ sfmmu_t *rgn_sfmmu_head; ulong_t rgn_ttecnt[MMU_PAGE_SIZES]; uint16_t rgn_hmeflags; /* rgn tte size flags */ } sf_region_t; #define rgn_next rgn_hash /* srd */ typedef struct sf_shared_region_domain { vnode_t *srd_evp; /* executable vnode */ /* hme region table */ sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS]; /* ism region table */ sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS]; /* hash chain linking srds */ struct sf_shared_region_domain *srd_hash; /* pointer to the next free hme region */ sf_region_t *srd_hmergnfree; /* pointer to the next free ism region */ sf_region_t *srd_ismrgnfree; /* id of next ism region created */ uint16_t srd_next_ismrid; /* id of next hme region created */ uint16_t srd_next_hmerid; uint16_t srd_ismbusyrgns; /* # of ism rgns in use */ uint16_t srd_hmebusyrgns; /* # of hme rgns in use */ int srd_refcnt; /* # of procs in the srd */ kmutex_t srd_mutex; /* sync add/remove rgns */ kmutex_t srd_scd_mutex; sf_scd_t *srd_scdp; /* list of scds in srd */ /* hash of regions associated with the same executable */ sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS]; } sf_srd_t; typedef struct sf_srd_bucket { kmutex_t srdb_lock; sf_srd_t *srdb_srdp; } sf_srd_bucket_t; /* * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased * to 16 when the use of shared hmes for shared libraries is enabled. */ #define SFMMU_L1_HMERLINKS (8) #define SFMMU_L2_HMERLINKS (8) #define SFMMU_L1_HMERLINKS_SHIFT (3) #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1) #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1) #define SFMMU_L1_HMERLINKS_SIZE \ (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *)) #define SFMMU_L2_HMERLINKS_SIZE \ (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t)) #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS) #error Not Enough HMERLINKS #endif /* * This macro grabs hat lock and allocates level 2 hat chain * associated with a shme rgn. In the majority of cases, the macro * is called with alloc = 0, and lock = 0. * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp * parameter. */ #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \ { \ int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \ SFMMU_L1_HMERLINKS_MASK; \ int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \ hatlock_t *_hatlockp; \ lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ if (lnkp != NULL) { \ lnkp = &lnkp[_l2ix]; \ } else if (alloc && lock) { \ lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ _hatlockp = sfmmu_hat_enter(sfmmup); \ if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \ sfmmu_hat_exit(_hatlockp); \ kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \ lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ ASSERT(lnkp != NULL); \ } else { \ (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ sfmmu_hat_exit(_hatlockp); \ } \ lnkp = &lnkp[_l2ix]; \ } else if (alloc) { \ lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \ (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ lnkp = &lnkp[_l2ix]; \ } \ } /* * Per-MMU context domain kstats. * * TSB Miss Exceptions * Number of times a TSB miss exception is handled in an MMU. See * sfmmu_tsbmiss_exception() for more details. * TSB Raise Exception * Number of times the CPUs within an MMU are cross-called * to invalidate either a specific process context (when the process * switches MMU contexts) or the context of any process that is * running on those CPUs (as part of the MMU context wrap-around). * Wrap Around * The number of times a wrap-around of MMU context happens. */ typedef enum mmu_ctx_stat_types { MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */ MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */ MMU_CTX_WRAP_AROUND, /* wraparounds */ MMU_CTX_NUM_STATS } mmu_ctx_stat_t; /* * Per-MMU context domain structure. This is instantiated the first time a CPU * belonging to the MMU context domain is configured into the system, at boot * time or at DR time. * * mmu_gnum * The current generation number for the context IDs on this MMU context * domain. It is protected by mmu_lock. * mmu_cnum * The current cnum to be allocated on this MMU context domain. It * is protected via CAS. * mmu_nctxs * The max number of context IDs supported on every CPU in this * MMU context domain. It is 8K except for Rock where it is 64K. * This is needed here in case the system supports mixed type of * processors/MMUs. It also helps to make ctx switch code access * fewer cache lines i.e. no need to retrieve it from some global nctxs. * mmu_lock * The mutex spin lock used to serialize context ID wrap around * mmu_idx * The index for this MMU context domain structure in the global array * mmu_ctxdoms. * mmu_ncpus * The actual number of CPUs that have been configured in this * MMU context domain. This also acts as a reference count for the * structure. When the last CPU in an MMU context domain is unconfigured, * the structure is freed. It is protected by mmu_lock. * mmu_cpuset * The CPU set of configured CPUs for this MMU context domain. Used * to cross-call all the CPUs in the MMU context domain to invalidate * context IDs during a wraparound operation. It is protected by mmu_lock. */ typedef struct mmu_ctx { uint64_t mmu_gnum; uint_t mmu_cnum; uint_t mmu_nctxs; kmutex_t mmu_lock; uint_t mmu_idx; uint_t mmu_ncpus; cpuset_t mmu_cpuset; kstat_t *mmu_kstat; kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS]; } mmu_ctx_t; #define mmu_tsb_exceptions \ mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64 #define mmu_tsb_raise_exception \ mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64 #define mmu_wrap_around \ mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64 extern uint_t max_mmu_ctxdoms; extern mmu_ctx_t **mmu_ctxs_tbl; extern void sfmmu_cpu_init(cpu_t *); extern void sfmmu_cpu_cleanup(cpu_t *); /* * The following structure is used to get MMU context domain information for * a CPU from the platform. * * mmu_idx * The MMU context domain index within the global array mmu_ctxs * mmu_nctxs * The number of context IDs supported in the MMU context domain * (64K for Rock) */ typedef struct mmu_ctx_info { uint_t mmu_idx; uint_t mmu_nctxs; } mmu_ctx_info_t; #pragma weak plat_cpuid_to_mmu_ctx_info extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *); /* * Each address space has an array of sfmmu_ctx_t structures, one structure * per MMU context domain. * * cnum * The context ID allocated for an address space on an MMU context domain * gnum * The generation number for the context ID in the MMU context domain. * * This structure needs to be a power-of-two in size. */ typedef struct sfmmu_ctx { uint64_t gnum:48; uint64_t cnum:16; } sfmmu_ctx_t; /* * The platform dependent hat structure. * tte counts should be protected by cas. * cpuset is protected by cas. * * ttecnt accounting for mappings which do not use shared hme is carried out * during pagefault handling. In the shared hme case, only the first process * to access a mapping generates a pagefault, subsequent processes simply * find the shared hme entry during trap handling and therefore there is no * corresponding event to initiate ttecnt accounting. Currently, as shared * hmes are only used for text segments, when joining a region we assume the * worst case and add the the number of ttes required to map the entire region * to the ttecnt corresponding to the region pagesize. However, if the region * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail * then 8K pages will be allocated instead and the first TSB which stores 8K * mappings will potentially be undersized. To compensate for the potential * underaccounting in this case we always add 1/4 of the region size to the 8K * ttecnt. * * Note that sfmmu_xhat_provider MUST be the first element. */ struct hat { void *sfmmu_xhat_provider; /* NULL for CPU hat */ cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */ struct as *sfmmu_as; /* as this hat provides mapping for */ /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */ ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES]; /* shme rgns ttecnt for rgns in SCD */ ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES]; /* est. ism ttes that are NOT in a SCD */ ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES]; /* ttecnt for isms that are in a SCD */ ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES]; /* inflate tsb0 to allow for large page alloc failure in region */ ulong_t sfmmu_tsb0_4minflcnt; union _h_un { ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */ ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */ } h_un; uint_t sfmmu_free:1; /* hat to be freed - set on as_free */ uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */ uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */ uchar_t sfmmu_rmstat; /* refmod stats refcnt */ ushort_t sfmmu_clrstart; /* start color bin for page coloring */ ushort_t sfmmu_clrbin; /* per as phys page coloring bin */ ushort_t sfmmu_flags; /* flags */ uchar_t sfmmu_tteflags; /* pgsz flags */ uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */ struct tsb_info *sfmmu_tsb; /* list of per as tsbs */ uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */ lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */ kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */ uchar_t sfmmu_cext; /* context page size encoding */ uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */ sf_srd_t *sfmmu_srdp; sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */ sf_region_map_t sfmmu_region_map; sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS]; sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */ #ifdef sun4v struct hv_tsb_block sfmmu_hvblock; #endif /* * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of * elements. max_mmu_ctxdoms is determined at run-time. * sfmmu_ctxs[1] is just the fist element of an array, it always * has to be the last field to ensure that the memory allocated * for sfmmu_ctxs is consecutive with the memory of the rest of * the hat data structure. */ sfmmu_ctx_t sfmmu_ctxs[1]; }; #define sfmmu_iblk h_un.sfmmu_iblkp #define sfmmu_iment h_un.sfmmu_imentp #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map #define SF_RGNMAP_ISNULL(sfmmup) \ (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map)) #define SF_HMERGNMAP_ISNULL(sfmmup) \ (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map)) struct sf_scd { sfmmu_t *scd_sfmmup; /* shared context hat */ /* per pgsz ttecnt for shme rgns in SCD */ ulong_t scd_rttecnt[MMU_PAGE_SIZES]; uint_t scd_refcnt; /* address spaces attached to scd */ sf_region_map_t scd_region_map; /* bit mask of attached segments */ sf_scd_t *scd_next; /* link pointers for srd_scd list */ sf_scd_t *scd_prev; sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */ kmutex_t scd_mutex; /* * Link used to add an scd to the sfmmu_iment list. */ ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS]; }; #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map extern int disable_shctx; extern int shctx_on; /* * bit mask for managing vac conflicts on large pages. * bit 1 is for uncache flag. * bits 2 through min(num of cache colors + 1,31) are * for cache colors that have already been flushed. */ #ifdef VAC #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT) #else #define CACHE_NUM_COLOR 1 #endif #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1))) #define CacheColor_IsFlushed(flag, vcolor) \ ((flag) & CACHE_VCOLOR_MASK(vcolor)) #define CacheColor_SetFlushed(flag, vcolor) \ ((flag) |= CACHE_VCOLOR_MASK(vcolor)) /* * Flags passed to sfmmu_page_cache to flush page from vac or not. */ #define CACHE_FLUSH 0 #define CACHE_NO_FLUSH 1 /* * Flags passed to sfmmu_tlbcache_demap */ #define FLUSH_NECESSARY_CPUS 0 #define FLUSH_ALL_CPUS 1 #ifdef DEBUG /* * For debugging purpose only. Maybe removed later. */ struct ctx_trace { sfmmu_t *sc_sfmmu_stolen; sfmmu_t *sc_sfmmu_stealing; clock_t sc_time; ushort_t sc_type; ushort_t sc_cnum; }; #define CTX_TRC_STEAL 0x1 #define CTX_TRC_FREE 0x0 #define TRSIZE 0x400 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \ ctx_trace_first : ((ptr) + 1)) #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \ mutex_enter(mutex); \ (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \ (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \ (ptr)->sc_cnum = (cnum); \ (ptr)->sc_type = (type); \ (ptr)->sc_time = lbolt; \ (ptr) = NEXT_CTXTR(ptr); \ num_ctx_stolen += (type); \ mutex_exit(mutex); #else #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) #endif /* DEBUG */ #endif /* !_ASM */ /* * Macros for sfmmup->sfmmu_flags access. The macros that change the flags * ASSERT() that we're holding the HAT lock before changing the flags; * however callers that read the flags may do so without acquiring the lock * in a fast path, and then recheck the flag after acquiring the lock in * a slow path. */ #define SFMMU_FLAGS_ISSET(sfmmup, flags) \ (((sfmmup)->sfmmu_flags & (flags)) == (flags)) #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \ (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ (sfmmup)->sfmmu_flags &= ~(flags)) #define SFMMU_FLAGS_SET(sfmmup, flags) \ (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ (sfmmup)->sfmmu_flags |= (flags)) #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \ ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \ (flags)) /* * sfmmu tte HAT flags, must fit in 8 bits */ #define HAT_CHKCTX1_FLAG 0x1 #define HAT_64K_FLAG (0x1 << TTE64K) #define HAT_512K_FLAG (0x1 << TTE512K) #define HAT_4M_FLAG (0x1 << TTE4M) #define HAT_32M_FLAG (0x1 << TTE32M) #define HAT_256M_FLAG (0x1 << TTE256M) /* * sfmmu HAT flags, 16 bits at the moment. */ #define HAT_4MTEXT_FLAG 0x01 #define HAT_32M_ISM 0x02 #define HAT_256M_ISM 0x04 #define HAT_SWAPPED 0x08 /* swapped out */ #define HAT_SWAPIN 0x10 /* swapping in */ #define HAT_BUSY 0x20 /* replacing TSB(s) */ #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */ #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */ #define HAT_JOIN_SCD 0x200 /* region is joining scd */ #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */ #define SFMMU_LGPGS_INUSE(sfmmup) \ (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \ ((sfmmup)->sfmmu_iblk != NULL)) /* * Starting with context 0, the first NUM_LOCKED_CTXS contexts * are locked so that sfmmu_getctx can't steal any of these * contexts. At the time this software was being developed, the * only context that needs to be locked is context 0 (the kernel * context), and context 1 (reserved for stolen context). So this constant * was originally defined to be 2. * * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many * routines only care whether the context is kernel, invalid or user. */ #define NUM_LOCKED_CTXS 2 #define INVALID_CONTEXT 1 #ifdef sun4v #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS #endif #if defined(sun4v) || defined(UTSB_PHYS) /* * Get the location in the 4MB base TSB of the tsbe for this fault. * Assumes that the second TSB only contains 4M mappings. * * In: * tagacc = tag access register (not clobbered) * tsbe = 2nd TSB base register * tmp1, tmp2 = scratch registers * Out: * tsbe = pointer to the tsbe in the 2nd TSB */ #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ srlx tagacc, MMU_PAGESHIFT4M, tmp2; \ and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ add tsbe, tmp1, tsbe /* add entry offset to TSB base */ #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) /* * Get the location in the 3rd TSB of the tsbe for this fault. * The 3rd TSB corresponds to the shared context, and is used * for 8K - 512k pages. * * In: * tagacc = tag access register (not clobbered) * tsbe, tmp1, tmp2 = scratch registers * Out: * tsbe = pointer to the tsbe in the 3rd TSB */ #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ srlx tagacc, MMU_PAGESHIFT, tmp2; \ and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ add tsbe, tmp1, tsbe /* add entry offset to TSB base */ #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) /* * Copy the sfmmu_region_map or scd_region_map to the tsbmiss * shmermap or scd_shmermap, from sfmmu_load_mmustate. */ #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \ /* BEGIN CSTYLED */ \ label: ;\ ldx [rgn_map], tmp ;\ dec cnt ;\ add rgn_map, CLONGSIZE, rgn_map ;\ stx tmp, [tsbmiss_map] ;\ brnz,pt cnt, label ;\ add tsbmiss_map, CLONGSIZE, tsbmiss_map \ /* END CSTYLED */ /* * If there is no scd, then zero the tsbmiss scd_shmermap, * from sfmmu_load_mmustate. */ #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \ /* BEGIN CSTYLED */ \ label: ;\ dec cnt ;\ stx %g0, [tsbmiss_map] ;\ brnz,pt cnt, label ;\ add tsbmiss_map, CLONGSIZE, tsbmiss_map /* END CSTYLED */ /* * Set hmemisc to 1 if the shared hme is also part of an scd. * In: * tsbarea = tsbmiss area (not clobbered) * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered) * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered) * Out: * use_shctx = 1 if shme is in scd and 0 otherwise */ #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \ /* BEGIN CSTYLED */ \ sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\ add hmentoff, HMEBLK_TAG, hmentoff ;\ ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\ and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\ and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\ srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\ sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\ add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\ ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\ srlx hmentoff, use_shctx, use_shctx ;\ and use_shctx, 0x1, use_shctx \ /* END CSTYLED */ /* * Synthesize a TSB base register contents for a process. * * In: * tsbinfo = TSB info pointer (ro) * tsbreg, tmp1 = scratch registers * Out: * tsbreg = value to program into TSB base register */ #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \ ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \ lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \ and tmp1, TSB_SOFTSZ_MASK, tmp1; \ or tsbreg, tmp1, tsbreg; /* * Load TSB base register to TSBMISS area for privte contexts. * This register contains utsb_pabase in bits 63:13, and TSB size * code in bits 2:0. * * For private context * In: * tsbreg = value to load (ro) * regnum = constant or register * tmp1 = scratch register * Out: * Specified scratchpad register updated * */ #define SET_UTSBREG(regnum, tsbreg, tmp1) \ mov regnum, tmp1; \ stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */ /* * Get TSB base register from the scratchpad for private contexts * * In: * regnum = constant or register * tsbreg = scratch * Out: * tsbreg = tsbreg from the specified scratchpad register */ #define GET_UTSBREG(regnum, tsbreg) \ mov regnum, tsbreg; \ ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg /* * Load TSB base register to TSBMISS area for shared contexts. * This register contains utsb_pabase in bits 63:13, and TSB size * code in bits 2:0. * * In: * tsbmiss = pointer to tsbmiss area * tsbmissoffset = offset to right tsb pointer * tsbreg = value to load (ro) * Out: * Specified tsbmiss area updated * */ #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */ /* * Get TSB base register from the scratchpad for * shared contexts * * In: * tsbmiss = pointer to tsbmiss area * tsbmissoffset = offset to right tsb pointer * tsbreg = scratch * Out: * tsbreg = tsbreg from the specified scratchpad register */ #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ ldx [tsbmiss + tsbmissoffset], tsbreg #endif /* defined(sun4v) || defined(UTSB_PHYS) */ #ifndef _ASM /* * Kernel page relocation stuff. */ struct sfmmu_callback { int key; int (*prehandler)(caddr_t, uint_t, uint_t, void *); int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t); int (*errhandler)(caddr_t, uint_t, uint_t, void *); int capture_cpus; }; extern int sfmmu_max_cb_id; extern struct sfmmu_callback *sfmmu_cb_table; extern int hat_kpr_enabled; struct pa_hment; /* * RFE: With multihat gone we gain back an int. We could use this to * keep ref bits on a per cpu basis to eliminate xcalls. */ struct sf_hment { tte_t hme_tte; /* tte for this hment */ union { struct page *page; /* what page this maps */ struct pa_hment *data; /* pa_hment */ } sf_hment_un; struct sf_hment *hme_next; /* next hment */ struct sf_hment *hme_prev; /* prev hment */ }; struct pa_hment { caddr_t addr; /* va */ uint_t len; /* bytes */ ushort_t flags; /* internal flags */ ushort_t refcnt; /* reference count */ id_t cb_id; /* callback id, table index */ void *pvt; /* handler's private data */ struct sf_hment sfment; /* corresponding dummy sf_hment */ }; #define hme_page sf_hment_un.page #define hme_data sf_hment_un.data #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte))) #define PAHME_SZ (sizeof (struct pa_hment)) #define SFHME_SZ (sizeof (struct sf_hment)) #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0) /* * hmeblk_tag structure * structure used to obtain a match on a hme_blk. Currently consists of * the address of the sfmmu struct (or hatid), the base page address of the * hme_blk, and the rehash count. The rehash count is actually only 2 bits * and has the following meaning: * 1 = 8k or 64k hash sequence. * 2 = 512k hash sequence. * 3 = 4M hash sequence. * We require this count because we don't want to get a false hit on a 512K or * 4M rehash with a base address corresponding to a 8k or 64k hmeblk. * Note: The ordering and size of the hmeblk_tag members are implictly known * by the tsb miss handlers written in assembly. Do not change this structure * without checking those routines. See HTAG_SFMMUPSZ define. */ /* * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID. */ typedef union { struct { uint64_t hblk_basepg: 51, /* hme_blk base pg # */ hblk_rehash: 3, /* rehash number */ hblk_rid: 10; /* hme_blk region id */ void *hblk_id; } hblk_tag_un; uint64_t htag_tag[2]; } hmeblk_tag; #define htag_id hblk_tag_un.hblk_id #define htag_bspage hblk_tag_un.hblk_basepg #define htag_rehash hblk_tag_un.hblk_rehash #define htag_rid hblk_tag_un.hblk_rid #endif /* !_ASM */ #define HTAG_REHASH_SHIFT 10 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1)) #define HTAG_RID_MASK HTAG_MAX_RID /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */ #define SFMMU_INVALID_SHMERID HTAG_MAX_RID #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS #endif #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID) /* ISM regions */ #define SFMMU_INVALID_ISMRID 0xff #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS #endif #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID) #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \ (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0) /* * this macro must only be used for comparing tags in shared hmeblks. */ #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \ (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \ (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \ ~HTAG_RID_MASK) | \ ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \ SF_RGNMAP_TEST(hrmap, hmetag.htag_rid)) #define HME_REHASH(sfmmup) \ ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \ (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \ (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \ (sfmmup)->sfmmu_ttecnt[TTE256M] != 0) #define NHMENTS 8 /* # of hments in an 8k hme_blk */ /* needs to be multiple of 2 */ #ifndef _ASM #ifdef HBLK_TRACE #define HBLK_LOCK 1 #define HBLK_UNLOCK 0 #define HBLK_STACK_DEPTH 6 #define HBLK_AUDIT_CACHE_SIZE 16 #define HBLK_LOCK_PATTERN 0xaaaaaaaa #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb struct hblk_lockcnt_audit { int flag; /* lock or unlock */ kthread_id_t thread; int depth; pc_t stack[HBLK_STACK_DEPTH]; }; #endif /* HBLK_TRACE */ /* * Hment block structure. * The hme_blk is the node data structure which the hash structure * mantains. An hme_blk can have 2 different sizes depending on the * number of hments it implicitly contains. When dealing with 64K, 512K, * or 4M hments there is one hment per hme_blk. When dealing with * 8k hments we allocate an hme_blk plus an additional 7 hments to * give us a total of 8 (NHMENTS) hments that can be referenced through a * hme_blk. * * The hmeblk structure contains 2 tte reference counters used to determine if * it is ok to free up the hmeblk. Both counters have to be zero in order * to be able to free up hmeblk. They are protected by cas. * hblk_hmecnt is the number of hments present on pp mapping lists. * hblk_vcnt reflects number of valid ttes in hmeblk. * * The hmeblk now also has per tte lock cnts. This is required because * the counts can be high and there are not enough bits in the tte. When * physio is fixed to not lock the translations we should be able to move * the lock cnt back to the tte. See bug id 1198554. * * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc * and sf_hment are at the same offsets in both structures. Whenever * hme_blk is changed, xhat_hme_blk may need to be updated as well. */ struct hme_blk_misc { uint_t notused:25; uint_t shared_bit:1; /* set for SRD shared hmeblk */ uint_t xhat_bit:1; /* set for an xhat hme_blk */ uint_t shadow_bit:1; /* set for a shadow hme_blk */ uint_t nucleus_bit:1; /* set for a nucleus hme_blk */ uint_t ttesize:3; /* contains ttesz of hmeblk */ }; struct hme_blk { uint64_t hblk_nextpa; /* physical address for hash list */ hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */ struct hme_blk *hblk_next; /* on free list or on hash list */ /* protected by hash lock */ struct hme_blk *hblk_shadow; /* pts to shadow hblk */ /* protected by hash lock */ uint_t hblk_span; /* span of memory hmeblk maps */ struct hme_blk_misc hblk_misc; union { struct { ushort_t hblk_hmecount; /* hment on mlists counter */ ushort_t hblk_validcnt; /* valid tte reference count */ } hblk_counts; uint_t hblk_shadow_mask; } hblk_un; uint_t hblk_lckcnt; #ifdef HBLK_TRACE kmutex_t hblk_audit_lock; /* lock to protect index */ uint_t hblk_audit_index; /* index into audit_cache */ struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE]; #endif /* HBLK_AUDIT */ struct sf_hment hblk_hme[1]; /* hment array */ }; #define hblk_shared hblk_misc.shared_bit #define hblk_xhat_bit hblk_misc.xhat_bit #define hblk_shw_bit hblk_misc.shadow_bit #define hblk_nuc_bit hblk_misc.nucleus_bit #define hblk_ttesz hblk_misc.ttesize #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt #define hblk_shw_mask hblk_un.hblk_shadow_mask #define MAX_HBLK_LCKCNT 0xFFFFFFFF #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */ #ifdef HBLK_TRACE #define HBLK_STACK_TRACE(hmeblkp, lock) \ { \ int flag = lock; /* to pacify lint */ \ int audit_index; \ \ mutex_enter(&hmeblkp->hblk_audit_lock); \ audit_index = hmeblkp->hblk_audit_index; \ hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \ (HBLK_AUDIT_CACHE_SIZE - 1)); \ mutex_exit(&hmeblkp->hblk_audit_lock); \ \ if (flag) \ hmeblkp->hblk_audit_cache[audit_index].flag = \ HBLK_LOCK_PATTERN; \ else \ hmeblkp->hblk_audit_cache[audit_index].flag = \ HBLK_UNLOCK_PATTERN; \ \ hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \ hmeblkp->hblk_audit_cache[audit_index].depth = \ getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \ HBLK_STACK_DEPTH); \ } #else #define HBLK_STACK_TRACE(hmeblkp, lock) #endif /* HBLK_TRACE */ #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */ /* * A maximum number of user hmeblks is defined in order to place an upper * limit on how much nucleus memory is required and to avoid overflowing the * tsbmiss uhashsz and khashsz data areas. The number below corresponds to * the number of buckets required, for an average hash chain length of 4 on * a 16TB machine. */ #define MAX_UHME_BUCKETS (0x1 << 30) #define MAX_KHME_BUCKETS (0x1 << 30) /* * The minimum number of kernel hash buckets. */ #define MIN_KHME_BUCKETS 0x800 /* * The number of hash buckets must be a power of 2. If the initial calculated * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater * power of 2, otherwise we round down to avoid huge over allocations. */ #define USER_BUCKETS_THRESHOLD (1<<22) #define MAX_NUCUHME_BUCKETS 0x4000 #define MAX_NUCKHME_BUCKETS 0x2000 /* * There are 2 locks in the hmehash bucket. The hmehash_mutex is * a regular mutex used to make sure operations on a hash link are only * done by one thread. Any operation which comes into the hat with * a will grab the hmehash_mutex. Normally one would expect * the tsb miss handlers to grab the hash lock to make sure the hash list * is consistent while we traverse it. Unfortunately this can lead to * deadlocks or recursive mutex enters since it is possible for * someone holding the lock to take a tlb/tsb miss. * To solve this problem we have added the hmehash_listlock. This lock * is only grabbed by the tsb miss handlers, vatopfn, and while * adding/removing a hmeblk from the hash list. The code is written to * guarantee we won't take a tlb miss while holding this lock. */ struct hmehash_bucket { kmutex_t hmehash_mutex; uint64_t hmeh_nextpa; /* physical address for hash list */ struct hme_blk *hmeblkp; uint_t hmeh_listlock; }; #endif /* !_ASM */ #define SFMMU_PGCNT_MASK 0x3f #define SFMMU_PGCNT_SHIFT 6 #define INVALID_MMU_ID -1 #define SFMMU_MMU_GNUM_RSHIFT 16 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT) #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */ #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1) /* * The tsb miss handlers written in assembly know that sfmmup * is a 64 bit ptr. * * The bspage and re-hash part is 64 bits, with the sfmmup being another 64 * bits. */ #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */ #define HTAG_BSPAGE_SHIFT 13 /* * Assembly routines need to be able to get to ttesz */ #define HBLK_SZMASK 0x7 #ifndef _ASM /* * Returns the number of bytes that an hmeblk spans given its tte size */ #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span) #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz) #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \ sfmmu8_cache : sfmmu1_cache) #define HMEBLK_SPAN(ttesz) \ ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz)) #define set_hblk_sz(hmeblkp, ttesz) \ (hmeblkp)->hblk_ttesz = (ttesz); \ (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz) #define get_hblk_base(hmeblkp) \ ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT) #define get_hblk_endaddr(hmeblkp) \ ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp))) #define in_hblk_range(hmeblkp, vaddr) \ (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \ ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \ get_hblk_span(hmeblkp)))) #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \ + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum))) #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \ + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1)))) #define vaddr_to_vshift(hblktag, vaddr, shwsz) \ ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\ TTE_BSZS_SHIFT((shwsz) - 1)) #define HME8BLK_SZ (sizeof (struct hme_blk) + \ (NHMENTS - 1) * sizeof (struct sf_hment)) #define HME1BLK_SZ (sizeof (struct hme_blk)) #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */ /* * Hme_blk hash structure * Active mappings are kept in a hash structure of hme_blks. The hash * function is based on (ctx, vaddr) The size of the hash table size is a * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN. * The hash actually consists of 2 separate hashes. One hash is for the user * address space and the other hash is for the kernel address space. * The number of buckets are calculated at boot time and stored in the global * variables "uhmehash_num" and "khmehash_num". By making the hash table size * a power of 2 we can use a simply & function to derive an index instead of * a divide. * * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash * bucket. * An hme hash bucket contains a pointer to an hme_blk and the mutex that * protects the link list. * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash. * 512K pages need 2 hashes and 4M pages need 3 hashes. * The 'shift' parameter controls how many bits the vaddr will be shifted in * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function * and it varies depending on the page size as follows: * 8k pages: HBLK_RANGE_SHIFT * 64k pages: MMU_PAGESHIFT64K * 512K pages: MMU_PAGESHIFT512K * 4M pages: MMU_PAGESHIFT4M * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All * changes should be reflected in both versions. This function and the TSB * miss handlers are the only places which know about the two hashes. * * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall * into the same bucket for a particular process. It is currently set to * be equivalent to 64K range or one hme_blk. * * The hme_blks in the hash are protected by a per hash bucket mutex * known as SFMMU_HASH_LOCK. * You need to acquire this lock before traversing the hash bucket link * list, while adding/removing a hme_blk to the list, and while * modifying an hme_blk. A possible optimization is to replace these * mutexes by readers/writer lock but right now it is not clear whether * this is a win or not. * * The HME_HASH_TABLE_SEARCH will search the hash table for the * hme_blk that contains the hment that corresponds to the passed * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held. */ #endif /* ! _ASM */ #define KHATID ksfmmup #define UHMEHASH_SZ uhmehash_num #define KHMEHASH_SZ khmehash_num #define HMENT_HASHAVELEN 4 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */ #define HBLK_MIN_TTESZ 1 #define HBLK_MIN_BYTES MMU_PAGESIZE64K #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K #define MAX_HASHCNT 5 #define DEFAULT_MAX_HASHCNT 3 #ifndef _ASM #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno) #define HME_HASH_SHIFT(ttesz) \ ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz)) #define HME_HASH_ADDR(vaddr, hmeshift) \ ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift))) #define HME_HASH_BSPAGE(vaddr, hmeshift) \ (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT)) #define HME_HASH_REHASH(ttesz) \ (((ttesz) < TTE512K)? 1 : (ttesz)) #define HME_HASH_FUNCTION(hatid, vaddr, shift) \ ((((void *)hatid) != ((void *)KHATID)) ? \ (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ UHMEHASH_SZ) ]): \ (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ KHMEHASH_SZ) ])) /* * This macro will traverse a hmeblk hash link list looking for an hme_blk * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp * will be set to NULL, otherwise it will point to the correct hme_blk. * This macro also cleans empty hblks. */ #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, \ pr_hblk, prevpa, listp) \ { \ struct hme_blk *nx_hblk; \ uint64_t nx_pa; \ \ ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ hblkp = hmebp->hmeblkp; \ hblkpa = hmebp->hmeh_nextpa; \ prevpa = 0; \ pr_hblk = NULL; \ while (hblkp) { \ if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ /* found hme_blk */ \ break; \ } \ nx_hblk = hblkp->hblk_next; \ nx_pa = hblkp->hblk_nextpa; \ if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \ sfmmu_hblk_hash_rm(hmebp, hblkp, prevpa, pr_hblk); \ sfmmu_hblk_free(hmebp, hblkp, hblkpa, listp); \ } else { \ pr_hblk = hblkp; \ prevpa = hblkpa; \ } \ hblkp = nx_hblk; \ hblkpa = nx_pa; \ } \ } #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \ { \ struct hme_blk *pr_hblk; \ uint64_t hblkpa, prevpa; \ \ HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, pr_hblk, \ prevpa, listp); \ } /* * This macro will traverse a hmeblk hash link list looking for an hme_blk * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp * will be set to NULL, otherwise it will point to the correct hme_blk. * It doesn't remove empty hblks. */ #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \ ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ for (hblkp = hmebp->hmeblkp; hblkp; \ hblkp = hblkp->hblk_next) { \ if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ /* found hme_blk */ \ break; \ } \ } #define SFMMU_HASH_LOCK(hmebp) \ (mutex_enter(&hmebp->hmehash_mutex)) #define SFMMU_HASH_UNLOCK(hmebp) \ (mutex_exit(&hmebp->hmehash_mutex)) #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \ (mutex_tryenter(&hmebp->hmehash_mutex)) #define SFMMU_HASH_LOCK_ISHELD(hmebp) \ (mutex_owned(&hmebp->hmehash_mutex)) #define SFMMU_XCALL_STATS(sfmmup) \ { \ if (sfmmup == ksfmmup) { \ SFMMU_STAT(sf_kernel_xcalls); \ } else { \ SFMMU_STAT(sf_user_xcalls); \ } \ } #define astosfmmu(as) ((as)->a_hat) #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id) #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id) #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as) #define sfmmutohtagid(sfmmup, rid) \ (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \ (void *)((sfmmup)->sfmmu_srdp)) /* * We use the sfmmu data structure to keep the per as page coloring info. */ #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin) #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart) typedef struct { char h8[HME8BLK_SZ]; } hblk8_t; typedef struct { char h1[HME1BLK_SZ]; } hblk1_t; typedef struct { ulong_t index; ulong_t len; hblk8_t *list; } nucleus_hblk8_info_t; typedef struct { ulong_t index; ulong_t len; hblk1_t *list; } nucleus_hblk1_info_t; /* * This struct is used for accumlating information about a range * of pages that are unloading so that a single xcall can flush * the entire range from remote tlbs. A function that must demap * a range of virtual addresses declares one of these structures * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this * struct to the appropriate sfmmu_hblk_* level function which does * all the bookkeeping using the other macros. When the function has * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH() * macro to take care of any remaining unflushed mappings. * * The maximum range this struct can represent is the number of bits * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only * MMU_PAGESIZE pages are supported. * * Since there are now cases where it's no longer necessary to do * flushes (e.g. when the process isn't runnable because it's swapping * out or exiting) we allow these macros to take a NULL dmr input and do * nothing in that case. */ typedef struct { sfmmu_t *dmr_sfmmup; /* relevant hat */ caddr_t dmr_addr; /* beginning address */ caddr_t dmr_endaddr; /* ending address */ ulong_t dmr_bitvec; /* valid pages found */ ulong_t dmr_bit; /* next page to examine */ ulong_t dmr_maxbit; /* highest page in range */ ulong_t dmr_pgsz; /* page size in range */ } demap_range_t; #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */ #define DEMAP_RANGE_INIT(sfmmup, dmrp) \ if ((dmrp) != NULL) { \ (dmrp)->dmr_sfmmup = (sfmmup); \ (dmrp)->dmr_bitvec = 0; \ (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \ (dmrp)->dmr_pgsz = MMU_PAGESIZE; \ } #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE) #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \ if ((dmrp) != NULL) { \ if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \ sfmmu_tlb_range_demap(dmrp); \ (dmrp)->dmr_endaddr = (endaddr); \ } #define DEMAP_RANGE_FLUSH(dmrp) \ if ((dmrp) != NULL) { \ if ((dmrp)->dmr_bitvec != 0) \ sfmmu_tlb_range_demap(dmrp); \ } #define DEMAP_RANGE_MARKPG(dmrp, addr) \ if ((dmrp) != NULL) { \ if ((dmrp)->dmr_bitvec == 0) { \ (dmrp)->dmr_addr = (addr); \ (dmrp)->dmr_bit = 1; \ } \ (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \ } #define DEMAP_RANGE_NEXTPG(dmrp) \ if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \ if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \ sfmmu_tlb_range_demap(dmrp); \ } else { \ (dmrp)->dmr_bit <<= 1; \ } \ } /* * TSB related structures * * The TSB is made up of tte entries. Both the tag and data are present * in the TSB. The TSB locking is managed as follows: * A software bit in the tsb tag is used to indicate that entry is locked. * If a cpu servicing a tsb miss reads a locked entry the tag compare will * fail forcing the cpu to go to the hat hash for the translation. * The cpu who holds the lock can then modify the data side, and the tag side. * The last write should be to the word containing the lock bit which will * clear the lock and allow the tsb entry to be read. It is assumed that all * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128 * bit load is required to prevent the following from happening: * * cpu 0 cpu 1 comments * * ldx tag tag unlocked * ldstub lock set lock * stx data * stx tag unlock * ldx tag incorrect tte!!! * * The software also maintains a bit in the tag to indicate an invalid * tsb entry. The purpose of this bit is to allow the tsb invalidate code * to invalidate a tsb entry with a single cas. See code for details. */ union tsb_tag { struct { uint32_t tag_res0:16; /* reserved - context area */ uint32_t tag_inv:1; /* sw - invalid tsb entry */ uint32_t tag_lock:1; /* sw - locked tsb entry */ uint32_t tag_res1:4; /* reserved */ uint32_t tag_va_hi:10; /* va[63:54] */ uint32_t tag_va_lo; /* va[53:22] */ } tagbits; struct tsb_tagints { uint32_t inthi; uint32_t intlo; } tagints; }; #define tag_invalid tagbits.tag_inv #define tag_locked tagbits.tag_lock #define tag_vahi tagbits.tag_va_hi #define tag_valo tagbits.tag_va_lo #define tag_inthi tagints.inthi #define tag_intlo tagints.intlo struct tsbe { union tsb_tag tte_tag; tte_t tte_data; }; /* * A per cpu struct is kept that duplicates some info * used by the tl>0 tsb miss handlers plus it provides * a scratch area. Its purpose is to minimize cache misses * in the tsb miss handler and is 128 bytes (2 e$ lines). * * There should be one allocated per cpu in nucleus memory * and should be aligned on an ecache line boundary. */ struct tsbmiss { sfmmu_t *ksfmmup; /* kernel hat id */ sfmmu_t *usfmmup; /* user hat id */ sf_srd_t *usrdp; /* user's SRD hat id */ struct tsbe *tsbptr; /* hardware computed ptr */ struct tsbe *tsbptr4m; /* hardware computed ptr */ struct tsbe *tsbscdptr; /* hardware computed ptr */ struct tsbe *tsbscdptr4m; /* hardware computed ptr */ uint64_t ismblkpa; struct hmehash_bucket *khashstart; struct hmehash_bucket *uhashstart; uint_t khashsz; uint_t uhashsz; uint16_t dcache_line_mask; /* used to flush dcache */ uchar_t uhat_tteflags; /* private page sizes */ uchar_t uhat_rtteflags; /* SHME pagesizes */ uint32_t utsb_misses; uint32_t ktsb_misses; uint16_t uprot_traps; uint16_t kprot_traps; /* * scratch[0] -> TSB_TAGACC * scratch[1] -> TSBMISS_HMEBP * scratch[2] -> TSBMISS_HATID */ uintptr_t scratch[3]; ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ uint8_t pad[48]; /* pad to 64 bytes */ }; /* * A per cpu struct is kept for the use within the tl>0 kpm tsb * miss handler. Some members are duplicates of common data or * the physical addresses of common data. A few members are also * written by the tl>0 kpm tsb miss handler. Its purpose is to * minimize cache misses in the kpm tsb miss handler and occupies * one ecache line. There should be one allocated per cpu in * nucleus memory and it should be aligned on an ecache line * boundary. It is not merged w/ struct tsbmiss since there is * not much to share and the tsbmiss pathes are different, so * a kpm tlbmiss/tsbmiss only touches one cacheline, except for * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter * of struct tsbmiss is used on every dtlb miss. */ struct kpmtsbm { caddr_t vbase; /* start of address kpm range */ caddr_t vend; /* end of address kpm range */ uchar_t flags; /* flags needed in TL tsbmiss handler */ uchar_t sz_shift; /* for single kpm window */ uchar_t kpmp_shift; /* hash lock shift */ uchar_t kpmp2pshft; /* kpm page to page shift */ uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */ uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */ uint64_t msegphashpa; /* paddr of memseg_phash */ struct tsbe *tsbptr; /* saved ktsb pointer */ uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */ uint_t kpm_tsb_misses; /* kpm tsbmiss counter */ uintptr_t pad[1]; }; extern size_t tsb_slab_size; extern uint_t tsb_slab_shift; extern size_t tsb_slab_mask; #endif /* !_ASM */ /* * Flags for TL kpm tsbmiss handler */ #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */ #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */ #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */ /* * The TSB * All TSB sizes supported by the hardware are now supported (8K - 1M). * For kernel TSBs we may go beyond the hardware supported sizes and support * larger TSBs via software. * All TTE sizes are supported in the TSB; the manner in which this is * done is cpu dependent. */ #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */ #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE)) #ifdef sun4v #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */ #else /* sun4u */ #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */ #endif /* sun4v */ #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE)) #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */ #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */ #define TSB_8K_SZCODE 0 /* 512 entries */ #define TSB_16K_SZCODE 1 /* 1k entries */ #define TSB_32K_SZCODE 2 /* 2k entries */ #define TSB_64K_SZCODE 3 /* 4k entries */ #define TSB_128K_SZCODE 4 /* 8k entries */ #define TSB_256K_SZCODE 5 /* 16k entries */ #define TSB_512K_SZCODE 6 /* 32k entries */ #define TSB_1M_SZCODE 7 /* 64k entries */ #define TSB_2M_SZCODE 8 /* 128k entries */ #define TSB_4M_SZCODE 9 /* 256k entries */ #define TSB_8M_SZCODE 10 /* 512k entries */ #define TSB_16M_SZCODE 11 /* 1M entries */ #define TSB_32M_SZCODE 12 /* 2M entries */ #define TSB_64M_SZCODE 13 /* 4M entries */ #define TSB_128M_SZCODE 14 /* 8M entries */ #define TSB_256M_SZCODE 15 /* 16M entries */ #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */ #define TSB_ENTRY_SIZE (1 << 4) #define TSB_START_SIZE 9 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz)) #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT) #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1) #define TSB_BASEADDR_MASK ((1 << 12) - 1) /* * sun4u platforms * --------------- * We now support two user TSBs with one TSB base register. * Hence the TSB base register is split up as follows: * * When only one TSB present: * [63 62..42 41..13 12..4 3..0] * ^ ^ ^ ^ ^ * | | | | | * | | | | |_ TSB size code * | | | | * | | | |_ Reserved 0 * | | | * | | |_ TSB VA[41..13] * | | * | |_ VA hole (Spitfire), zeros (Cheetah and beyond) * | * |_ 0 * * When second TSB present: * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0] * ^ ^ ^ ^ ^ ^ ^ ^ * | | | | | | | | * | | | | | | | |_ First TSB size code * | | | | | | | * | | | | | | |_ Reserved 0 * | | | | | | * | | | | | |_ First TSB's VA[21..13] * | | | | | * | | | | |_ Reserved for future use * | | | | * | | | |_ Second TSB's size code * | | | * | | |_ Second TSB's VA[21..13] * | | * | |_ VA hole (Spitfire) / ones (Cheetah and beyond) * | * |_ 1 * * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs * may be up to 4M in size. For now, only hardware supported TSB sizes * are supported, though the slabs are usually 4M in size. * * sun4u platforms that define UTSB_PHYS use physical addressing to access * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base * registers. The second TSB base uses a dedicated scratchpad register which * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for * both registers is equivalent to sun4v below, except the TSB PA range is * [46..13] for sun4u. * * sun4v platforms * --------------- * On sun4v platforms, we use two dedicated scratchpad registers as pseudo * hardware TSB base registers to hold up to two different user TSBs. * * Each register contains TSB's physical base and size code information * as follows: * * [63..56 55..13 12..4 3..0] * ^ ^ ^ ^ * | | | | * | | | |_ TSB size code * | | | * | | |_ Reserved 0 * | | * | |_ TSB PA[55..13] * | * | * | * |_ 0 for valid TSB * * Absence of a user TSB (primarily the second user TSB) is indicated by * storing a negative value in the TSB base register. This allows us to * check for presence of a user TSB by simply checking bit# 63. */ #define TSBREG_MSB_SHIFT 32 /* set upper bits */ #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */ #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */ #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */ #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */ #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT) /* sectsb va -> bits 21:13 */ /* after clearing upper bits */ #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */ #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */ #define BIGKTSB_SZ_MASK 0xf #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */ #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */ #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M) #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */ /* * sw bits used on tsb_tag - bit masks used only in assembly * use only a sethi for these fields. */ #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */ #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */ #ifdef _ASM /* * Marker to indicate that this instruction will be hot patched at runtime * to some other value. * This value must be zero since it fills in the imm bits of the target * instructions to be patched */ #define RUNTIME_PATCH (0) /* * V9 defines nop instruction as the following, which we use * at runtime to nullify some instructions we don't want to * execute in the trap handlers on certain platforms. */ #define MAKE_NOP_INSTR(reg) \ sethi %hi(0x1000000), reg /* * This macro constructs a SPARC V9 "jmpl , %g0" * instruction, with the source register specified by the jump_reg_number. * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14]. * The instruction is returned in reg. The macro is used to patch in a jmpl * instruction at runtime. */ #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \ sethi %hi(0x81c00000), reg; \ mov jump_reg_number, tmp; \ sll tmp, 14, tmp; \ or reg, tmp, reg /* * Macro to get hat per-MMU cnum on this CPU. * sfmmu - In, pass in "sfmmup" from the caller. * cnum - Out, return 'cnum' to the caller * scr - scratch */ #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \ CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \ ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \ add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \ sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \ add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \ ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \ sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \ srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ /* * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller. * gnum - Out, return sfmmu gnum * cnum - Out, return sfmmu cnum * reg - scratch */ #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \ ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \ srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \ sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \ srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ /* * Macro to get this CPU's tsbmiss area. */ #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \ CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \ sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \ mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \ or tsbmiss, %lo(tsbmiss_area), tsbmiss; \ add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */ /* * Macro to set kernel context + page size codes in DMMU primary context * register. It is only necessary for sun4u because sun4v does not need * page size codes */ #ifdef sun4v #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) #else #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \ sethi %hi(kcontextreg), reg0; \ ldx [reg0 + %lo(kcontextreg)], reg0; \ mov MMU_PCONTEXT, reg1; \ ldxa [reg1]ASI_MMU_CTX, reg2; \ xor reg0, reg2, reg2; \ brz reg2, label3; \ srlx reg2, CTXREG_NEXT_SHIFT, reg2; \ rdpr %pstate, reg3; /* disable interrupts */ \ btst PSTATE_IE, reg3; \ /*CSTYLED*/ \ bnz,a,pt %icc, label1; \ wrpr reg3, PSTATE_IE, %pstate; \ /*CSTYLED*/ \ label1:; \ brz reg2, label2; /* need demap if N_pgsz0/1 change */ \ sethi %hi(FLUSH_ADDR), reg4; \ mov DEMAP_ALL_TYPE, reg2; \ stxa %g0, [reg2]ASI_DTLB_DEMAP; \ stxa %g0, [reg2]ASI_ITLB_DEMAP; \ /*CSTYLED*/ \ label2:; \ stxa reg0, [reg1]ASI_MMU_CTX; \ flush reg4; \ btst PSTATE_IE, reg3; \ /*CSTYLED*/ \ bnz,a,pt %icc, label3; \ wrpr %g0, reg3, %pstate; /* restore interrupt state */ \ label3:; #endif /* * Macro to setup arguments with kernel sfmmup context + page size before * calling sfmmu_setctx_sec() */ #ifdef sun4v #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ set KCONTEXT, arg0; \ set 0, arg1; #else #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ ldub [sfmmup + SFMMU_CEXT], arg1; \ set KCONTEXT, arg0; \ sll arg1, CTXREG_EXT_SHIFT, arg1; #endif #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \ andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \ /*CSTYLED*/ \ bnz,pt %icc, label; /* already disabled */ \ nop; \ \ sethi %hi(panicstr), scr; \ ldx [scr + %lo(panicstr)], scr; \ tst scr; \ /*CSTYLED*/ \ bnz,pt %xcc, label; \ nop; \ \ save %sp, -SA(MINFRAME), %sp; \ sethi %hi(sfmmu_panic1), %o0; \ call panic; \ or %o0, %lo(sfmmu_panic1), %o0; \ /*CSTYLED*/ \ label: #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \ /* \ * The caller must have disabled interrupts. \ * If interrupts are not disabled, panic \ */ \ rdpr %pstate, scr; \ andcc scr, PSTATE_IE, %g0; \ /*CSTYLED*/ \ bz,pt %icc, label; \ nop; \ \ sethi %hi(panicstr), scr; \ ldx [scr + %lo(panicstr)], scr; \ tst scr; \ /*CSTYLED*/ \ bnz,pt %xcc, label; \ nop; \ \ sethi %hi(sfmmu_panic6), %o0; \ call panic; \ or %o0, %lo(sfmmu_panic6), %o0; \ /*CSTYLED*/ \ label: #endif /* _ASM */ #ifndef _ASM #ifdef VAC /* * Page coloring * The p_vcolor field of the page struct (1 byte) is used to store the * virtual page color. This provides for 255 colors. The value zero is * used to mean the page has no color - never been mapped or somehow * purified. */ #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1) #define PP_NEWPAGE(pp) (!(pp)->p_vcolor) #define PP_SET_VCOLOR(pp, color) \ ((pp)->p_vcolor = ((color) + 1)) /* * As mentioned p_vcolor == 0 means there is no color for this page. * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus * one so we define this constant. */ #define NO_VCOLOR (-1) #define addr_to_vcolor(addr) \ (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask) #else /* VAC */ #define addr_to_vcolor(addr) (0) #endif /* VAC */ /* * The field p_index in the psm page structure is for large pages support. * P_index is a bit-vector of the different mapping sizes that a given page * is part of. An hme structure for a large mapping is only added in the * group leader page (first page). All pages covered by a given large mapping * have the corrosponding mapping bit set in their p_index field. This allows * us to only store an explicit hme structure in the leading page which * simplifies the mapping link list management. Furthermore, it provides us * a fast mechanism for determining the largest mapping a page is part of. For * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A. * * Implementation note: even though the first bit in p_index is reserved * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set. * In addition, the upper four bits of the p_index field are used by the * code as temporaries */ /* * Defines for psm page struct fields and large page support */ #define SFMMU_INDEX_SHIFT 6 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1) /* Return the mapping index */ #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK) /* * These macros rely on the following property: * All pages constituting a large page are covered by a virtually * contiguous set of page_t's. */ /* Return the leader for this mapping size */ #define PP_GROUPLEADER(pp, sz) \ (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))]) /* Return the root page for this page based on p_szc */ #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ PP_GROUPLEADER((pp), (pp)->p_szc)) #define PP_PAGENEXT_N(pp, n) ((pp) + (n)) #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1) #define PP_PAGEPREV_N(pp, n) ((pp) - (n)) #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1) #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0) /* Need function to test the page mappping which takes p_index into account */ #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp)) /* * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT * set p_index field. */ #define PAGESZ_TO_INDEX(sz) (1 << (sz)) /* * prototypes for hat assembly routines. Some of these are * known to machine dependent VM code. */ extern uint64_t sfmmu_make_tsbtag(caddr_t); extern struct tsbe * sfmmu_get_tsbe(uint64_t, caddr_t, int, int); extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int); extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int); extern void sfmmu_load_mmustate(sfmmu_t *); extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t); #ifndef sun4v extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *); extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *); #endif /* sun4v */ extern void sfmmu_copytte(tte_t *, tte_t *); extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *); extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *); extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t); extern void sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *, uint64_t, struct hme_blk *); extern void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *, uint64_t); extern uint_t sfmmu_disable_intrs(void); extern void sfmmu_enable_intrs(uint_t); /* * functions exported to machine dependent VM code */ extern void sfmmu_patch_ktsb(void); #ifndef UTSB_PHYS extern void sfmmu_patch_utsb(void); #endif /* UTSB_PHYS */ extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *); extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *); extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int); #ifdef DEBUG extern void sfmmu_check_kpfn(pfn_t); #else #define sfmmu_check_kpfn(pfn) /* disabled */ #endif /* DEBUG */ extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t); extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t); extern void sfmmu_init_tsbs(void); extern caddr_t sfmmu_ktsb_alloc(caddr_t); extern int sfmmu_getctx_pri(void); extern int sfmmu_getctx_sec(void); extern void sfmmu_setctx_sec(uint_t); extern void sfmmu_inv_tsb(caddr_t, uint_t); extern void sfmmu_init_ktsbinfo(void); extern int sfmmu_setup_4lp(void); extern void sfmmu_patch_mmu_asi(int); extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int); extern void sfmmu_cache_flushall(void); extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t); extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int); extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t); extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *); extern void hat_kern_setup(void); extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *); extern int sfmmu_get_ppvcolor(struct page *); extern int sfmmu_get_addrvcolor(caddr_t); extern int sfmmu_hat_lock_held(sfmmu_t *); extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int); /* * Functions exported to xhat_sfmmu.c */ extern kmutex_t *sfmmu_mlist_enter(page_t *); extern void sfmmu_mlist_exit(kmutex_t *); extern int sfmmu_mlist_held(struct page *); extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *); /* * MMU-specific functions optionally imported from the CPU module */ #pragma weak mmu_large_pages_disabled #pragma weak mmu_set_ctx_page_sizes #pragma weak mmu_check_page_sizes extern uint_t mmu_large_pages_disabled(uint_t); extern void mmu_set_ctx_page_sizes(sfmmu_t *); extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *); extern sfmmu_t *ksfmmup; extern caddr_t ktsb_base; extern uint64_t ktsb_pbase; extern int ktsb_sz; extern int ktsb_szcode; extern caddr_t ktsb4m_base; extern uint64_t ktsb4m_pbase; extern int ktsb4m_sz; extern int ktsb4m_szcode; extern uint64_t kpm_tsbbase; extern int kpm_tsbsz; extern int ktsb_phys; extern int enable_bigktsb; #ifndef sun4v extern int utsb_dtlb_ttenum; extern int utsb4m_dtlb_ttenum; #endif /* sun4v */ extern int uhmehash_num; extern int khmehash_num; extern struct hmehash_bucket *uhme_hash; extern struct hmehash_bucket *khme_hash; extern kmutex_t *mml_table; extern uint_t mml_table_sz; extern uint_t mml_shift; extern uint_t hblk_alloc_dynamic; extern struct tsbmiss tsbmiss_area[NCPU]; extern struct kpmtsbm kpmtsbm_area[NCPU]; #ifndef sun4v extern int dtlb_resv_ttenum; extern caddr_t utsb_vabase; extern caddr_t utsb4m_vabase; #endif /* sun4v */ extern vmem_t *kmem_tsb_default_arena[]; extern int tsb_lgrp_affinity; extern uint_t disable_large_pages; extern uint_t disable_ism_large_pages; extern uint_t disable_auto_data_large_pages; extern uint_t disable_auto_text_large_pages; /* kpm externals */ extern pfn_t sfmmu_kpm_vatopfn(caddr_t); extern void sfmmu_kpm_patch_tlbm(void); extern void sfmmu_kpm_patch_tsbm(void); extern void sfmmu_patch_shctx(void); extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int); extern void sfmmu_kpm_unload_tsb(caddr_t, int); extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int); extern int sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int); extern caddr_t kpm_vbase; extern size_t kpm_size; extern struct memseg *memseg_hash[]; extern uint64_t memseg_phash[]; extern kpm_hlk_t *kpmp_table; extern kpm_shlk_t *kpmp_stable; extern uint_t kpmp_table_sz; extern uint_t kpmp_stable_sz; extern uchar_t kpmp_shift; #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0) #define IS_KPM_ALIAS_RANGE(vaddr) \ (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0) #endif /* !_ASM */ /* sfmmu_kpm_tsbmtl flags */ #define KPMTSBM_STOP 0 #define KPMTSBM_START 1 /* * For kpm_smallpages, the state about how a kpm page is mapped and whether * it is ready to go is indicated by the two 4-bit fields defined in the * kpm_spage structure as follows: * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not * kp_mapped_flag bit[4:7] - the mapping is ready to go or not * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss * handler can drop the mapping in regardless of the caching state of the * mapping. Otherwise, we will have C handler resolve the VAC conflict no * matter the page is currently mapped cacheable or non-cacheable. */ #define KPM_MAPPEDS 0x1 /* small mapping valid, no conflict */ #define KPM_MAPPEDSC 0x2 /* small mapping valid, conflict */ #define KPM_MAPPED_GO 0x10 /* the mapping is ready to go */ #define KPM_MAPPED_MASK 0xf /* Physical memseg address NULL marker */ #define MSEG_NULLPTR_PA -1 /* * Memseg hash defines for kpm trap level tsbmiss handler. * Must be in sync w/ page.h . */ #define SFMMU_MEM_HASH_SHIFT 0x9 #define SFMMU_N_MEM_SLOTS 0x200 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3 #ifndef _ASM #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT) #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT #endif #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS) #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS #endif /* Physical memseg address NULL marker */ #define SFMMU_MEMSEG_NULLPTR_PA -1 /* * Check KCONTEXT to be zero, asm parts depend on that assumption. */ #if (KCONTEXT != 0) #error KCONTEXT != 0 #endif #endif /* !_ASM */ #endif /* _KERNEL */ #ifndef _ASM /* * ctx, hmeblk, mlistlock and other stats for sfmmu */ struct sfmmu_global_stat { int sf_tsb_exceptions; /* # of tsb exceptions */ int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */ int sf_pagefaults; /* # of pagefaults */ int sf_uhash_searches; /* # of user hash searches */ int sf_uhash_links; /* # of user hash links */ int sf_khash_searches; /* # of kernel hash searches */ int sf_khash_links; /* # of kernel hash links */ int sf_swapout; /* # times hat swapped out */ int sf_tsb_alloc; /* # TSB allocations */ int sf_tsb_allocfail; /* # times TSB alloc fail */ int sf_tsb_sectsb_create; /* # times second TSB added */ int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */ int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */ int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */ int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */ int sf_tteload8k; /* calls to sfmmu_tteload */ int sf_tteload64k; /* calls to sfmmu_tteload */ int sf_tteload512k; /* calls to sfmmu_tteload */ int sf_tteload4m; /* calls to sfmmu_tteload */ int sf_tteload32m; /* calls to sfmmu_tteload */ int sf_tteload256m; /* calls to sfmmu_tteload */ int sf_tsb_load8k; /* # times loaded 8K tsbent */ int sf_tsb_load4m; /* # times loaded 4M tsbent */ int sf_hblk_hit; /* found hblk during tteload */ int sf_hblk8_ncreate; /* static hblk8's created */ int sf_hblk8_nalloc; /* static hblk8's allocated */ int sf_hblk1_ncreate; /* static hblk1's created */ int sf_hblk1_nalloc; /* static hblk1's allocated */ int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */ int sf_hblk_reserve_cnt; /* hblk_reserve usage */ int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */ int sf_hblk_reserve_hit; /* hblk_reserve hash hits */ int sf_get_free_success; /* reserve list allocs */ int sf_get_free_throttle; /* fails due to throttling */ int sf_get_free_fail; /* fails due to empty list */ int sf_put_free_success; /* reserve list frees */ int sf_put_free_fail; /* fails due to full list */ int sf_pgcolor_conflict; /* VAC conflict resolution */ int sf_uncache_conflict; /* VAC conflict resolution */ int sf_unload_conflict; /* VAC unload resolution */ int sf_ism_uncache; /* VAC conflict resolution */ int sf_ism_recache; /* VAC conflict resolution */ int sf_recache; /* VAC conflict resolution */ int sf_steal_count; /* # of hblks stolen */ int sf_pagesync; /* # of pagesyncs */ int sf_clrwrt; /* # of clear write perms */ int sf_pagesync_invalid; /* pagesync with inv tte */ int sf_kernel_xcalls; /* # of kernel cross calls */ int sf_user_xcalls; /* # of user cross calls */ int sf_tsb_grow; /* # of user tsb grows */ int sf_tsb_shrink; /* # of user tsb shrinks */ int sf_tsb_resize_failures; /* # of user tsb resize */ int sf_tsb_reloc; /* # of user tsb relocations */ int sf_user_vtop; /* # of user vatopfn calls */ int sf_ctx_inv; /* #times invalidate MMU ctx */ int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */ int sf_region_remap_demap; /* # times shme remap demap */ int sf_create_scd; /* # times SCD is created */ int sf_join_scd; /* # process joined scd */ int sf_leave_scd; /* # process left scd */ int sf_destroy_scd; /* # times SCD is destroyed */ }; struct sfmmu_tsbsize_stat { int sf_tsbsz_8k; int sf_tsbsz_16k; int sf_tsbsz_32k; int sf_tsbsz_64k; int sf_tsbsz_128k; int sf_tsbsz_256k; int sf_tsbsz_512k; int sf_tsbsz_1m; int sf_tsbsz_2m; int sf_tsbsz_4m; int sf_tsbsz_8m; int sf_tsbsz_16m; int sf_tsbsz_32m; int sf_tsbsz_64m; int sf_tsbsz_128m; int sf_tsbsz_256m; }; struct sfmmu_percpu_stat { int sf_itlb_misses; /* # of itlb misses */ int sf_dtlb_misses; /* # of dtlb misses */ int sf_utsb_misses; /* # of user tsb misses */ int sf_ktsb_misses; /* # of kernel tsb misses */ int sf_tsb_hits; /* # of tsb hits */ int sf_umod_faults; /* # of mod (prot viol) flts */ int sf_kmod_faults; /* # of mod (prot viol) flts */ }; #define SFMMU_STAT(stat) sfmmu_global_stat.stat++ #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount) #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count) #define SFMMU_MMU_STAT(stat) CPU->cpu_m.cpu_mmu_ctxp->stat++ #endif /* !_ASM */ #ifdef __cplusplus } #endif #endif /* _VM_HAT_SFMMU_H */